metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[μ3-N′-(carboxymethyl)ethylene­di­amine-N,N,N′-tri­acetato]dysprosium(III)] trihydrate]

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 9 October 2010; accepted 15 October 2010; online 23 October 2010)

In the title coordination polymer, {[Dy(C10H13N2O8)]·3H2O}n, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carb­oxy­meth­yl)ethyl­ene­diamine­triacetate ligands in a distorted square-anti­prismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H⋯O hydrogen bonds further assemble adjacent layers into a three-dimensional supra­molecular network.

Related literature

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002[Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388.]). For related structures, see: Wang et al. (2007[Wang, J., Gao, G., Zhang, Z., Zhang, X. & Wang, Y. (2007). J. Coord. Chem. 60, 2221-2241.]); You & Ng (2007[You, X.-L. & Ng, S. W. (2007). Acta Cryst. E63, m1819.]); Sakagami et al. (1999[Sakagami, N., Yamada, Y., Konno, T. & Okamoto, K. (1999). Inorg. Chim. Acta, 288, 7-16.]); Templeton et al. (1985[Templeton, L. K., Templeton, D. H. & Zalkin, A. (1985). Acta Cryst. C41, 355-358.]); Vikram & Sivasankar (2008[Vikram, L. & Sivasankar, B. N. (2008). Ind. J. Chem. Sect. A, 47, 25-31.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy(C10H13N2O8)]·3H2O

  • Mr = 505.77

  • Orthorhombic, P b c a

  • a = 13.3835 (5) Å

  • b = 13.0127 (4) Å

  • c = 18.6943 (7) Å

  • V = 3255.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.65 mm−1

  • T = 296 K

  • 0.25 × 0.19 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT andSADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.389, Tmax = 0.488

  • 19825 measured reflections

  • 3192 independent reflections

  • 2230 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.07

  • 3192 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.69 2.504 (5) 172
O1W—H2W⋯O6ii 0.85 2.17 2.920 (5) 148
O1W—H1W⋯O3iii 0.84 2.10 2.925 (5) 165
O2W—H3W⋯O3Wiv 0.83 2.04 2.813 (6) 154
O2W—H4W⋯O1Wv 0.84 2.09 2.844 (6) 150
O3W—H6W⋯O2vi 0.85 2.56 3.141 (5) 127
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT andSADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT andSADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The flexible ethylenediaminetetraacetato ligand possessing variable coordination modes to bind to metal ions, provides unique opportunities for the construction of unusual networks. Recently, some mono- and polynuclear Dy complexes of this ligand have been reported (Wang et al., 2007; You & Ng, 2007; Sakagami et al., 1999; Templeton et al., 1985; Vikram & Sivasankar, 2008). Herein, we report the structure of the new polynuclear dysprosium complex, {[Dy(C10H9N2O8)].3H2O}n.

In the structure of the title compound, the dysprosium(III) metal displays a distorted square antiprism geometry provided by two N atoms from one (carboxymethyl)ethylenediaminetriacetato ligand (HEDTA) and six O atoms from three different HEDTA ligands (Fig. 1). The ligands connect the dysprosium centres to form layers parallel to the ab plane. O—H···O hydrogen bonds involving the interstitial water molecules assemble adjacent layers to construct a three-dimensional supramolecular network (Table 1; Fig. 2).

Related literature top

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002). For related structures, see: Wang et al. (2007); You & Ng (2007); Sakagami et al. (1999); Templeton et al. (1985); Vikram & Sivasankar (2008).

Experimental top

A mixture of Dy2O3 (0.189 g, 0.5 mmol), ethylenediaminetetraacetic acid (0.146 g, 0.5 mmol), and H2O (10 mL) was sealed in a 20 mL Teflon-lined reactor, which was heated in an oven to 423 K for 36 h and then cooled to room temperature at a rate of 5 K h-1. Colourless crystals were obtained in a yield of 46% based on Dy.

Refinement top

All water H atoms were tentatively located in difference density Fourier maps and were refined with O–H distance restraints of 0.85 (2) Å and with Uiso(H) = 1.5 Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atoms. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Structure description top

The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The flexible ethylenediaminetetraacetato ligand possessing variable coordination modes to bind to metal ions, provides unique opportunities for the construction of unusual networks. Recently, some mono- and polynuclear Dy complexes of this ligand have been reported (Wang et al., 2007; You & Ng, 2007; Sakagami et al., 1999; Templeton et al., 1985; Vikram & Sivasankar, 2008). Herein, we report the structure of the new polynuclear dysprosium complex, {[Dy(C10H9N2O8)].3H2O}n.

In the structure of the title compound, the dysprosium(III) metal displays a distorted square antiprism geometry provided by two N atoms from one (carboxymethyl)ethylenediaminetriacetato ligand (HEDTA) and six O atoms from three different HEDTA ligands (Fig. 1). The ligands connect the dysprosium centres to form layers parallel to the ab plane. O—H···O hydrogen bonds involving the interstitial water molecules assemble adjacent layers to construct a three-dimensional supramolecular network (Table 1; Fig. 2).

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002). For related structures, see: Wang et al. (2007); You & Ng (2007); Sakagami et al. (1999); Templeton et al. (1985); Vikram & Sivasankar (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (ii) 1/2-x, -1/2+y, z; (iii) 1/2+x, y, 1/2-z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
Poly[[[µ3-N'-(carboxymethyl)ethylenediamine- N,N,N'-triacetato]dysprosium(III)] trihydrate] top
Crystal data top
[Dy(C10H13N2O8)]·3H2OF(000) = 1976
Mr = 505.77Dx = 2.064 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4800 reflections
a = 13.3835 (5) Åθ = 1.4–28.0°
b = 13.0127 (4) ŵ = 4.65 mm1
c = 18.6943 (7) ÅT = 296 K
V = 3255.7 (2) Å3Block, colourless
Z = 80.25 × 0.19 × 0.18 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3192 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scanθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1316
Tmin = 0.389, Tmax = 0.488k = 1616
19825 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0239P)2 + 3.1993P]
where P = (Fo2 + 2Fc2)/3
3192 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Dy(C10H13N2O8)]·3H2OV = 3255.7 (2) Å3
Mr = 505.77Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.3835 (5) ŵ = 4.65 mm1
b = 13.0127 (4) ÅT = 296 K
c = 18.6943 (7) Å0.25 × 0.19 × 0.18 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3192 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2230 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.488Rint = 0.034
19825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.07Δρmax = 0.74 e Å3
3192 reflectionsΔρmin = 0.69 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.195820 (13)0.546220 (11)0.248589 (10)0.01538 (8)
N10.1266 (2)0.6990 (2)0.32682 (16)0.0170 (7)
N20.0619 (2)0.6517 (2)0.17784 (16)0.0167 (7)
C40.1889 (3)0.5806 (3)0.4196 (2)0.0220 (10)
C30.1109 (3)0.6609 (3)0.4002 (2)0.0219 (9)
H3A0.04480.63100.40400.026*
H3B0.11490.71780.43350.026*
C20.1622 (3)0.5832 (3)0.0792 (2)0.0245 (10)
C10.0980 (3)0.6704 (3)0.1040 (2)0.0231 (10)
H1A0.13620.73370.10270.028*
H1B0.04140.67790.07210.028*
C60.0396 (3)0.7507 (3)0.2145 (2)0.0187 (9)
H6A0.02290.77780.19640.022*
H6B0.09180.79980.20330.022*
C50.0323 (3)0.7387 (3)0.2951 (2)0.0195 (9)
H5A0.01660.80480.31630.023*
H5B0.02170.69180.30640.023*
O20.1990 (2)0.5221 (2)0.12204 (15)0.0305 (8)
O40.2355 (2)0.5364 (2)0.36996 (14)0.0258 (7)
O30.2014 (2)0.5610 (2)0.48468 (15)0.0375 (8)
O10.1763 (3)0.5794 (3)0.01143 (16)0.0444 (9)
H10.21180.53000.00180.067*
C80.2652 (3)0.7845 (3)0.2596 (2)0.0187 (9)
C70.2041 (3)0.7799 (3)0.3277 (2)0.0204 (9)
H7A0.24870.76770.36770.024*
H7B0.17220.84590.33520.024*
O50.2750 (2)0.70278 (19)0.22414 (15)0.0228 (6)
C100.0465 (3)0.5264 (3)0.2434 (2)0.0180 (9)
C90.0296 (3)0.5873 (3)0.1748 (2)0.0219 (9)
H9A0.02430.53990.13490.026*
H9B0.08700.63120.16630.026*
O60.03078 (19)0.4997 (2)0.27769 (15)0.0218 (6)
O70.30708 (18)0.86679 (19)0.24311 (14)0.0243 (7)
O80.13277 (19)0.50137 (19)0.26058 (14)0.0216 (6)
O1W0.9746 (4)0.4386 (3)0.4225 (2)0.0840 (14)
H2W0.96680.44750.37800.126*
H1W0.92000.44780.44410.126*
O2W0.8853 (3)0.7777 (3)0.0541 (2)0.0798 (13)
H3W0.86060.77690.01330.096*
H4W0.90630.83640.06490.096*
O3W0.3282 (4)0.7889 (3)0.0831 (2)0.0966 (16)
H6W0.28140.83190.09090.145*
H5W0.38330.82470.07850.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01199 (11)0.01112 (10)0.02303 (12)0.00043 (6)0.00005 (9)0.00001 (9)
N10.0157 (17)0.0155 (15)0.0197 (18)0.0009 (14)0.0011 (14)0.0026 (14)
N20.0193 (18)0.0153 (16)0.0156 (17)0.0010 (14)0.0044 (14)0.0002 (14)
C40.023 (2)0.020 (2)0.022 (2)0.0000 (18)0.0041 (19)0.0008 (18)
C30.025 (2)0.025 (2)0.016 (2)0.0007 (19)0.0048 (18)0.0006 (18)
C20.024 (2)0.029 (2)0.020 (2)0.002 (2)0.005 (2)0.0044 (19)
C10.024 (2)0.023 (2)0.022 (2)0.0052 (19)0.0024 (18)0.0024 (18)
C60.015 (2)0.0148 (19)0.027 (2)0.0073 (17)0.0028 (18)0.0023 (17)
C50.017 (2)0.0167 (19)0.025 (2)0.0043 (17)0.0026 (18)0.0020 (17)
O20.042 (2)0.0291 (16)0.0204 (16)0.0182 (14)0.0014 (14)0.0032 (13)
O40.0253 (17)0.0287 (16)0.0233 (16)0.0092 (14)0.0022 (14)0.0028 (13)
O30.046 (2)0.048 (2)0.0180 (16)0.0207 (16)0.0026 (14)0.0043 (15)
O10.059 (2)0.048 (2)0.0260 (18)0.0262 (18)0.0108 (16)0.0033 (16)
C80.0086 (18)0.0125 (18)0.035 (3)0.0022 (15)0.0059 (18)0.0031 (18)
C70.023 (2)0.0147 (19)0.023 (2)0.0004 (17)0.0021 (18)0.0029 (17)
O50.0212 (15)0.0139 (14)0.0332 (16)0.0004 (12)0.0088 (13)0.0013 (12)
C100.017 (2)0.0103 (16)0.026 (2)0.0009 (15)0.0007 (19)0.0050 (17)
C90.017 (2)0.025 (2)0.023 (2)0.0019 (18)0.0044 (18)0.0021 (18)
O60.0114 (14)0.0188 (13)0.0352 (16)0.0000 (12)0.0021 (13)0.0088 (13)
O70.0177 (15)0.0116 (12)0.0437 (18)0.0019 (11)0.0034 (14)0.0005 (14)
O80.0077 (14)0.0187 (12)0.0383 (18)0.0011 (11)0.0011 (12)0.0039 (13)
O1W0.109 (4)0.097 (3)0.046 (3)0.014 (3)0.024 (3)0.002 (2)
O2W0.062 (3)0.113 (4)0.064 (3)0.018 (3)0.004 (2)0.017 (3)
O3W0.127 (5)0.084 (3)0.079 (3)0.007 (3)0.011 (3)0.003 (3)
Geometric parameters (Å, º) top
Dy1—O42.334 (3)C6—C51.518 (6)
Dy1—O7i2.337 (3)C6—H6A0.9700
Dy1—O52.342 (3)C6—H6B0.9700
Dy1—O62.354 (3)C5—H5A0.9700
Dy1—O8ii2.373 (3)C5—H5B0.9700
Dy1—O22.387 (3)O1—H10.8200
Dy1—N22.617 (3)C8—O71.248 (4)
Dy1—N12.636 (3)C8—O51.260 (4)
N1—C31.473 (4)C8—C71.513 (5)
N1—C71.477 (5)C7—H7A0.9700
N1—C51.487 (5)C7—H7B0.9700
N2—C11.482 (5)C10—O81.243 (4)
N2—C91.485 (5)C10—O61.265 (4)
N2—C61.488 (5)C10—C91.524 (5)
C4—O41.257 (5)C9—H9A0.9700
C4—O31.254 (5)C9—H9B0.9700
C4—C31.521 (5)O7—Dy1iii2.337 (3)
C3—H3A0.9700O8—Dy1iv2.373 (2)
C3—H3B0.9700O1W—H2W0.8462
C2—O21.231 (5)O1W—H1W0.8429
C2—O11.282 (5)O2W—H3W0.8322
C2—C11.496 (5)O2W—H4W0.8371
C1—H1A0.9700O3W—H6W0.8515
C1—H1B0.9700O3W—H5W0.8763
O4—Dy1—O7i89.53 (9)O2—C2—O1124.0 (4)
O4—Dy1—O597.72 (10)O2—C2—C1121.2 (4)
O7i—Dy1—O5150.23 (9)O1—C2—C1114.8 (4)
O4—Dy1—O688.56 (10)N2—C1—C2110.6 (3)
O7i—Dy1—O674.80 (9)N2—C1—H1A109.5
O5—Dy1—O6133.90 (9)C2—C1—H1A109.5
O4—Dy1—O8ii80.61 (10)N2—C1—H1B109.5
O7i—Dy1—O8ii76.54 (8)C2—C1—H1B109.5
O5—Dy1—O8ii76.25 (9)H1A—C1—H1B108.1
O6—Dy1—O8ii149.38 (9)N2—C6—C5112.4 (3)
O4—Dy1—O2162.25 (10)N2—C6—H6A109.1
O7i—Dy1—O279.94 (10)C5—C6—H6A109.1
O5—Dy1—O285.01 (10)N2—C6—H6B109.1
O6—Dy1—O2102.22 (10)C5—C6—H6B109.1
O8ii—Dy1—O283.05 (9)H6A—C6—H6B107.9
O4—Dy1—N2132.53 (9)N1—C5—C6112.1 (3)
O7i—Dy1—N2119.38 (9)N1—C5—H5A109.2
O5—Dy1—N275.81 (10)C6—C5—H5A109.2
O6—Dy1—N266.98 (9)N1—C5—H5B109.2
O8ii—Dy1—N2138.99 (9)C6—C5—H5B109.2
O2—Dy1—N265.17 (9)H5A—C5—H5B107.9
O4—Dy1—N165.28 (9)C2—O2—Dy1123.5 (3)
O7i—Dy1—N1140.53 (9)C4—O4—Dy1125.5 (3)
O5—Dy1—N167.10 (9)C2—O1—H1109.5
O6—Dy1—N174.70 (10)O7—C8—O5123.1 (4)
O8ii—Dy1—N1124.40 (9)O7—C8—C7119.0 (3)
O2—Dy1—N1130.94 (9)O5—C8—C7117.8 (3)
N2—Dy1—N169.15 (9)N1—C7—C8113.4 (3)
C3—N1—C7109.2 (3)N1—C7—H7A108.9
C3—N1—C5111.5 (3)C8—C7—H7A108.9
C7—N1—C5110.7 (3)N1—C7—H7B108.9
C3—N1—Dy1108.2 (2)C8—C7—H7B108.9
C7—N1—Dy1107.3 (2)H7A—C7—H7B107.7
C5—N1—Dy1109.8 (2)C8—O5—Dy1125.7 (2)
C1—N2—C9109.0 (3)O8—C10—O6123.8 (4)
C1—N2—C6110.6 (3)O8—C10—C9119.4 (3)
C9—N2—C6109.9 (3)O6—C10—C9116.7 (3)
C1—N2—Dy1109.4 (2)N2—C9—C10112.5 (3)
C9—N2—Dy1106.7 (2)N2—C9—H9A109.1
C6—N2—Dy1111.0 (2)C10—C9—H9A109.1
O4—C4—O3123.9 (4)N2—C9—H9B109.1
O4—C4—C3118.5 (4)C10—C9—H9B109.1
O3—C4—C3117.6 (4)H9A—C9—H9B107.8
N1—C3—C4110.9 (3)C10—O6—Dy1125.4 (2)
N1—C3—H3A109.5C8—O7—Dy1iii147.0 (2)
C4—C3—H3A109.5C10—O8—Dy1iv144.6 (2)
N1—C3—H3B109.5H2W—O1W—H1W110.2
C4—C3—H3B109.5H3W—O2W—H4W111.4
H3A—C3—H3B108.1H6W—O3W—H5W106.7
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3v0.821.692.504 (5)172
O1W—H2W···O6vi0.852.172.920 (5)148
O1W—H1W···O3vii0.842.102.925 (5)165
O2W—H3W···O3Wviii0.832.042.813 (6)154
O2W—H4W···O1Wix0.842.092.844 (6)150
O3W—H6W···O2iii0.852.563.141 (5)127
Symmetry codes: (iii) x+1/2, y+1/2, z; (v) x+1/2, y+1, z1/2; (vi) x+1, y, z; (vii) x+1, y+1, z+1; (viii) x+1/2, y+3/2, z; (ix) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Dy(C10H13N2O8)]·3H2O
Mr505.77
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)13.3835 (5), 13.0127 (4), 18.6943 (7)
V3)3255.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)4.65
Crystal size (mm)0.25 × 0.19 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.389, 0.488
No. of measured, independent and
observed [I > 2σ(I)] reflections
19825, 3192, 2230
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.07
No. of reflections3192
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.69

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.692.504 (5)172.0
O1W—H2W···O6ii0.852.172.920 (5)147.5
O1W—H1W···O3iii0.842.102.925 (5)164.7
O2W—H3W···O3Wiv0.832.042.813 (6)154.1
O2W—H4W···O1Wv0.842.092.844 (6)149.6
O3W—H6W···O2vi0.852.563.141 (5)126.8
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1/2, y+3/2, z; (v) x+2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge Zhongshan Polytechnic for supporting this work.

References

First citationBenelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT andSADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSakagami, N., Yamada, Y., Konno, T. & Okamoto, K. (1999). Inorg. Chim. Acta, 288, 7–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTempleton, L. K., Templeton, D. H. & Zalkin, A. (1985). Acta Cryst. C41, 355–358.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVikram, L. & Sivasankar, B. N. (2008). Ind. J. Chem. Sect. A, 47, 25–31.  Google Scholar
First citationWang, J., Gao, G., Zhang, Z., Zhang, X. & Wang, Y. (2007). J. Coord. Chem. 60, 2221–2241.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, X.-L. & Ng, S. W. (2007). Acta Cryst. E63, m1819.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds