organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Butyl-5-(4-methyl­phen­­oxy)-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7(6H)-one

aInstitute of Medicinal Chemistry, Hubei Medical University, Shiyan 442000, People's Republic of China, and bCenter of Oncology, People's Hospital affiliated with Hubei Medical University, Shiyan 442000, People's Republic of China
*Correspondence e-mail: zengken@126.com

(Received 9 October 2010; accepted 22 October 2010; online 31 October 2010)

In the title compound, C21H21N5O2, the triazolopyrimidine ring system is essentially planar [maximum displacement = 0.021 (4) Å] and forms dihedral angles of 41.17 (9) and 67.99 (8)° with the phenyl and benzene rings, respectively. The n-butyl side chains is disordered over two positions with an ccupancy ratio of 0.77:0.23. An intra­molecular C—H⋯O hydrogen-bonding inter­action stabilizes the mol­ecular conformation. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds into a three-dimensional network. In addition, ππ stacking inter­actions involving the triazole and pyrimidine rings of adjacent mol­ecules are observed, with centroid–centroid distances of 3.545 (1) Å.

Related literature

For the synthesis and biological activity of 8-aza­guanine derivatives, see: Roblin et al. (1945[Roblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290-294.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Mitchell et al. (1950[Mitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647-649.]); Levine et al. (1963[Levine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N.Y.), 16, 269-272.]); Montgomery et al. (1962[Montgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504-509.]); Yamamoto et al. (1967[Yamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140-142.]); Bariana (1971[Bariana, D. S. (1971). J. Med. Chem. 14, 535-543.]); Holland et al. (1975[Holland, A., Jackson, D., Chaplen, P., LUNT, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447-449.]); Zeng et al. (2010[Zeng, X. H., Liu, M., Ding, M. W. & He, H. W. (2010). Synth. Commun. 40, 1453-1460.]). For related structures, see: Ferguson et al. (1998[Ferguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.]); Li et al. (2004[Li, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11-14.]); Zhao, Xie et al. (2005[Zhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020-1022.]); Zhao, Hu et al. (2005[Zhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791-o2792.]); Zhao, Wang & Ding (2005[Zhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439-444.]); Chen & Shi (2006[Chen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780-o4782.]); Maldonado et al. (2006[Maldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489-o491.]); Xiao et al. (2007[Xiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.]); Wang et al. (2006[Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038-o5040.], 2008[Wang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.]); Zeng et al. (2006[Zeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731-o732.], 2009[Zeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142-o1143.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N5O2

  • Mr = 375.43

  • Monoclinic, P 21 /n

  • a = 11.0954 (10) Å

  • b = 16.4478 (15) Å

  • c = 11.3484 (11) Å

  • β = 107.643 (1)°

  • V = 1973.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.985

  • 20458 measured reflections

  • 3876 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.182

  • S = 1.08

  • 3876 reflections

  • 293 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2 0.97 2.50 3.048 (5) 116
C2—H2⋯O1i 0.93 2.53 3.230 (3) 133
C3—H3⋯N2ii 0.93 2.61 3.535 (2) 174
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of heterocycles containing 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004; Zeng et al., 2010), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemic activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975). In recent years, Ding's group has been engaged in the preparation of derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphoranes with aromatic isocyanates (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained from beta-ethoxycarbonyl iminophosphorane with alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazolopyrimidinone moiety are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Zeng et al., 2006, 2009; Wang et al., 2006, 2008; Xiao et al., 2007; Chen & Shi, 2006), the triazolopyrimidine ring system is essentially planar, with a maximum displacement of 0.021 (4) Å for atom C8, and forms dihedral angles of 41.17 (9) and 67.99 (8)° with the C1–C6 and C15–C20 rings, respectively. There exists an intramolecular C—H···O hydrogen bonding interaction stabilizing the molecular conformation. In the crystal packing, molecules are linked by intermolecular C—H···O and C—H···N hydrogen bonds (Table 1). In addition, ππ stacking interactions involving the triazole and pyrimidine rings of adjacent molecules are observed, with cenroid-to-centroid distances of 3.545 (1) Å.

Related literature top

For the synthesis and biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975); Zeng et al. (2010). For related structures, see: Ferguson et al. (1998); Li et al. (2004); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao et al. (2007); Wang et al. (2006, 2008); Zeng et al. (2006, 2009).

Experimental top

To the solution of carbodiimide in CH2Cl2/CH3CN (1:4 v/v, 15 ml) prepared according to the literature method (Zeng et al., 2006), was added 4-methylphenol (3 mmol) and excess K2CO3, and the reaction mixture was stirred for 12 h. The solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give the title compound (yield 93%; m.p. 406 K). Elemental analysis: calculated for C21H21N5O2: C, 67.18; H, 5.64; N, 18.65%. Found: C, 66.62; H, 5.98; N, 18.13%. Crystals suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of a hexane/dichloromethane (1:3 v/v) solution at room temperature.

Refinement top

H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.97 Å, and Uiso(H) = 1.2Ueq(C) for CH or 1.5Ueq(C) for CH3. The n-butyl side chain is disordered over two positions with occupancy factors of 0.77:0.23. During the refinement, the adjacent and interval C—C distances involving the disordered carbon atoms were restrained to be 1.54 (1)Å and 2.45 (2) Å, respectively, by using the command DFIX.

Structure description top

The derivatives of heterocycles containing 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004; Zeng et al., 2010), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemic activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975). In recent years, Ding's group has been engaged in the preparation of derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphoranes with aromatic isocyanates (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained from beta-ethoxycarbonyl iminophosphorane with alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazolopyrimidinone moiety are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Zeng et al., 2006, 2009; Wang et al., 2006, 2008; Xiao et al., 2007; Chen & Shi, 2006), the triazolopyrimidine ring system is essentially planar, with a maximum displacement of 0.021 (4) Å for atom C8, and forms dihedral angles of 41.17 (9) and 67.99 (8)° with the C1–C6 and C15–C20 rings, respectively. There exists an intramolecular C—H···O hydrogen bonding interaction stabilizing the molecular conformation. In the crystal packing, molecules are linked by intermolecular C—H···O and C—H···N hydrogen bonds (Table 1). In addition, ππ stacking interactions involving the triazole and pyrimidine rings of adjacent molecules are observed, with cenroid-to-centroid distances of 3.545 (1) Å.

For the synthesis and biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975); Zeng et al. (2010). For related structures, see: Ferguson et al. (1998); Li et al. (2004); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao et al. (2007); Wang et al. (2006, 2008); Zeng et al. (2006, 2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H-atoms are represented by circles of arbitrary size. Only the major component of the disorder is shown.
6-Butyl-5-(4-methylphenoxy)-3-phenyl-3H-1,2,3- triazolo[4,5-d]pyrimidin-7(6H)-one top
Crystal data top
C21H21N5O2F(000) = 792
Mr = 375.43Dx = 1.263 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6350 reflections
a = 11.0954 (10) Åθ = 2.3–25.8°
b = 16.4478 (15) ŵ = 0.09 mm1
c = 11.3484 (11) ÅT = 298 K
β = 107.643 (1)°Block, colourless
V = 1973.6 (3) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3876 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.983, Tmax = 0.985k = 2020
20458 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1122P)2 + 0.0419P]
where P = (Fo2 + 2Fc2)/3
3876 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.56 e Å3
11 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H21N5O2V = 1973.6 (3) Å3
Mr = 375.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0954 (10) ŵ = 0.09 mm1
b = 16.4478 (15) ÅT = 298 K
c = 11.3484 (11) Å0.20 × 0.20 × 0.20 mm
β = 107.643 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3876 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2663 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.985Rint = 0.055
20458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05411 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.08Δρmax = 0.56 e Å3
3876 reflectionsΔρmin = 0.24 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.42419 (17)0.24051 (13)0.45138 (17)0.0654 (5)
C20.5223 (2)0.26001 (14)0.5541 (2)0.0797 (6)
H20.58100.22080.59360.096*
C30.5326 (2)0.33854 (15)0.5978 (2)0.0904 (7)
H30.59800.35230.66820.108*
C40.4468 (3)0.39682 (15)0.5381 (3)0.0909 (7)
H40.45430.44990.56770.109*
C50.3502 (2)0.37608 (16)0.4348 (3)0.0923 (7)
H50.29220.41540.39420.111*
C60.3380 (2)0.29824 (14)0.3907 (2)0.0764 (6)
H60.27230.28450.32050.092*
C70.49373 (17)0.10245 (12)0.39629 (16)0.0616 (5)
C80.42311 (18)0.03487 (12)0.34748 (17)0.0659 (5)
C90.4821 (2)0.03604 (13)0.31905 (17)0.0681 (5)
C100.67331 (18)0.04538 (13)0.39924 (17)0.0670 (5)
C110.6857 (6)0.0970 (5)0.3246 (5)0.0795 (18)0.77
H11A0.63200.14480.31090.095*0.77
H11B0.75890.10730.39560.095*0.77
C120.7294 (5)0.0808 (4)0.2082 (5)0.138 (2)0.77
H12A0.78290.03280.22380.166*0.77
H12B0.78100.12630.19800.166*0.77
C130.6379 (6)0.0699 (3)0.1027 (5)0.149 (2)0.77
H13A0.60060.01680.10500.179*0.77
H13B0.57260.11010.09790.179*0.77
C140.6776 (10)0.0757 (5)0.0175 (6)0.142 (4)0.77
H14A0.74720.03950.01140.213*0.77
H14B0.60740.06060.08740.213*0.77
H14C0.70260.13040.02790.213*0.77
C11'0.704 (2)0.0825 (18)0.3141 (15)0.104 (10)0.23
H11C0.78470.05550.32910.125*0.23
H11D0.71680.12960.36790.125*0.23
C12'0.6617 (12)0.1107 (8)0.1849 (10)0.081 (3)0.23
H12C0.61720.16100.18800.097*0.23
H12D0.59670.07200.14310.097*0.23
C13'0.7276 (11)0.1267 (7)0.0973 (8)0.104 (4)0.23
H13C0.81040.10240.13290.125*0.23
H13D0.74140.18500.10150.125*0.23
C14'0.695 (2)0.1081 (15)0.0281 (18)0.101 (6)0.23
H14D0.60860.12340.06760.152*0.23
H14E0.74920.13740.06500.152*0.23
H14F0.70460.05080.03810.152*0.23
C150.87510 (18)0.10857 (13)0.4721 (2)0.0717 (6)
C160.9372 (2)0.14531 (16)0.4005 (2)0.0856 (7)
H160.92380.12890.31910.103*
C171.0212 (2)0.20782 (16)0.4509 (2)0.0895 (7)
H171.06320.23380.40200.107*
C181.04316 (19)0.23192 (14)0.5710 (2)0.0809 (6)
C190.9782 (2)0.19289 (17)0.6399 (2)0.0904 (7)
H190.99130.20880.72150.108*
C200.8938 (2)0.13042 (16)0.5914 (2)0.0865 (7)
H200.85110.10420.63960.104*
C211.1367 (3)0.29832 (18)0.6258 (3)0.1124 (9)
H21A1.21730.28470.61630.169*
H21B1.14490.30400.71210.169*
H21C1.10740.34860.58400.169*
N10.40888 (13)0.15838 (10)0.40749 (14)0.0651 (4)
N20.28911 (15)0.12506 (12)0.36653 (17)0.0760 (5)
N30.29856 (15)0.05057 (12)0.33090 (16)0.0763 (5)
N40.61476 (15)0.02544 (10)0.34970 (14)0.0686 (5)
N50.62063 (14)0.11114 (10)0.42446 (15)0.0660 (4)
O10.43198 (15)0.09929 (10)0.27448 (15)0.0877 (5)
O20.79833 (13)0.04150 (9)0.41997 (15)0.0840 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0492 (10)0.0861 (14)0.0599 (11)0.0031 (9)0.0152 (8)0.0080 (10)
C20.0634 (12)0.0853 (15)0.0760 (14)0.0001 (11)0.0002 (10)0.0097 (11)
C30.0771 (15)0.0954 (17)0.0843 (15)0.0114 (13)0.0029 (12)0.0014 (13)
C40.0866 (17)0.0855 (15)0.1014 (19)0.0009 (13)0.0299 (14)0.0018 (13)
C50.0803 (16)0.0996 (18)0.0938 (18)0.0185 (13)0.0215 (13)0.0128 (14)
C60.0601 (12)0.0930 (16)0.0707 (13)0.0125 (10)0.0115 (10)0.0046 (11)
C70.0500 (10)0.0810 (12)0.0489 (10)0.0003 (9)0.0079 (7)0.0085 (8)
C80.0558 (11)0.0851 (13)0.0507 (10)0.0027 (9)0.0068 (8)0.0085 (9)
C90.0658 (12)0.0824 (14)0.0495 (10)0.0053 (10)0.0074 (8)0.0065 (9)
C100.0532 (11)0.0879 (14)0.0570 (11)0.0019 (10)0.0121 (8)0.0019 (10)
C110.075 (2)0.086 (3)0.076 (3)0.011 (3)0.020 (2)0.004 (2)
C120.111 (4)0.156 (5)0.147 (5)0.007 (3)0.038 (4)0.070 (4)
C130.205 (6)0.147 (4)0.114 (3)0.064 (4)0.077 (4)0.047 (3)
C140.200 (8)0.147 (7)0.095 (4)0.014 (5)0.069 (4)0.014 (4)
C11'0.129 (17)0.097 (15)0.105 (15)0.015 (10)0.064 (12)0.019 (10)
C12'0.077 (7)0.097 (8)0.069 (7)0.011 (6)0.022 (6)0.018 (6)
C13'0.115 (10)0.090 (7)0.097 (9)0.002 (7)0.015 (7)0.010 (6)
C14'0.090 (10)0.108 (15)0.106 (12)0.014 (9)0.030 (8)0.001 (9)
C150.0446 (10)0.0929 (14)0.0758 (13)0.0081 (10)0.0154 (9)0.0068 (11)
C160.0669 (13)0.1198 (18)0.0734 (14)0.0020 (13)0.0264 (11)0.0123 (13)
C170.0689 (14)0.1146 (18)0.0916 (17)0.0009 (13)0.0341 (12)0.0005 (14)
C180.0544 (11)0.0949 (15)0.0930 (16)0.0076 (11)0.0217 (11)0.0096 (12)
C190.0702 (14)0.127 (2)0.0742 (14)0.0021 (13)0.0221 (11)0.0188 (13)
C200.0644 (13)0.1234 (19)0.0741 (15)0.0102 (13)0.0247 (11)0.0068 (13)
C210.0855 (18)0.119 (2)0.133 (2)0.0136 (16)0.0334 (17)0.0260 (18)
N10.0459 (8)0.0832 (11)0.0604 (9)0.0038 (8)0.0072 (7)0.0055 (8)
N20.0471 (9)0.0998 (13)0.0749 (11)0.0033 (8)0.0091 (8)0.0027 (9)
N30.0534 (10)0.0983 (13)0.0695 (10)0.0053 (9)0.0072 (8)0.0046 (9)
N40.0641 (10)0.0817 (11)0.0557 (9)0.0031 (8)0.0118 (7)0.0001 (8)
N50.0480 (9)0.0836 (11)0.0630 (9)0.0007 (8)0.0116 (7)0.0018 (8)
O10.0859 (11)0.0879 (11)0.0802 (10)0.0134 (8)0.0117 (8)0.0049 (8)
O20.0526 (8)0.1000 (11)0.0981 (11)0.0020 (7)0.0209 (7)0.0187 (8)
Geometric parameters (Å, º) top
C1—C21.370 (3)C14—H14B0.9600
C1—C61.375 (3)C14—H14C0.9600
C1—N11.432 (3)C11'—C12'1.473 (10)
C2—C31.376 (3)C11'—N41.502 (10)
C2—H20.9300C11'—H11C0.9700
C3—C41.376 (3)C11'—H11D0.9700
C3—H30.9300C12'—C13'1.426 (9)
C4—C51.371 (4)C12'—H12C0.9700
C4—H40.9300C12'—H12D0.9700
C5—C61.366 (3)C13'—C14'1.39 (2)
C5—H50.9300C13'—H13C0.9700
C6—H60.9300C13'—H13D0.9700
C7—N11.349 (2)C14'—H14D0.9600
C7—N51.354 (2)C14'—H14E0.9600
C7—C81.376 (3)C14'—H14F0.9600
C8—N31.362 (3)C15—C201.355 (3)
C8—C91.422 (3)C15—C161.356 (3)
C9—O11.215 (2)C15—O21.410 (3)
C9—N41.416 (3)C16—C171.389 (3)
C10—N51.302 (3)C16—H160.9300
C10—O21.336 (2)C17—C181.369 (3)
C10—N41.369 (3)C17—H170.9300
C11—N41.491 (4)C18—C191.373 (3)
C11—C121.562 (8)C18—C211.505 (3)
C11—H11A0.9700C19—C201.387 (3)
C11—H11B0.9700C19—H190.9300
C12—C131.326 (6)C20—H200.9300
C12—H12A0.9700C21—H21A0.9600
C12—H12B0.9700C21—H21B0.9600
C13—C141.559 (7)C21—H21C0.9600
C13—H13A0.9700N1—N21.381 (2)
C13—H13B0.9700N2—N31.304 (3)
C14—H14A0.9600
C2—C1—C6121.1 (2)C13'—C12'—H12C104.1
C2—C1—N1119.77 (18)C11'—C12'—H12C104.1
C6—C1—N1119.07 (18)C13'—C12'—H12D104.1
C1—C2—C3118.9 (2)C11'—C12'—H12D104.1
C1—C2—H2120.5H12C—C12'—H12D105.5
C3—C2—H2120.5C14'—C13'—C12'130.0 (14)
C4—C3—C2120.5 (2)C14'—C13'—H13C104.8
C4—C3—H3119.8C12'—C13'—H13C104.8
C2—C3—H3119.8C14'—C13'—H13D104.8
C5—C4—C3119.5 (2)C12'—C13'—H13D104.8
C5—C4—H4120.2H13C—C13'—H13D105.8
C3—C4—H4120.2C13'—C14'—H14D109.5
C6—C5—C4120.8 (2)C13'—C14'—H14E109.5
C6—C5—H5119.6H14D—C14'—H14E109.5
C4—C5—H5119.6C13'—C14'—H14F109.5
C5—C6—C1119.1 (2)H14D—C14'—H14F109.5
C5—C6—H6120.4H14E—C14'—H14F109.5
C1—C6—H6120.4C20—C15—C16121.9 (2)
N1—C7—N5127.68 (18)C20—C15—O2121.1 (2)
N1—C7—C8105.08 (17)C16—C15—O2116.70 (19)
N5—C7—C8127.23 (19)C15—C16—C17118.9 (2)
N3—C8—C7109.43 (18)C15—C16—H16120.6
N3—C8—C9129.96 (19)C17—C16—H16120.6
C7—C8—C9120.58 (19)C18—C17—C16121.3 (2)
O1—C9—N4121.2 (2)C18—C17—H17119.4
O1—C9—C8127.7 (2)C16—C17—H17119.4
N4—C9—C8111.04 (18)C17—C18—C19117.8 (2)
N5—C10—O2120.81 (18)C17—C18—C21120.9 (2)
N5—C10—N4127.48 (18)C19—C18—C21121.3 (2)
O2—C10—N4111.70 (18)C18—C19—C20121.9 (2)
N4—C11—C12110.1 (5)C18—C19—H19119.0
N4—C11—H11A109.6C20—C19—H19119.0
C12—C11—H11A109.6C15—C20—C19118.2 (2)
N4—C11—H11B109.6C15—C20—H20120.9
C12—C11—H11B109.6C19—C20—H20120.9
H11A—C11—H11B108.2C18—C21—H21A109.5
C13—C12—C11115.9 (5)C18—C21—H21B109.5
C13—C12—H12A108.3H21A—C21—H21B109.5
C11—C12—H12A108.3C18—C21—H21C109.5
C13—C12—H12B108.3H21A—C21—H21C109.5
C11—C12—H12B108.3H21B—C21—H21C109.5
H12A—C12—H12B107.4C7—N1—N2108.99 (17)
C12—C13—C14116.1 (6)C7—N1—C1131.55 (16)
C12—C13—H13A108.3N2—N1—C1119.47 (15)
C14—C13—H13A108.3N3—N2—N1108.51 (16)
C12—C13—H13B108.3N2—N3—C8107.99 (16)
C14—C13—H13B108.3C10—N4—C9122.28 (17)
H13A—C13—H13B107.4C10—N4—C11122.6 (4)
C12'—C11'—N4115.4 (11)C9—N4—C11115.2 (4)
C12'—C11'—H11C108.4C10—N4—C11'111.9 (13)
N4—C11'—H11C108.4C9—N4—C11'125.1 (12)
C12'—C11'—H11D108.4C11—N4—C11'13.6 (18)
N4—C11'—H11D108.4C10—N5—C7111.38 (17)
H11C—C11'—H11D107.5C10—O2—C15119.97 (16)
C13'—C12'—C11'132.7 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O20.972.503.048 (5)116
C2—H2···O1i0.932.533.230 (3)133
C3—H3···N2ii0.932.613.535 (2)174
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H21N5O2
Mr375.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.0954 (10), 16.4478 (15), 11.3484 (11)
β (°) 107.643 (1)
V3)1973.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
20458, 3876, 2663
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.182, 1.08
No. of reflections3876
No. of parameters293
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O20.972.503.048 (5)115.7
C2—H2···O1i0.932.533.230 (3)132.6
C3—H3···N2ii0.932.613.535 (2)174
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by the National Basic Research Program of China (2003CB114400), the National Natural Science Foundation of China (20372023, 20102001), the Educational Commission of Hubei Province of China (grant No. B200624004, B20092412), Shiyan Municipal Science and Technology Bureau (grant No. 20061835) and Yunyang Medical College (grant Nos. 2007QDJ15, 2007ZQB19, 2007ZQB20).

References

First citationBariana, D. S. (1971). J. Med. Chem. 14, 535–543.  PubMed Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780–o4782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.  CrossRef IUCr Journals Google Scholar
First citationHolland, A., Jackson, D., Chaplen, P., LUNT, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447–449.  CAS Google Scholar
First citationLevine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N.Y.), 16, 269–272.  CrossRef CAS Google Scholar
First citationLi, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11–14.  Google Scholar
First citationMaldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489–o491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647–649.  CAS Google Scholar
First citationMontgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504–509.  PubMed CAS Web of Science Google Scholar
First citationRoblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142–o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731–o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X. H., Liu, M., Ding, M. W. & He, H. W. (2010). Synth. Commun. 40, 1453–1460.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791–o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439–444.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020–1022.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds