metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(+)-{1,2-Bis[(2R,5R)-2,5-di­ethyl­phospho­lan-1-yl]ethane-κ2P,P′}(η4-cyclo­octa-1,5-diene)rhodium(I) tetra­fluoridoborate

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: hans-joachim.drexler@catalysis.de

(Received 26 July 2010; accepted 4 October 2010; online 9 October 2010)

The title compound, [Rh(C8H12)(C18H36P2)]BF4, exhibits a rhodium(I) complex cation with a bidentate bis­phosphine ligand and a bidentate η2,η2-coordinated cyclo­octa-1,5-diene ligand. The ligands form a slightly distorted square-planar coordination environment for the Rh(I) atom. An intra­molecular P–Rh–P bite angle of 83.91 (2)° is observed. The dihedral angle between the P—Rh—P and the X—Rh—X planes (X is the centroid of a double bond) is 14.0 (1)°. The BF4 anion is disordered over two positions in a 0.515 (7):0.485 (7) ratio.

Related literature

For general synthetic aspects and different related structures of cationic rhodium bis­phosphine diolefin complexes, see: Schulz et al. (2010[Schulz, S., Drexler, H.-J. & Heller, D. (2010). Acta Cryst. E66, m721-m722.]) and references cited therein. For applications of the Et-BPE ligand {Et-BPE (1,2-bis[(2R,5R)-2,5-diethylphospholan-1-yl]ethane)} in catalytic reactions, see: Axtell et al. (2005[Axtell, A. T., Cobley, C. J., Klosin, J., Whiteker, G. T., Zanotti-Gerosa, A. & Abboud, K. A. (2005). Angew. Chem. Int. Ed. 44, 5834-5838.]); Jerphagnon et al. (2003[Jerphagnon, T., Renaud, J.-L., Demonchaux, P., Ferreira, A. & Bruneau, C. (2003). Tetrahedron Asymmetry, 14, 1973-1977.]); Burk et al. (1998[Burk, M. J., Bienewald, F., Harris, M. & Zanotti-Gerosa, A. (1998). Angew. Chem. Int. Ed. 37, 1931-1933.]). For related structures, see: Burk et al. (1990[Burk, M. J., Feaster, J. E. & Harlow, R. L. (1990). Organometallics, 9, 2653-2655.]); Drexler et al. (2001[Drexler, H.-J., Baumann, W., Spannenberg, A., Fischer, C. & Heller, D. (2001). J. Organomet. Chem. 621, 89-102.], 2004[Drexler, H.-J., Zhang, S., Sun, A., Spannenberg, A., Arrieta, A., Preetz, A. & Heller, D. (2004). Tetrahedron Asymmetry, 15, 2139-2150.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C8H12)(C18H36P2)]BF4

  • Mr = 612.32

  • Orthorhombic, P 21 21 21

  • a = 8.8374 (18) Å

  • b = 16.218 (3) Å

  • c = 19.946 (4) Å

  • V = 2858.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 200 K

  • 0.50 × 0.43 × 0.40 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) Tmin = 0.728, Tmax = 0.858

  • 36650 measured reflections

  • 6075 independent reflections

  • 5779 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.06

  • 6075 reflections

  • 305 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2621 Friedel pairs

  • Flack parameter: −0.02 (2)

Data collection: X-AREA (Stoe & Cie, 2005)[Stoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; data reduction: X-RED32 (Stoe & Cie, 2005)[Stoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The geometry of the cation of the title compound is comparable with the three independent complexes described in Schulz et al. (2010): the dihedral angle between the planes P1,Rh1,P2 and X1,Rh1,X2 (X = centroid of the double bond) of 14.0 (1)° corresponds to those in the Me-BPE complexes (14.7 (1)°, 14.8 (1)° and 15.3 (1)°). Furthermore, the dihedral angle is not the value found for the corresponding Et-DuPhos complex [Rh((R,R)-Et-DuPhos)COD]BF4 (21.1 (1)°) (Drexler et al., 2001) or for the complex [Rh((R,R)-Me-BPE)COD]SbF6 (19.4°) (Burk et al., 1990; Drexler et al., 2004). The cationic rhodium bisphosphine diolefine complexes build up five-membered ring chelates with rhodium (Fig. 1). For the title compound the molecular structure shows a δ-conformation of the backbone of the bisphosphine. The COD is η2,η2-coordinated and is orientated in an anticlockwise twist manner. An intramolecular P1—Rh1—P2 angle of 83.91 (2)° is obtained. This is in the same range of corresponding complexes already described in the literature Schulz et al. (2010) and literature therein. The bonds Rh1—P1 and Rh1—P2 show bond lengths of 2.2754 (8) Å and 2.2702 (8) Å, respectively. Applications of the ligand Et-BPE in catalytic reactions are reported by Axtell et al. (2005); Jerphagnon et al. (2003) and Burk et al. (1998).

Related literature top

For general synthetic aspects and different related structures of cationic rhodium bisphosphine diolefin complexes, see: Schulz et al. (2010) and references cited therein. For applications of the Et-BPE ligand in catalytic reactions, see: Axtell et al. (2005); Jerphagnon et al. (2003); Burk et al. (1998). For related structures, see: Burk et al. (1990); Drexler et al. (2001, 2004).

Experimental top

By overlaying a solution of [Rh((R,R)-Et-BPE)COD)]BF4 in dichloromethane with MTBE (methyl-tert-butylether) red single crystals suitable for X-ray analysis are obtained. 31P NMR (CD2Cl2, 298 K, 162 MHz) [p.p.m.]: 73.5 (d, JP—Rh = 145.5 Hz).

Refinement top

All non-hydrogen atoms are refined anisotropically, except not fully occupied fluorine atoms of the anion. All H atoms were placed in idealized positions with d(C—H) = 0.98(CH), 0.97 (CH2) and 0.96 (CH3) Å and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH2 and CH. The absolute configuration indicators 2R,5R for the title compound were determined by using 2621 Friedel pairs in the refinement. The Flack parameter at convergence was -0.02 (2).

Structure description top

The geometry of the cation of the title compound is comparable with the three independent complexes described in Schulz et al. (2010): the dihedral angle between the planes P1,Rh1,P2 and X1,Rh1,X2 (X = centroid of the double bond) of 14.0 (1)° corresponds to those in the Me-BPE complexes (14.7 (1)°, 14.8 (1)° and 15.3 (1)°). Furthermore, the dihedral angle is not the value found for the corresponding Et-DuPhos complex [Rh((R,R)-Et-DuPhos)COD]BF4 (21.1 (1)°) (Drexler et al., 2001) or for the complex [Rh((R,R)-Me-BPE)COD]SbF6 (19.4°) (Burk et al., 1990; Drexler et al., 2004). The cationic rhodium bisphosphine diolefine complexes build up five-membered ring chelates with rhodium (Fig. 1). For the title compound the molecular structure shows a δ-conformation of the backbone of the bisphosphine. The COD is η2,η2-coordinated and is orientated in an anticlockwise twist manner. An intramolecular P1—Rh1—P2 angle of 83.91 (2)° is obtained. This is in the same range of corresponding complexes already described in the literature Schulz et al. (2010) and literature therein. The bonds Rh1—P1 and Rh1—P2 show bond lengths of 2.2754 (8) Å and 2.2702 (8) Å, respectively. Applications of the ligand Et-BPE in catalytic reactions are reported by Axtell et al. (2005); Jerphagnon et al. (2003) and Burk et al. (1998).

For general synthetic aspects and different related structures of cationic rhodium bisphosphine diolefin complexes, see: Schulz et al. (2010) and references cited therein. For applications of the Et-BPE ligand in catalytic reactions, see: Axtell et al. (2005); Jerphagnon et al. (2003); Burk et al. (1998). For related structures, see: Burk et al. (1990); Drexler et al. (2001, 2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view and numbering scheme of the cation [Rh((R,R)-Et-BPE)COD]+. All H atoms and the anion have been omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.
(+)-{1,2-Bis[(2R,5R)-2,5-diethylphospholan-1-yl]ethane- κ2P,P'}(η4-cycloocta-1,5-diene)rhodium(I) tetrafluoridoborate top
Crystal data top
[Rh(C8H12)(C18H36P2)]BF4F(000) = 1280
Mr = 612.32Dx = 1.423 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 54003 reflections
a = 8.8374 (18) Åθ = 1.6–27.2°
b = 16.218 (3) ŵ = 0.75 mm1
c = 19.946 (4) ÅT = 200 K
V = 2858.7 (10) Å3Part of block, red
Z = 40.50 × 0.43 × 0.40 mm
Data collection top
STOE IPDS 2
diffractometer
6075 independent reflections
Radiation source: fine-focus sealed tube5779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 1.6°
rotation method scansh = 1111
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
k = 2020
Tmin = 0.728, Tmax = 0.858l = 2525
36650 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.2291P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
6075 reflectionsΔρmax = 0.95 e Å3
305 parametersΔρmin = 0.34 e Å3
21 restraintsAbsolute structure: Flack (1983), 2621 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Rh(C8H12)(C18H36P2)]BF4V = 2858.7 (10) Å3
Mr = 612.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8374 (18) ŵ = 0.75 mm1
b = 16.218 (3) ÅT = 200 K
c = 19.946 (4) Å0.50 × 0.43 × 0.40 mm
Data collection top
STOE IPDS 2
diffractometer
6075 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
5779 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.858Rint = 0.035
36650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.95 e Å3
S = 1.06Δρmin = 0.34 e Å3
6075 reflectionsAbsolute structure: Flack (1983), 2621 Friedel pairs
305 parametersAbsolute structure parameter: 0.02 (2)
21 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.55265 (2)0.179334 (12)0.820495 (9)0.02703 (6)
P10.62151 (8)0.15079 (4)0.71305 (3)0.02599 (13)
P20.62220 (8)0.04667 (4)0.83972 (3)0.02676 (13)
C10.5242 (4)0.31550 (18)0.80272 (15)0.0417 (7)
H1A0.56630.33480.76000.050*
C20.3872 (4)0.2772 (2)0.79692 (15)0.0431 (7)
H2A0.35020.27490.75060.052*
C30.2629 (5)0.2709 (3)0.8481 (2)0.0656 (11)
H3A0.19690.22540.83620.079*
H3B0.20320.32110.84700.079*
C40.3214 (6)0.2576 (3)0.9195 (2)0.0721 (13)
H4A0.34890.31060.93840.087*
H4B0.24010.23510.94660.087*
C50.4564 (6)0.2006 (2)0.92417 (14)0.0550 (10)
H5A0.43800.15000.94990.066*
C60.6040 (6)0.2249 (2)0.92248 (16)0.0555 (11)
H6A0.67200.18880.94790.067*
C70.6635 (7)0.3112 (2)0.91348 (19)0.0689 (13)
H7A0.76850.30790.89950.083*
H7B0.66120.33890.95660.083*
C80.5783 (6)0.3636 (2)0.86315 (19)0.0667 (13)
H8A0.49160.38830.88520.080*
H8B0.64370.40800.84810.080*
C90.6456 (3)0.03874 (18)0.70368 (13)0.0333 (6)
H9A0.54780.01220.69880.040*
H9B0.70570.02670.66420.040*
C100.7254 (3)0.00717 (18)0.76640 (13)0.0340 (6)
H10A0.82940.02640.76720.041*
H10B0.72590.05260.76680.041*
C110.5147 (3)0.18501 (18)0.63828 (12)0.0309 (5)
H11A0.48300.24210.64620.037*
C120.6369 (4)0.1865 (2)0.58392 (14)0.0435 (7)
H12A0.66050.13080.56960.052*
H12B0.60180.21740.54530.052*
C130.7764 (4)0.2272 (2)0.61365 (17)0.0484 (8)
H13A0.76100.28630.61610.058*
H13B0.86310.21680.58500.058*
C140.8070 (3)0.19301 (18)0.68390 (14)0.0364 (6)
H14A0.87730.14660.67930.044*
C150.3730 (4)0.1352 (2)0.62165 (15)0.0414 (7)
H15A0.30830.13280.66090.050*
H15B0.40200.07930.61020.050*
C160.2847 (4)0.1727 (3)0.56339 (17)0.0522 (8)
H16A0.19600.14020.55490.078*
H16B0.34730.17350.52410.078*
H16C0.25530.22800.57460.078*
C170.8803 (4)0.2564 (3)0.7303 (2)0.0556 (9)
H17A0.81190.30260.73620.067*
H17B0.89710.23160.77390.067*
C181.0305 (5)0.2877 (3)0.7027 (3)0.0729 (12)
H18A1.07300.32720.73330.109*
H18B1.01400.31350.66000.109*
H18C1.09910.24230.69750.109*
C190.7298 (3)0.01375 (18)0.91399 (14)0.0338 (6)
H19A0.69110.04510.95230.041*
C200.6821 (4)0.07572 (19)0.92375 (17)0.0449 (7)
H20A0.72930.11080.89030.054*
H20B0.71110.09510.96790.054*
C210.5106 (4)0.07681 (19)0.91604 (16)0.0428 (7)
H21A0.46370.04990.95420.051*
H21B0.47470.13330.91430.051*
C220.4677 (3)0.03148 (17)0.85109 (14)0.0345 (6)
H22A0.47500.07110.81410.041*
C230.3065 (4)0.0006 (2)0.85289 (17)0.0448 (7)
H23A0.30000.04360.88650.054*
H23B0.24020.04390.86680.054*
C240.2487 (4)0.0349 (3)0.7865 (2)0.0622 (10)
H24A0.14660.05400.79200.093*
H24B0.25130.00760.75300.093*
H24C0.31180.08000.77270.093*
C250.9010 (4)0.0292 (2)0.91028 (17)0.0456 (7)
H25A0.94300.00310.87380.055*
H25B0.91860.08690.90030.055*
C260.9818 (5)0.0075 (4)0.9735 (2)0.0775 (13)
H26A1.08790.01840.96830.116*
H26B0.96690.04990.98320.116*
H26C0.94250.04011.00970.116*
B10.5008 (3)0.0287 (2)0.09541 (15)0.0521 (9)
F10.4824 (5)0.0657 (3)0.15617 (16)0.1419 (18)
F20.4003 (6)0.0460 (4)0.0449 (2)0.0663 (15)*0.515 (7)
F30.6464 (5)0.0467 (4)0.0748 (3)0.0791 (18)*0.515 (7)
F40.4794 (10)0.0470 (4)0.1253 (4)0.125 (3)*0.515 (7)
F2'0.3620 (5)0.0229 (4)0.0636 (3)0.0655 (15)*0.485 (7)
F3'0.5818 (10)0.0895 (5)0.0629 (4)0.111 (3)*0.485 (7)
F4'0.5614 (7)0.0489 (3)0.0851 (3)0.0781 (19)*0.485 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.03754 (10)0.02407 (10)0.01948 (9)0.00346 (8)0.00143 (7)0.00007 (7)
P10.0289 (3)0.0278 (3)0.0213 (3)0.0005 (2)0.0010 (2)0.0001 (2)
P20.0317 (3)0.0240 (3)0.0246 (3)0.0016 (3)0.0005 (2)0.0006 (2)
C10.0641 (19)0.0273 (13)0.0336 (13)0.0106 (14)0.0043 (12)0.0059 (11)
C20.0526 (17)0.0443 (17)0.0324 (13)0.0261 (15)0.0063 (13)0.0056 (12)
C30.062 (2)0.076 (3)0.059 (2)0.030 (2)0.0252 (19)0.006 (2)
C40.107 (4)0.065 (3)0.044 (2)0.028 (2)0.037 (2)0.0032 (18)
C50.104 (3)0.0408 (18)0.0198 (12)0.0109 (19)0.0115 (17)0.0005 (11)
C60.111 (3)0.0291 (16)0.0265 (14)0.0103 (18)0.0235 (17)0.0037 (12)
C70.126 (4)0.0322 (18)0.0481 (19)0.002 (2)0.034 (2)0.0029 (15)
C80.124 (4)0.0303 (17)0.0455 (18)0.002 (2)0.015 (2)0.0045 (14)
C90.0405 (15)0.0334 (14)0.0260 (12)0.0011 (11)0.0036 (10)0.0019 (11)
C100.0411 (15)0.0310 (14)0.0299 (13)0.0040 (11)0.0038 (11)0.0001 (11)
C110.0391 (14)0.0326 (13)0.0210 (10)0.0000 (11)0.0007 (9)0.0014 (10)
C120.0479 (17)0.057 (2)0.0253 (12)0.0031 (16)0.0055 (11)0.0059 (13)
C130.0458 (17)0.061 (2)0.0386 (16)0.0046 (15)0.0080 (13)0.0160 (15)
C140.0327 (13)0.0392 (15)0.0371 (14)0.0000 (10)0.0009 (11)0.0051 (12)
C150.0480 (17)0.0448 (17)0.0314 (14)0.0022 (14)0.0072 (12)0.0045 (12)
C160.0573 (19)0.057 (2)0.0426 (16)0.0054 (18)0.0188 (14)0.0081 (17)
C170.0420 (17)0.063 (2)0.062 (2)0.0173 (17)0.0009 (16)0.0054 (18)
C180.047 (2)0.085 (3)0.087 (3)0.024 (2)0.0018 (19)0.002 (2)
C190.0390 (15)0.0329 (15)0.0294 (13)0.0031 (11)0.0023 (11)0.0043 (11)
C200.060 (2)0.0308 (15)0.0440 (17)0.0067 (14)0.0009 (15)0.0087 (13)
C210.0573 (19)0.0299 (14)0.0412 (15)0.0087 (13)0.0024 (13)0.0082 (12)
C220.0418 (16)0.0282 (13)0.0335 (12)0.0061 (12)0.0032 (11)0.0025 (10)
C230.0369 (16)0.0483 (18)0.0491 (18)0.0052 (13)0.0065 (13)0.0055 (15)
C240.0378 (18)0.083 (3)0.066 (2)0.0052 (18)0.0062 (16)0.014 (2)
C250.0435 (17)0.0484 (19)0.0450 (17)0.0009 (13)0.0045 (13)0.0088 (14)
C260.066 (3)0.106 (4)0.061 (3)0.001 (2)0.012 (2)0.010 (2)
B10.061 (2)0.045 (2)0.050 (2)0.0017 (17)0.0056 (17)0.0075 (17)
F10.118 (3)0.241 (5)0.0664 (18)0.026 (3)0.0212 (19)0.049 (3)
Geometric parameters (Å, º) top
Rh1—C22.209 (3)C13—H13B0.9700
Rh1—C62.211 (3)C14—C171.528 (5)
Rh1—C12.251 (3)C14—H14A0.9800
Rh1—C52.262 (3)C15—C161.526 (4)
Rh1—P22.2702 (8)C15—H15A0.9700
Rh1—P12.2754 (8)C15—H15B0.9700
P1—C91.839 (3)C16—H16A0.9600
P1—C111.850 (3)C16—H16B0.9600
P1—C141.869 (3)C16—H16C0.9600
P2—C101.839 (3)C17—C181.524 (5)
P2—C191.840 (3)C17—H17A0.9700
P2—C221.877 (3)C17—H17B0.9700
C1—C21.366 (5)C18—H18A0.9600
C1—C81.514 (5)C18—H18B0.9600
C1—H1A0.9800C18—H18C0.9600
C2—C31.503 (5)C19—C201.523 (4)
C2—H2A0.9800C19—C251.536 (5)
C3—C41.531 (6)C19—H19A0.9800
C3—H3A0.9700C20—C211.524 (5)
C3—H3B0.9700C20—H20A0.9700
C4—C51.511 (6)C20—H20B0.9700
C4—H4A0.9700C21—C221.537 (4)
C4—H4B0.9700C21—H21A0.9700
C5—C61.363 (7)C21—H21B0.9700
C5—H5A0.9800C22—C231.517 (4)
C6—C71.506 (5)C22—H22A0.9800
C6—H6A0.9800C23—C241.524 (5)
C7—C81.516 (5)C23—H23A0.9700
C7—H7A0.9700C23—H23B0.9700
C7—H7B0.9700C24—H24A0.9600
C8—H8A0.9700C24—H24B0.9600
C8—H8B0.9700C24—H24C0.9600
C9—C101.525 (4)C25—C261.491 (5)
C9—H9A0.9700C25—H25A0.9700
C9—H9B0.9700C25—H25B0.9700
C10—H10A0.9700C26—H26A0.9600
C10—H10B0.9700C26—H26B0.9600
C11—C151.526 (4)C26—H26C0.9600
C11—C121.531 (4)B1—F11.362 (3)
C11—H11A0.9800B1—F21.372 (4)
C12—C131.518 (5)B1—F41.377 (4)
C12—H12A0.9700B1—F3'1.381 (4)
C12—H12B0.9700B1—F31.382 (4)
C13—C141.531 (4)B1—F4'1.383 (4)
C13—H13A0.9700B1—F2'1.384 (4)
C2—Rh1—C695.24 (13)C14—C13—H13A109.6
C2—Rh1—C135.65 (13)C12—C13—H13B109.6
C6—Rh1—C180.79 (11)C14—C13—H13B109.6
C2—Rh1—C580.57 (12)H13A—C13—H13B108.2
C6—Rh1—C535.46 (17)C17—C14—C13112.7 (3)
C1—Rh1—C587.29 (11)C17—C14—P1115.5 (2)
C2—Rh1—P2153.68 (10)C13—C14—P1105.2 (2)
C6—Rh1—P296.08 (9)C17—C14—H14A107.7
C1—Rh1—P2170.65 (9)C13—C14—H14A107.7
C5—Rh1—P295.26 (9)P1—C14—H14A107.7
C2—Rh1—P197.05 (8)C11—C15—C16112.0 (3)
C6—Rh1—P1151.59 (13)C11—C15—H15A109.2
C1—Rh1—P194.65 (8)C16—C15—H15A109.2
C5—Rh1—P1172.93 (13)C11—C15—H15B109.2
P2—Rh1—P183.91 (2)C16—C15—H15B109.2
C9—P1—C11105.88 (13)H15A—C15—H15B107.9
C9—P1—C14103.23 (13)C15—C16—H16A109.5
C11—P1—C1494.99 (12)C15—C16—H16B109.5
C9—P1—Rh1109.13 (9)H16A—C16—H16B109.5
C11—P1—Rh1124.17 (9)C15—C16—H16C109.5
C14—P1—Rh1116.93 (10)H16A—C16—H16C109.5
C10—P2—C19106.43 (13)H16B—C16—H16C109.5
C10—P2—C22102.82 (13)C18—C17—C14112.0 (3)
C19—P2—C2294.75 (13)C18—C17—H17A109.2
C10—P2—Rh1109.28 (9)C14—C17—H17A109.2
C19—P2—Rh1123.44 (10)C18—C17—H17B109.2
C22—P2—Rh1117.61 (10)C14—C17—H17B109.2
C2—C1—C8125.6 (3)H17A—C17—H17B107.9
C2—C1—Rh170.51 (16)C17—C18—H18A109.5
C8—C1—Rh1110.2 (2)C17—C18—H18B109.5
C2—C1—H1A114.1H18A—C18—H18B109.5
C8—C1—H1A114.1C17—C18—H18C109.5
Rh1—C1—H1A114.1H18A—C18—H18C109.5
C1—C2—C3128.4 (3)H18B—C18—H18C109.5
C1—C2—Rh173.84 (17)C20—C19—C25115.7 (3)
C3—C2—Rh1106.9 (2)C20—C19—P2103.7 (2)
C1—C2—H2A113.2C25—C19—P2115.0 (2)
C3—C2—H2A113.2C20—C19—H19A107.3
Rh1—C2—H2A113.2C25—C19—H19A107.3
C2—C3—C4113.2 (4)P2—C19—H19A107.3
C2—C3—H3A108.9C21—C20—C19105.9 (3)
C4—C3—H3A108.9C21—C20—H20A110.6
C2—C3—H3B108.9C19—C20—H20A110.6
C4—C3—H3B108.9C21—C20—H20B110.6
H3A—C3—H3B107.7C19—C20—H20B110.6
C5—C4—C3114.2 (3)H20A—C20—H20B108.7
C5—C4—H4A108.7C20—C21—C22109.0 (3)
C3—C4—H4A108.7C20—C21—H21A109.9
C5—C4—H4B108.7C22—C21—H21A109.9
C3—C4—H4B108.7C20—C21—H21B109.9
H4A—C4—H4B107.6C22—C21—H21B109.9
C6—C5—C4125.2 (4)H21A—C21—H21B108.3
C6—C5—Rh170.2 (2)C23—C22—C21112.1 (3)
C4—C5—Rh1109.5 (2)C23—C22—P2117.0 (2)
C6—C5—H5A114.4C21—C22—P2104.2 (2)
C4—C5—H5A114.4C23—C22—H22A107.7
Rh1—C5—H5A114.4C21—C22—H22A107.7
C5—C6—C7127.3 (4)P2—C22—H22A107.7
C5—C6—Rh174.32 (19)C22—C23—C24114.8 (3)
C7—C6—Rh1105.8 (2)C22—C23—H23A108.6
C5—C6—H6A113.7C24—C23—H23A108.6
C7—C6—H6A113.7C22—C23—H23B108.6
Rh1—C6—H6A113.7C24—C23—H23B108.6
C6—C7—C8115.2 (4)H23A—C23—H23B107.5
C6—C7—H7A108.5C23—C24—H24A109.5
C8—C7—H7A108.5C23—C24—H24B109.5
C6—C7—H7B108.5H24A—C24—H24B109.5
C8—C7—H7B108.5C23—C24—H24C109.5
H7A—C7—H7B107.5H24A—C24—H24C109.5
C1—C8—C7113.3 (3)H24B—C24—H24C109.5
C1—C8—H8A108.9C26—C25—C19113.1 (3)
C7—C8—H8A108.9C26—C25—H25A109.0
C1—C8—H8B108.9C19—C25—H25A109.0
C7—C8—H8B108.9C26—C25—H25B109.0
H8A—C8—H8B107.7C19—C25—H25B109.0
C10—C9—P1107.57 (19)H25A—C25—H25B107.8
C10—C9—H9A110.2C25—C26—H26A109.5
P1—C9—H9A110.2C25—C26—H26B109.5
C10—C9—H9B110.2H26A—C26—H26B109.5
P1—C9—H9B110.2C25—C26—H26C109.5
H9A—C9—H9B108.5H26A—C26—H26C109.5
C9—C10—P2107.82 (19)H26B—C26—H26C109.5
C9—C10—H10A110.1F1—B1—F2119.1 (4)
P2—C10—H10A110.1F1—B1—F489.5 (5)
C9—C10—H10B110.1F2—B1—F4114.3 (5)
P2—C10—H10B110.1F1—B1—F3'99.5 (4)
H10A—C10—H10B108.5F2—B1—F3'81.1 (5)
C15—C11—C12115.7 (2)F4—B1—F3'155.6 (6)
C15—C11—P1115.8 (2)F1—B1—F3106.4 (4)
C12—C11—P1102.44 (19)F2—B1—F3109.9 (4)
C15—C11—H11A107.5F4—B1—F3116.4 (5)
C12—C11—H11A107.5F1—B1—F4'125.4 (4)
P1—C11—H11A107.5F2—B1—F4'109.1 (4)
C13—C12—C11107.6 (2)F4—B1—F4'46.1 (4)
C13—C12—H12A110.2F3'—B1—F4'112.3 (5)
C11—C12—H12A110.2F3—B1—F4'77.7 (4)
C13—C12—H12B110.2F1—B1—F2'109.4 (4)
C11—C12—H12B110.2F4—B1—F2'90.9 (5)
H12A—C12—H12B108.5F3'—B1—F2'107.0 (5)
C12—C13—C14110.1 (3)F3—B1—F2'134.7 (4)
C12—C13—H13A109.6F4'—B1—F2'102.3 (4)

Experimental details

Crystal data
Chemical formula[Rh(C8H12)(C18H36P2)]BF4
Mr612.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)8.8374 (18), 16.218 (3), 19.946 (4)
V3)2858.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.50 × 0.43 × 0.40
Data collection
DiffractometerSTOE IPDS 2
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.728, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
36650, 6075, 5779
Rint0.035
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.06
No. of reflections6075
No. of parameters305
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.34
Absolute structureFlack (1983), 2621 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

References

First citationAxtell, A. T., Cobley, C. J., Klosin, J., Whiteker, G. T., Zanotti-Gerosa, A. & Abboud, K. A. (2005). Angew. Chem. Int. Ed. 44, 5834–5838.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurk, M. J., Bienewald, F., Harris, M. & Zanotti-Gerosa, A. (1998). Angew. Chem. Int. Ed. 37, 1931–1933.  CrossRef CAS Google Scholar
First citationBurk, M. J., Feaster, J. E. & Harlow, R. L. (1990). Organometallics, 9, 2653–2655.  CSD CrossRef CAS Web of Science Google Scholar
First citationDrexler, H.-J., Baumann, W., Spannenberg, A., Fischer, C. & Heller, D. (2001). J. Organomet. Chem. 621, 89–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationDrexler, H.-J., Zhang, S., Sun, A., Spannenberg, A., Arrieta, A., Preetz, A. & Heller, D. (2004). Tetrahedron Asymmetry, 15, 2139–2150.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJerphagnon, T., Renaud, J.-L., Demonchaux, P., Ferreira, A. & Bruneau, C. (2003). Tetrahedron Asymmetry, 14, 1973–1977.  Web of Science CrossRef CAS Google Scholar
First citationSchulz, S., Drexler, H.-J. & Heller, D. (2010). Acta Cryst. E66, m721–m722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds