metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Carbonyl­chloridobis[tris­­(4-chloro­phen­yl)phosphane]rhodium(I) acetone monosolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 22 September 2010; accepted 5 October 2010; online 9 October 2010)

The title compound, trans-[RhCl(C18H12Cl3P)2(CO)]·C3H6O, contains an Rh(I) atom in a distorted square-planar coordination with a P—Rh—P angle of 175.27 (2)° and Rh—P bond lengths of 2.3127 (4) and 2.3219 (4) Å. The rhodium complexes link each other through weak inter­molecular contacts between the acetone methyl groups and the carbonyl O atom. Inter­actions between the acetone solvent mol­ecule and the Cl—Rh unit results in a reduced P—Rh—Cl angle of 86.675 (15)°.

Related literature

For a review of rhodium Vaska {trans-[RhCl(CO)(PR3)2]} compounds, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]). For related compounds, see: Angoletta (1959[Angoletta, M. (1959). Gazz. Chim. Ital. 89, 2359-2361.]); Vaska & Di Luzio (1961[Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784-2785.]); Chen et al. (1991[Chen, Y.-J., Wang, J.-C. & Wang, Y. (1991). Acta Cryst. C47, 2441-2442.]); Kuwabara & Bau (1994[Kuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409-1411.]); Otto et al. (2000[Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]); Meijboom et al. (2005[Meijboom, R., Muller, A. & Roodt, A. (2005). Acta Cryst. E61, m1283-m1285.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C18H12Cl3P)2(CO)]·C3H6O

  • Mr = 955.64

  • Triclinic, [P \overline 1]

  • a = 10.6130 (7) Å

  • b = 12.7970 (8) Å

  • c = 16.7470 (11) Å

  • α = 71.631 (1)°

  • β = 81.742 (1)°

  • γ = 68.537 (1)°

  • V = 2007.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 K

  • 0.37 × 0.17 × 0.07 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 0.933

  • 25954 measured reflections

  • 10031 independent reflections

  • 9160 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.04

  • 10031 reflections

  • 471 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

C37—O1 1.1420 (18)
C37—Rh1 1.8177 (13)
P1—Rh1 2.3127 (4)
P2—Rh1 2.3219 (4)
Cl1—Rh1 2.3611 (4)
O1—C37—Rh1 179.52 (16)
P1—Rh1—P2 175.268 (15)
C37—Rh1—Cl1 178.21 (5)
P1—Rh1—Cl1 86.675 (15)
P2—Rh1—Cl1 90.348 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.95 2.55 3.492 (3) 170
C21—H21⋯O2ii 0.95 2.34 3.267 (3) 165
C24—H24⋯Cl5iii 0.95 2.80 3.4734 (19) 129
C30—H30⋯Cl4iv 0.95 2.76 3.575 (2) 145
C35—H35⋯O1v 0.95 2.47 3.384 (2) 161
C40—H40B⋯Cl1 0.98 2.79 3.738 (3) 162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y, -z+1; (v) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The original Vaska complex, trans-[IrCl(CO)(PPh3)2], was first reported in 1959 (Angoletta, 1959), but later correctly formulated by Vaska in 1961 (Vaska & Di Luzio, 1961). This class of symmetrical square-planar complexes often crystallizes with the metal atom on a crystallographic centre of symmetry, thus imposing a disordered packing arrangement (Otto, 2001; Otto et al., 2000; Chen et al., 1991; Kuwabara & Bau, 1994). We report the title compound as one of the few crystallographic examples of this group which does not show disorder along the carbonyl/chloro axis.

Compound (I) crystallizes in a triclinic space group. The crystal structure of trans-[RhCl(CO){P(4-ClC6H4)3}2] (Fig.1) shows the expected square planar geometry with the phosphine ligands trans to each other.

As seen in Fig. 1 and Table 1, the complex shows a non-equally spaced square planar coordination centre with the P—Rh—P angle being 175.27 (2) °. The 1J(Rh—P) coupling of 128 Hz is in agreement with the coupling constants for other rhodium Vaska type complexes of this nature (Meijboom et al., 2005).

Table 1 shows the angles C37—Rh—P1 and C37—Rh—P2 are nearly equal, while P2—Rh—Cl is 90.348 (15) ° and P1—Rh—Cl is only 86.675 (15) °. This inequality around the chlorine's displacement is interesting as the most linear hydrogen bond involving Cl1 is between C40—H40···Cl1 (162 °, Table 2) pulling it towards C40—H40 and thus decreasing the angle of P1—Rh—Cl. Additionally, the rhodium complexes link each other via weak intermolecular C—H···O and C—H···Cl hydrogen bonds (Table 2). The weak interactions between the acetone solvent molecule and the Rh—Cl unit resulted in a reduced P—Rh—Cl angle of 86.675 (15)°.

The ν(CO) stretching frequency of compound (1) is 1985 cm-1 which is higher than that of [Rh(CO)Cl{P(C6H5)3}2], the unchloronated version, which was reported by Roodt (Roodt et al., 2003) as 1979 cm-1. The increase is due to the moderate electron withdrawing capabilities of the para-substituted chlorine on the phenyl rings.

Related literature top

For a review of rhodium Vaska {trans-[RhCl(CO)(PR3)2]} compounds, see: Roodt et al. (2003). For related compounds, see: Angoletta (1959); Vaska & Di Luzio (1961); Chen et al. (1991); Kuwabara & Bau (1994); Otto et al. (2000); Otto (2001); Meijboom et al. (2005).

Experimental top

To a solution of [Rh2(CO)4Cl2] (19.7 mg, 0.051 mmol) in acetone (3 cm3) was added 4 equivalents of a solution of P(4-ClC6H4)3 ligand (73.7 mg, 0.203 mmol) in acetone (2 cm3) while stirring. Immediately the effervescence of a gas, presumably CO, was observed. The solvent was evaporated in a round bottomed flask overnight yielding 62% of the title compound (28.2 mg, 0.0314 mmol). IR (cm-1): 629, 705, 746, 815, 1012, 1082, 1120, 1183, 1226, 1363, 1387, 1479, 1560, 1577, 1638, 1706, 1985 (CO). 13C NMR (δ /p.p.m., CDCl3): 139 (1 C, Ph), 137 (1 C, Ph), 135 (1 C, Ph), 133 (1 C, Ph), 130 (4 C, Ph), 129 (1 C, CO), 129 (1 C, Ph), 128 (1 C, Ph). 31P NMR (δ /p.p.m., CDCl3): 27.56 [1J(Rh—P) = 128 Hz].

Refinement top

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors.

Structure description top

The original Vaska complex, trans-[IrCl(CO)(PPh3)2], was first reported in 1959 (Angoletta, 1959), but later correctly formulated by Vaska in 1961 (Vaska & Di Luzio, 1961). This class of symmetrical square-planar complexes often crystallizes with the metal atom on a crystallographic centre of symmetry, thus imposing a disordered packing arrangement (Otto, 2001; Otto et al., 2000; Chen et al., 1991; Kuwabara & Bau, 1994). We report the title compound as one of the few crystallographic examples of this group which does not show disorder along the carbonyl/chloro axis.

Compound (I) crystallizes in a triclinic space group. The crystal structure of trans-[RhCl(CO){P(4-ClC6H4)3}2] (Fig.1) shows the expected square planar geometry with the phosphine ligands trans to each other.

As seen in Fig. 1 and Table 1, the complex shows a non-equally spaced square planar coordination centre with the P—Rh—P angle being 175.27 (2) °. The 1J(Rh—P) coupling of 128 Hz is in agreement with the coupling constants for other rhodium Vaska type complexes of this nature (Meijboom et al., 2005).

Table 1 shows the angles C37—Rh—P1 and C37—Rh—P2 are nearly equal, while P2—Rh—Cl is 90.348 (15) ° and P1—Rh—Cl is only 86.675 (15) °. This inequality around the chlorine's displacement is interesting as the most linear hydrogen bond involving Cl1 is between C40—H40···Cl1 (162 °, Table 2) pulling it towards C40—H40 and thus decreasing the angle of P1—Rh—Cl. Additionally, the rhodium complexes link each other via weak intermolecular C—H···O and C—H···Cl hydrogen bonds (Table 2). The weak interactions between the acetone solvent molecule and the Rh—Cl unit resulted in a reduced P—Rh—Cl angle of 86.675 (15)°.

The ν(CO) stretching frequency of compound (1) is 1985 cm-1 which is higher than that of [Rh(CO)Cl{P(C6H5)3}2], the unchloronated version, which was reported by Roodt (Roodt et al., 2003) as 1979 cm-1. The increase is due to the moderate electron withdrawing capabilities of the para-substituted chlorine on the phenyl rings.

For a review of rhodium Vaska {trans-[RhCl(CO)(PR3)2]} compounds, see: Roodt et al. (2003). For related compounds, see: Angoletta (1959); Vaska & Di Luzio (1961); Chen et al. (1991); Kuwabara & Bau (1994); Otto et al. (2000); Otto (2001); Meijboom et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids) with H atoms omitted for clarity. The carbon atoms have been numbered sequentially and some labels have been omitted for clarity.
trans-Carbonylchloridobis[tris(4-chlorophenyl)phosphane]rhodium(I) acetone monosolvate top
Crystal data top
[RhCl(C18H12Cl3P)2(CO)]·C3H6OZ = 2
Mr = 955.64F(000) = 960
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6130 (7) ÅCell parameters from 25954 reflections
b = 12.7970 (8) Åθ = 1.8–28.4°
c = 16.7470 (11) ŵ = 1.01 mm1
α = 71.631 (1)°T = 100 K
β = 81.742 (1)°Block, yellow
γ = 68.537 (1)°0.37 × 0.17 × 0.07 mm
V = 2007.9 (2) Å3
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
9160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1412
Tmin = 0.707, Tmax = 0.933k = 1617
25954 measured reflectionsl = 2122
10031 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0302P)2 + 1.7506P]
where P = (Fo2 + 2Fc2)/3
10031 reflections(Δ/σ)max = 0.009
471 parametersΔρmax = 1.17 e Å3
4 restraintsΔρmin = 0.69 e Å3
Crystal data top
[RhCl(C18H12Cl3P)2(CO)]·C3H6Oγ = 68.537 (1)°
Mr = 955.64V = 2007.9 (2) Å3
Triclinic, P1Z = 2
a = 10.6130 (7) ÅMo Kα radiation
b = 12.7970 (8) ŵ = 1.01 mm1
c = 16.7470 (11) ÅT = 100 K
α = 71.631 (1)°0.37 × 0.17 × 0.07 mm
β = 81.742 (1)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
10031 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
9160 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.933Rint = 0.023
25954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0264 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.04Δρmax = 1.17 e Å3
10031 reflectionsΔρmin = 0.69 e Å3
471 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II CCD diffractometer using an exposure time of 10 s/frame. A total of 1895 frames were collected with a frame width of 0.5° covering up to θ = 28.38° with 99.9% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45279 (16)0.41780 (13)0.86206 (10)0.0164 (3)
C20.41530 (18)0.37176 (15)0.94513 (11)0.0210 (3)
H20.48110.33680.98740.025*
C30.28161 (19)0.37668 (16)0.96678 (12)0.0245 (4)
H30.25590.34511.02340.029*
C40.18729 (17)0.42829 (16)0.90434 (12)0.0232 (3)
C50.22084 (18)0.47737 (16)0.82210 (12)0.0245 (4)
H50.15390.51490.78050.029*
C60.35413 (18)0.47109 (15)0.80104 (11)0.0214 (3)
H60.37870.50350.74430.026*
C70.74075 (16)0.32026 (14)0.90731 (10)0.0171 (3)
C80.73223 (17)0.35235 (15)0.98114 (11)0.0198 (3)
H80.66030.41950.98920.024*
C90.82786 (18)0.28702 (17)1.04254 (11)0.0245 (4)
H90.82090.30781.09310.029*
C100.93422 (19)0.19046 (17)1.02877 (12)0.0261 (4)
C110.94494 (18)0.15729 (15)0.95637 (12)0.0249 (4)
H111.01810.0910.94810.03*
C120.84757 (17)0.22195 (15)0.89602 (11)0.0212 (3)
H120.85360.19910.84640.025*
C130.62608 (16)0.55598 (13)0.81044 (10)0.0161 (3)
C140.51081 (17)0.64893 (15)0.82071 (11)0.0205 (3)
H140.42650.63670.83590.025*
C150.51770 (19)0.75957 (15)0.80891 (12)0.0244 (4)
H150.43840.8230.81470.029*
C160.6411 (2)0.77582 (15)0.78876 (11)0.0232 (3)
C170.7573 (2)0.68537 (16)0.77805 (13)0.0263 (4)
H170.84160.6980.76380.032*
C180.74917 (18)0.57584 (15)0.78836 (12)0.0230 (3)
H180.82830.51370.78030.028*
C190.86583 (16)0.11855 (14)0.62309 (10)0.0173 (3)
C200.96226 (18)0.10485 (16)0.67746 (11)0.0232 (3)
H200.95710.16910.69620.028*
C211.06604 (19)0.00186 (17)0.70460 (12)0.0276 (4)
H211.1330.01080.74060.033*
C221.06923 (19)0.09470 (16)0.67782 (11)0.0256 (4)
C230.9774 (2)0.08305 (16)0.62225 (12)0.0266 (4)
H230.98380.14730.60310.032*
C240.87527 (19)0.02477 (15)0.59474 (12)0.0236 (3)
H240.81150.03430.55630.028*
C250.59960 (17)0.22421 (14)0.55503 (11)0.0196 (3)
C260.49901 (18)0.19286 (16)0.60992 (12)0.0242 (4)
H260.49530.1920.66710.029*
C270.4036 (2)0.16278 (17)0.58096 (14)0.0302 (4)
H270.3350.14120.61810.036*
C280.4105 (2)0.16491 (16)0.49772 (14)0.0304 (4)
C290.5097 (2)0.19354 (18)0.44249 (13)0.0312 (4)
H290.51330.19290.38560.037*
C300.60475 (19)0.22352 (17)0.47133 (12)0.0259 (4)
H300.67380.24370.43380.031*
C310.79052 (17)0.34837 (14)0.50272 (10)0.0183 (3)
C320.69971 (18)0.44776 (16)0.45032 (11)0.0223 (3)
H320.60580.45850.45570.027*
C330.74499 (19)0.53101 (16)0.39047 (11)0.0248 (4)
H330.68280.59830.35510.03*
C340.8822 (2)0.51408 (16)0.38325 (11)0.0246 (4)
C350.97511 (19)0.41477 (17)0.43215 (12)0.0261 (4)
H351.06920.40320.4250.031*
C360.92848 (18)0.33212 (15)0.49190 (11)0.0220 (3)
H360.99150.26370.52580.026*
C370.69720 (17)0.47391 (12)0.63949 (10)0.0180 (3)
P10.62373 (4)0.40975 (3)0.82264 (3)0.01420 (8)
P20.72683 (4)0.25790 (4)0.59485 (3)0.01550 (8)
Cl10.63216 (5)0.17010 (4)0.79542 (3)0.02401 (9)
Cl21.06102 (5)0.11330 (5)1.10165 (3)0.04090 (13)
Cl30.65127 (5)0.91247 (4)0.77695 (3)0.03312 (11)
Cl41.18984 (6)0.23221 (5)0.71789 (3)0.03995 (13)
Cl50.28900 (6)0.13135 (5)0.46052 (4)0.04566 (15)
Cl60.93897 (6)0.62136 (4)0.31201 (3)0.03453 (11)
Cl70.02340 (5)0.42625 (5)0.92807 (4)0.03486 (11)
Rh10.668804 (12)0.340979 (10)0.705687 (7)0.01450 (4)
O10.71508 (14)0.55764 (11)0.59840 (8)0.0272 (3)
C380.3033 (2)0.03136 (18)0.88771 (14)0.0311 (4)
C390.3764 (3)0.0610 (2)0.96104 (18)0.0542 (7)
H39A0.36450.13490.96510.081*
H39B0.340.0381.01260.081*
H39C0.4730.0710.95390.081*
C400.2919 (3)0.1538 (2)0.87945 (19)0.0463 (6)
H40A0.23520.20750.83180.07*
H40B0.38230.16050.86990.07*
H40C0.25060.1740.93120.07*
O20.2549 (2)0.0074 (2)0.83829 (16)0.0709 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0168 (7)0.0131 (7)0.0212 (8)0.0044 (6)0.0005 (6)0.0083 (6)
C20.0219 (8)0.0212 (8)0.0215 (8)0.0077 (6)0.0018 (6)0.0073 (6)
C30.0255 (9)0.0272 (9)0.0248 (9)0.0129 (7)0.0046 (7)0.0105 (7)
C40.0173 (8)0.0227 (8)0.0354 (10)0.0090 (6)0.0045 (7)0.0159 (7)
C50.0202 (8)0.0237 (8)0.0309 (9)0.0053 (7)0.0050 (7)0.0104 (7)
C60.0213 (8)0.0206 (8)0.0222 (8)0.0066 (6)0.0021 (6)0.0058 (6)
C70.0165 (7)0.0148 (7)0.0194 (7)0.0044 (6)0.0028 (6)0.0044 (6)
C80.0182 (8)0.0202 (8)0.0219 (8)0.0061 (6)0.0002 (6)0.0079 (6)
C90.0226 (8)0.0317 (9)0.0203 (8)0.0103 (7)0.0015 (7)0.0070 (7)
C100.0211 (8)0.0276 (9)0.0237 (9)0.0070 (7)0.0065 (7)0.0019 (7)
C110.0205 (8)0.0184 (8)0.0292 (9)0.0015 (6)0.0027 (7)0.0031 (7)
C120.0206 (8)0.0173 (8)0.0245 (8)0.0042 (6)0.0014 (6)0.0069 (6)
C130.0200 (8)0.0129 (7)0.0169 (7)0.0055 (6)0.0023 (6)0.0056 (6)
C140.0195 (8)0.0169 (8)0.0260 (8)0.0048 (6)0.0023 (6)0.0083 (6)
C150.0260 (9)0.0147 (8)0.0318 (9)0.0019 (6)0.0047 (7)0.0100 (7)
C160.0351 (10)0.0133 (7)0.0237 (8)0.0102 (7)0.0065 (7)0.0042 (6)
C170.0264 (9)0.0222 (8)0.0346 (10)0.0128 (7)0.0008 (7)0.0087 (7)
C180.0203 (8)0.0176 (8)0.0326 (9)0.0061 (6)0.0000 (7)0.0099 (7)
C190.0166 (7)0.0168 (7)0.0177 (7)0.0042 (6)0.0005 (6)0.0058 (6)
C200.0241 (9)0.0229 (8)0.0233 (8)0.0051 (7)0.0047 (7)0.0093 (7)
C210.0220 (9)0.0317 (10)0.0247 (9)0.0018 (7)0.0065 (7)0.0083 (7)
C220.0230 (9)0.0217 (8)0.0202 (8)0.0029 (7)0.0002 (7)0.0029 (7)
C230.0302 (10)0.0183 (8)0.0298 (9)0.0023 (7)0.0027 (7)0.0112 (7)
C240.0248 (9)0.0198 (8)0.0272 (9)0.0039 (7)0.0068 (7)0.0098 (7)
C250.0176 (8)0.0165 (7)0.0251 (8)0.0024 (6)0.0053 (6)0.0085 (6)
C260.0218 (8)0.0206 (8)0.0311 (9)0.0062 (7)0.0041 (7)0.0084 (7)
C270.0218 (9)0.0230 (9)0.0469 (12)0.0078 (7)0.0057 (8)0.0093 (8)
C280.0251 (9)0.0180 (8)0.0511 (12)0.0031 (7)0.0179 (8)0.0118 (8)
C290.0332 (10)0.0286 (10)0.0345 (10)0.0045 (8)0.0150 (8)0.0138 (8)
C300.0242 (9)0.0276 (9)0.0281 (9)0.0059 (7)0.0055 (7)0.0125 (7)
C310.0203 (8)0.0183 (7)0.0163 (7)0.0049 (6)0.0003 (6)0.0071 (6)
C320.0195 (8)0.0233 (8)0.0207 (8)0.0032 (6)0.0001 (6)0.0069 (7)
C330.0284 (9)0.0199 (8)0.0202 (8)0.0021 (7)0.0017 (7)0.0049 (7)
C340.0319 (10)0.0213 (8)0.0213 (8)0.0120 (7)0.0031 (7)0.0054 (7)
C350.0226 (9)0.0268 (9)0.0292 (9)0.0111 (7)0.0015 (7)0.0061 (7)
C360.0209 (8)0.0203 (8)0.0234 (8)0.0061 (6)0.0017 (6)0.0050 (7)
C370.0184 (7)0.0166 (7)0.0203 (7)0.0053 (6)0.0007 (6)0.0075 (6)
P10.01491 (18)0.01144 (17)0.01693 (18)0.00364 (14)0.00065 (14)0.00590 (14)
P20.01585 (19)0.01487 (18)0.01667 (19)0.00427 (15)0.00100 (14)0.00663 (15)
Cl10.0373 (2)0.01797 (18)0.02145 (19)0.01497 (17)0.00302 (16)0.00717 (15)
Cl20.0270 (2)0.0523 (3)0.0291 (2)0.0029 (2)0.01223 (19)0.0002 (2)
Cl30.0448 (3)0.0168 (2)0.0426 (3)0.01495 (19)0.0064 (2)0.00755 (18)
Cl40.0390 (3)0.0304 (2)0.0270 (2)0.0134 (2)0.0045 (2)0.00510 (19)
Cl50.0371 (3)0.0340 (3)0.0742 (4)0.0102 (2)0.0292 (3)0.0170 (3)
Cl60.0432 (3)0.0276 (2)0.0313 (2)0.0178 (2)0.0031 (2)0.00148 (19)
Cl70.0213 (2)0.0458 (3)0.0463 (3)0.0170 (2)0.00739 (19)0.0223 (2)
Rh10.01681 (7)0.01199 (6)0.01609 (6)0.00515 (4)0.00030 (4)0.00597 (4)
O10.0338 (7)0.0195 (6)0.0280 (7)0.0111 (5)0.0011 (5)0.0040 (5)
C380.0233 (9)0.0279 (10)0.0451 (12)0.0039 (7)0.0021 (8)0.0200 (9)
C390.0591 (17)0.0391 (13)0.0492 (15)0.0084 (12)0.0019 (12)0.0020 (11)
C400.0412 (13)0.0286 (11)0.0677 (17)0.0111 (10)0.0042 (12)0.0116 (11)
O20.0511 (12)0.0709 (14)0.1097 (18)0.0001 (10)0.0314 (12)0.0635 (14)
Geometric parameters (Å, º) top
C1—C21.392 (2)C22—C231.380 (3)
C1—C61.397 (2)C22—Cl41.7434 (18)
C1—P11.8165 (17)C23—C241.393 (2)
C2—C31.396 (2)C23—H230.95
C2—H20.95C24—H240.95
C3—C41.383 (3)C25—C261.395 (3)
C3—H30.95C25—C301.398 (2)
C4—C51.377 (3)C25—P21.8221 (17)
C4—Cl71.7356 (18)C26—C271.397 (3)
C5—C61.387 (2)C26—H260.95
C5—H50.95C27—C281.378 (3)
C6—H60.95C27—H270.95
C7—C121.396 (2)C28—C291.373 (3)
C7—C81.402 (2)C28—Cl51.7438 (19)
C7—P11.8183 (17)C29—C301.392 (3)
C8—C91.387 (2)C29—H290.95
C8—H80.95C30—H300.95
C9—C101.392 (3)C31—C361.395 (2)
C9—H90.95C31—C321.400 (2)
C10—C111.383 (3)C31—P21.8235 (17)
C10—Cl21.7366 (19)C32—C331.391 (2)
C11—C121.386 (2)C32—H320.95
C11—H110.95C33—C341.385 (3)
C12—H120.95C33—H330.95
C13—C141.394 (2)C34—C351.384 (3)
C13—C181.397 (2)C34—Cl61.7426 (18)
C13—P11.8265 (16)C35—C361.392 (2)
C14—C151.394 (2)C35—H350.95
C14—H140.95C36—H360.95
C15—C161.378 (3)C37—O11.1420 (18)
C15—H150.95C37—Rh11.8177 (13)
C16—C171.384 (3)P1—Rh12.3127 (4)
C16—Cl31.7387 (17)P2—Rh12.3219 (4)
C17—C181.390 (2)Cl1—Rh12.3611 (4)
C17—H170.95C38—O21.200 (3)
C18—H180.95C38—C391.481 (3)
C19—C241.391 (2)C38—C401.490 (3)
C19—C201.394 (2)C39—H39A0.98
C19—P21.8231 (17)C39—H39B0.98
C20—C211.392 (3)C39—H39C0.98
C20—H200.95C40—H40A0.98
C21—C221.384 (3)C40—H40B0.98
C21—H210.95C40—H40C0.98
C2—C1—C6119.00 (15)C23—C24—H24119.7
C2—C1—P1125.78 (13)C26—C25—C30119.21 (17)
C6—C1—P1115.16 (12)C26—C25—P2119.51 (14)
C1—C2—C3120.45 (16)C30—C25—P2121.21 (14)
C1—C2—H2119.8C25—C26—C27120.16 (18)
C3—C2—H2119.8C25—C26—H26119.9
C4—C3—C2118.86 (17)C27—C26—H26119.9
C4—C3—H3120.6C28—C27—C26119.00 (19)
C2—C3—H3120.6C28—C27—H27120.5
C5—C4—C3121.87 (16)C26—C27—H27120.5
C5—C4—Cl7118.27 (15)C29—C28—C27122.19 (18)
C3—C4—Cl7119.80 (14)C29—C28—Cl5118.59 (17)
C4—C5—C6118.82 (17)C27—C28—Cl5119.22 (17)
C4—C5—H5120.6C28—C29—C30118.81 (19)
C6—C5—H5120.6C28—C29—H29120.6
C5—C6—C1120.96 (16)C30—C29—H29120.6
C5—C6—H6119.5C29—C30—C25120.61 (19)
C1—C6—H6119.5C29—C30—H30119.7
C12—C7—C8119.10 (15)C25—C30—H30119.7
C12—C7—P1119.17 (13)C36—C31—C32118.67 (16)
C8—C7—P1121.57 (12)C36—C31—P2120.49 (13)
C9—C8—C7120.63 (16)C32—C31—P2119.87 (13)
C9—C8—H8119.7C33—C32—C31120.96 (17)
C7—C8—H8119.7C33—C32—H32119.5
C8—C9—C10118.82 (17)C31—C32—H32119.5
C8—C9—H9120.6C34—C33—C32118.87 (17)
C10—C9—H9120.6C34—C33—H33120.6
C11—C10—C9121.59 (17)C32—C33—H33120.6
C11—C10—Cl2118.84 (15)C35—C34—C33121.55 (16)
C9—C10—Cl2119.51 (15)C35—C34—Cl6119.26 (15)
C10—C11—C12119.16 (17)C33—C34—Cl6119.19 (14)
C10—C11—H11120.4C34—C35—C36119.00 (17)
C12—C11—H11120.4C34—C35—H35120.5
C11—C12—C7120.69 (17)C36—C35—H35120.5
C11—C12—H12119.7C35—C36—C31120.89 (17)
C7—C12—H12119.7C35—C36—H36119.6
C14—C13—C18118.59 (15)C31—C36—H36119.6
C14—C13—P1123.20 (13)O1—C37—Rh1179.52 (16)
C18—C13—P1118.21 (12)C1—P1—C7108.94 (8)
C13—C14—C15120.87 (16)C1—P1—C13103.78 (7)
C13—C14—H14119.6C7—P1—C13101.87 (7)
C15—C14—H14119.6C1—P1—Rh1108.60 (5)
C16—C15—C14119.16 (16)C7—P1—Rh1114.06 (5)
C16—C15—H15120.4C13—P1—Rh1118.80 (5)
C14—C15—H15120.4C25—P2—C19104.16 (8)
C15—C16—C17121.33 (16)C25—P2—C31105.01 (8)
C15—C16—Cl3119.40 (14)C19—P2—C31104.90 (7)
C17—C16—Cl3119.27 (14)C25—P2—Rh1119.28 (6)
C16—C17—C18119.17 (17)C19—P2—Rh1110.52 (5)
C16—C17—H17120.4C31—P2—Rh1111.77 (5)
C18—C17—H17120.4C37—Rh1—P191.58 (5)
C17—C18—C13120.86 (16)C37—Rh1—P291.37 (5)
C17—C18—H18119.6P1—Rh1—P2175.268 (15)
C13—C18—H18119.6C37—Rh1—Cl1178.21 (5)
C24—C19—C20119.35 (16)P1—Rh1—Cl186.675 (15)
C24—C19—P2122.03 (13)P2—Rh1—Cl190.348 (15)
C20—C19—P2118.57 (13)O2—C38—C39120.8 (2)
C21—C20—C19120.77 (17)O2—C38—C40122.3 (2)
C21—C20—H20119.6C39—C38—C40116.8 (2)
C19—C20—H20119.6C38—C39—H39A109.5
C22—C21—C20118.33 (17)C38—C39—H39B109.5
C22—C21—H21120.8H39A—C39—H39B109.5
C20—C21—H21120.8C38—C39—H39C109.5
C23—C22—C21122.22 (17)H39A—C39—H39C109.5
C23—C22—Cl4118.67 (15)H39B—C39—H39C109.5
C21—C22—Cl4119.08 (15)C38—C40—H40A109.5
C22—C23—C24118.69 (17)C38—C40—H40B109.5
C22—C23—H23120.7H40A—C40—H40B109.5
C24—C23—H23120.7C38—C40—H40C109.5
C19—C24—C23120.54 (17)H40A—C40—H40C109.5
C19—C24—H24119.7H40B—C40—H40C109.5
C6—C1—C2—C31.3 (2)C32—C33—C34—Cl6176.89 (14)
P1—C1—C2—C3175.68 (13)C33—C34—C35—C362.2 (3)
C1—C2—C3—C40.2 (3)Cl6—C34—C35—C36176.83 (15)
C2—C3—C4—C51.7 (3)C34—C35—C36—C310.0 (3)
C2—C3—C4—Cl7175.40 (14)C32—C31—C36—C352.1 (3)
C3—C4—C5—C62.3 (3)P2—C31—C36—C35166.64 (15)
Cl7—C4—C5—C6174.84 (14)C2—C1—P1—C75.09 (17)
C4—C5—C6—C11.0 (3)C6—C1—P1—C7172.00 (12)
C2—C1—C6—C50.7 (3)C2—C1—P1—C13102.85 (15)
P1—C1—C6—C5176.61 (14)C6—C1—P1—C1380.06 (13)
C12—C7—C8—C90.5 (2)C2—C1—P1—Rh1129.86 (14)
P1—C7—C8—C9175.72 (13)C6—C1—P1—Rh147.23 (13)
C7—C8—C9—C101.4 (3)C12—C7—P1—C1123.09 (14)
C8—C9—C10—C111.2 (3)C8—C7—P1—C161.67 (15)
C8—C9—C10—Cl2175.78 (14)C12—C7—P1—C13127.67 (14)
C9—C10—C11—C120.1 (3)C8—C7—P1—C1347.57 (15)
Cl2—C10—C11—C12176.89 (14)C12—C7—P1—Rh11.59 (15)
C10—C11—C12—C70.8 (3)C8—C7—P1—Rh1176.83 (12)
C8—C7—C12—C110.6 (3)C14—C13—P1—C17.18 (16)
P1—C7—C12—C11174.71 (14)C18—C13—P1—C1173.94 (14)
C18—C13—C14—C150.2 (3)C14—C13—P1—C7120.32 (15)
P1—C13—C14—C15178.63 (14)C18—C13—P1—C760.80 (15)
C13—C14—C15—C161.5 (3)C14—C13—P1—Rh1113.46 (14)
C14—C15—C16—C171.6 (3)C18—C13—P1—Rh165.42 (15)
C14—C15—C16—Cl3178.16 (14)C26—C25—P2—C1992.47 (15)
C15—C16—C17—C180.4 (3)C30—C25—P2—C1984.32 (16)
Cl3—C16—C17—C18179.36 (15)C26—C25—P2—C31157.52 (14)
C16—C17—C18—C130.9 (3)C30—C25—P2—C3125.69 (16)
C14—C13—C18—C171.0 (3)C26—C25—P2—Rh131.31 (16)
P1—C13—C18—C17179.91 (15)C30—C25—P2—Rh1151.90 (13)
C24—C19—C20—C211.1 (3)C24—C19—P2—C2515.80 (16)
P2—C19—C20—C21176.43 (14)C20—C19—P2—C25161.65 (14)
C19—C20—C21—C221.5 (3)C24—C19—P2—C3194.30 (15)
C20—C21—C22—C233.3 (3)C20—C19—P2—C3188.26 (15)
C20—C21—C22—Cl4174.74 (15)C24—C19—P2—Rh1145.08 (13)
C21—C22—C23—C242.4 (3)C20—C19—P2—Rh132.37 (15)
Cl4—C22—C23—C24175.62 (15)C36—C31—P2—C25139.07 (14)
C20—C19—C24—C232.0 (3)C32—C31—P2—C2552.33 (16)
P2—C19—C24—C23175.44 (14)C36—C31—P2—C1929.59 (16)
C22—C23—C24—C190.3 (3)C32—C31—P2—C19161.81 (14)
C30—C25—C26—C270.9 (3)C36—C31—P2—Rh190.20 (14)
P2—C25—C26—C27177.74 (14)C32—C31—P2—Rh178.39 (15)
C25—C26—C27—C280.1 (3)C1—P1—Rh1—C37119.85 (8)
C26—C27—C28—C291.2 (3)C7—P1—Rh1—C37118.47 (8)
C26—C27—C28—Cl5178.26 (14)C13—P1—Rh1—C371.69 (8)
C27—C28—C29—C301.2 (3)C1—P1—Rh1—Cl160.55 (6)
Cl5—C28—C29—C30178.27 (15)C7—P1—Rh1—Cl161.14 (6)
C28—C29—C30—C250.1 (3)C13—P1—Rh1—Cl1178.70 (6)
C26—C25—C30—C290.9 (3)C25—P2—Rh1—C37116.11 (8)
P2—C25—C30—C29177.70 (14)C19—P2—Rh1—C37123.26 (8)
C36—C31—C32—C332.2 (3)C31—P2—Rh1—C376.83 (8)
P2—C31—C32—C33166.64 (14)C25—P2—Rh1—Cl164.39 (7)
C31—C32—C33—C340.1 (3)C19—P2—Rh1—Cl156.23 (6)
C32—C33—C34—C352.1 (3)C31—P2—Rh1—Cl1172.66 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.553.492 (3)170
C21—H21···O2ii0.952.343.267 (3)165
C24—H24···Cl5iii0.952.803.4734 (19)129
C30—H30···Cl4iv0.952.763.575 (2)145
C35—H35···O1v0.952.473.384 (2)161
C40—H40B···Cl10.982.793.738 (3)162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+2, y, z+1; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[RhCl(C18H12Cl3P)2(CO)]·C3H6O
Mr955.64
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.6130 (7), 12.7970 (8), 16.7470 (11)
α, β, γ (°)71.631 (1), 81.742 (1), 68.537 (1)
V3)2007.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.37 × 0.17 × 0.07
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.707, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
25954, 10031, 9160
Rint0.023
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.04
No. of reflections10031
No. of parameters471
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.17, 0.69

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C37—O11.1420 (18)P2—Rh12.3219 (4)
C37—Rh11.8177 (13)Cl1—Rh12.3611 (4)
P1—Rh12.3127 (4)
O1—C37—Rh1179.52 (16)P1—Rh1—Cl186.675 (15)
P1—Rh1—P2175.268 (15)P2—Rh1—Cl190.348 (15)
C37—Rh1—Cl1178.21 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.553.492 (3)169.5
C21—H21···O2ii0.952.343.267 (3)165.4
C24—H24···Cl5iii0.952.803.4734 (19)128.8
C30—H30···Cl4iv0.952.763.575 (2)144.9
C35—H35···O1v0.952.473.384 (2)161.2
C40—H40B···Cl10.982.793.738 (3)162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+2, y, z+1; (v) x+2, y+1, z+1.
 

Acknowledgements

ARB thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and the University of Johannesburg is also gratefully acknowledged.

References

First citationAngoletta, M. (1959). Gazz. Chim. Ital. 89, 2359–2361.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-J., Wang, J.-C. & Wang, Y. (1991). Acta Cryst. C47, 2441–2442.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409–1411.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeijboom, R., Muller, A. & Roodt, A. (2005). Acta Cryst. E61, m1283–m1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784–2785.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds