metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­pyridine­cadmium(II)]-μ-5-amino-2,4,6-tri­iodo­isophthalato]

aChemistry Department, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
*Correspondence e-mail: zouyang@zstu.edu.cn

(Received 26 September 2010; accepted 3 October 2010; online 9 October 2010)

The hydro­thermal reaction of cadmium(II) nitrate with 5-amino-2,4,6-triiodo­isophthalic acid and pyridine in DMF solution leads to the formation of the title compound, [Cd(C8H2I3NO4)(C5H5N)2]n. The structure contains a four-coordinate Cd2+ ion in a distorted tetra­hedral geometry, which lies on a crystallographic twofold rotation axis. The Cd2+ ion is bonded to two N atoms from two pyridine ligands and two carboxyl­ate O atoms from two 5-amino-2,4,6-triiodo­isophthalate anions. The Cd—O distances are 2.429 (5) and 2.305 (5) Å and the Cd—N distance is 2.236 (8) Å. The two carboxyl­ate groups of individual 5-amino-2,4,6-triiodo­isophthalate anions act as a bridge to the Cd2+ atoms. leading to a chain structure along the c axis.

Related literature

For the isotypic Hg complex, see: Zhang et al. (2008[Zhang, Y., Zhao, J., Tang, G. & Jiang, Z. (2008). Acta Cryst. E64, m1324.]). For the structure of 5-amino-2,4,6-triiodo­isophthalic acid monohydrate, see: Beck & Sheldrick (2008[Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.]). For the structures of related metal complexes, see: Dai et al. (2008[Dai, F., He, H. & Sun, D. (2008). J. Am. Chem. Soc. 130, 14064-14065.])·For the use of triiodinated aromatic compounds in radiology, see: Estep et al. (2000[Estep, K. G., Josef, K. A., Bacon, E. R., Illig, C. R., Toner, J. L., Mishra, D., Blazak, W. F., Miller, D. M., Johnson, D. K., Allen, J. M., Spencer, A. & Wilson, S. A. (2000). J. Med. Chem. 43, 1940-1948.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H2I3NO4)(C5H5N)2]

  • Mr = 827.41

  • Tetragonal, P 41 21 2

  • a = 11.824 (3) Å

  • c = 15.841 (9) Å

  • V = 2214.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.20 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin,USA.]) Tmin = 0.357, Tmax = 0.423

  • 14248 measured reflections

  • 2714 independent reflections

  • 1949 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 1.02

  • 2714 reflections

  • 134 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.87 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1096 Friedel pairs

  • Flack parameter: −0.04 (6)

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

5-Amino-2,4,6-triiodoisophthalic acid (ATIA), is the precursor and core structure of triiodinated contrast media used in radiology (Estep et al., 2000). The crystal structure of this compound was reported recently (Beck et al., 2008), however, there are very few studies that have been reported on the structural characterization of its metal complexes (Dai et al., 2008; Zhang et al., 2008). Here we report the synthesis and crystal structure of the title complex catena-[bis(pyridine)-µ-5-amino-2,4,6-triiodoisophthalic acid-O,O-cadmium(II)].

In the title complex the central cadmium ion is coordinated by two nitrogen atoms from two pyridine ligands and two oxygen atoms from different ATIA ligands in a tetrahedral geometry. The bond lengths are 2.236 (8)Å for Cd1—N2; 2.305 (5) Å for Cd1—O2 and 2.429 (5) Å for Cd1—O1. Both carboxylate groups of ATIA ligand are deprotonated during the reaction, and the whole ligand acts as a bridging linker to connect two cadmium ions. Thus, the [Cd(pyr)2] units are infinitely connected by ATIA ligands along the c axis to give rise to a one-dimensional chain structure.

Related literature top

For the isotypic Hg complex, see: Zhang et al. (2008). For the structure of 5-amino-2,4,6-triiodoisophthalic acid monohydrate, see: Beck & Sheldrick (2008). For the structures of related metal complexes, see Dai et al. (2008).For the use of triiodinated aromatic compounds in radiology, see: Estep et al. (2000).

Experimental top

5-amino-2,4,6-triiodoisophthalic acid (0.5 mmol) was dissolved in 10 ml DMA, in which Cd(NO3)2(0.5 mmol) and 20 µl pyridine were added in. The mixture was sealed in a Pyrex tube and heated at 358 K for 3 d. After cooling to room temperature, light yellow block crystals were obtained.

Refinement top

All H atoms were positioned geometrically and constrained as riding atoms, with C—H distance of 0.93 Å and Uiso(H) set to 1.2 Ueq(C) of the parent atom.

Structure description top

5-Amino-2,4,6-triiodoisophthalic acid (ATIA), is the precursor and core structure of triiodinated contrast media used in radiology (Estep et al., 2000). The crystal structure of this compound was reported recently (Beck et al., 2008), however, there are very few studies that have been reported on the structural characterization of its metal complexes (Dai et al., 2008; Zhang et al., 2008). Here we report the synthesis and crystal structure of the title complex catena-[bis(pyridine)-µ-5-amino-2,4,6-triiodoisophthalic acid-O,O-cadmium(II)].

In the title complex the central cadmium ion is coordinated by two nitrogen atoms from two pyridine ligands and two oxygen atoms from different ATIA ligands in a tetrahedral geometry. The bond lengths are 2.236 (8)Å for Cd1—N2; 2.305 (5) Å for Cd1—O2 and 2.429 (5) Å for Cd1—O1. Both carboxylate groups of ATIA ligand are deprotonated during the reaction, and the whole ligand acts as a bridging linker to connect two cadmium ions. Thus, the [Cd(pyr)2] units are infinitely connected by ATIA ligands along the c axis to give rise to a one-dimensional chain structure.

For the isotypic Hg complex, see: Zhang et al. (2008). For the structure of 5-amino-2,4,6-triiodoisophthalic acid monohydrate, see: Beck & Sheldrick (2008). For the structures of related metal complexes, see Dai et al. (2008).For the use of triiodinated aromatic compounds in radiology, see: Estep et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title complex with atom numbering scheme. Thermal ellipsoids are drawn at 40% probability level.
[Figure 2] Fig. 2. A section of the infinite [Cd(ATIA)(pyr)2]n chain along the c axis.
catena-Poly[[dipyridinecadmium(II)]-µ-5-amino-2,4,6- triiodoisophthalato] top
Crystal data top
[Cd(C8H2I3NO4)(C5H5N)2]Dx = 2.482 Mg m3
Mr = 827.41Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 1949 reflections
Hall symbol: P 4abw 2nwθ = 2.2–28.2°
a = 11.824 (3) ŵ = 5.20 mm1
c = 15.841 (9) ÅT = 293 K
V = 2214.7 (15) Å3Block, light yellow
Z = 40.25 × 0.25 × 0.20 mm
F(000) = 1520
Data collection top
Bruker SMART CCD
diffractometer
2714 independent reflections
Radiation source: fine-focus sealed tube1949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: none pixels mm-1θmax = 28.2°, θmin = 2.2°
phi and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker 2003)
k = 1415
Tmin = 0.357, Tmax = 0.423l = 1721
14248 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0338P)2 + 2.974P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2714 reflectionsΔρmax = 0.60 e Å3
134 parametersΔρmin = 0.87 e Å3
60 restraintsAbsolute structure: Flack (1983), 1096 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
[Cd(C8H2I3NO4)(C5H5N)2]Z = 4
Mr = 827.41Mo Kα radiation
Tetragonal, P41212µ = 5.20 mm1
a = 11.824 (3) ÅT = 293 K
c = 15.841 (9) Å0.25 × 0.25 × 0.20 mm
V = 2214.7 (15) Å3
Data collection top
Bruker SMART CCD
diffractometer
2714 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2003)
1949 reflections with I > 2σ(I)
Tmin = 0.357, Tmax = 0.423Rint = 0.054
14248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.60 e Å3
S = 1.02Δρmin = 0.87 e Å3
2714 reflectionsAbsolute structure: Flack (1983), 1096 Friedel pairs
134 parametersAbsolute structure parameter: 0.04 (6)
60 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.62771 (5)0.37229 (5)0.25000.0572 (2)
I10.51631 (4)0.51631 (4)0.00000.0630 (2)
I20.28105 (5)0.12921 (6)0.17206 (4)0.0802 (2)
N10.1416 (5)0.1416 (5)0.00000.064 (2)
H1A0.13570.09610.04210.077*0.50
H1B0.09610.13570.04210.077*0.50
N20.6179 (7)0.2214 (7)0.3348 (5)0.0771 (19)
O10.5507 (5)0.2646 (5)0.1328 (3)0.0668 (15)
O20.6079 (5)0.5525 (4)0.3035 (3)0.0684 (16)
C10.2221 (6)0.2221 (6)0.00000.051 (2)
C20.2982 (6)0.2357 (6)0.0666 (4)0.0462 (16)
C30.3809 (6)0.3171 (6)0.0673 (4)0.0479 (17)
C40.3908 (5)0.3908 (5)0.00000.043 (2)
C50.4652 (7)0.3247 (7)0.1375 (5)0.0540 (19)
C60.5209 (10)0.1691 (10)0.3519 (9)0.113 (3)
H60.45600.19460.32480.135*
C70.5108 (12)0.0835 (12)0.4049 (10)0.134 (4)
H70.44190.04640.41140.161*
C80.6063 (12)0.0494 (13)0.4514 (11)0.147 (4)
H80.60260.00390.49440.177*
C90.7027 (12)0.0999 (13)0.4288 (10)0.143 (4)
H90.77010.07450.45230.172*
C100.7060 (10)0.1827 (10)0.3754 (8)0.113 (4)
H100.77550.21690.36540.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0617 (3)0.0617 (3)0.0482 (4)0.0120 (4)0.0049 (3)0.0049 (3)
I10.0559 (3)0.0559 (3)0.0773 (5)0.0148 (3)0.0062 (3)0.0062 (3)
I20.0755 (4)0.0957 (5)0.0695 (3)0.0276 (4)0.0027 (3)0.0291 (3)
N10.060 (4)0.060 (4)0.071 (5)0.027 (5)0.007 (4)0.007 (4)
N20.075 (5)0.073 (5)0.083 (5)0.004 (4)0.013 (4)0.005 (4)
O10.054 (3)0.091 (4)0.056 (3)0.008 (3)0.006 (3)0.012 (3)
O20.091 (4)0.056 (3)0.058 (3)0.003 (3)0.026 (3)0.005 (2)
C10.047 (3)0.047 (3)0.058 (5)0.009 (5)0.003 (4)0.003 (4)
C20.041 (4)0.050 (4)0.048 (4)0.001 (3)0.005 (3)0.001 (3)
C30.040 (4)0.052 (4)0.052 (4)0.006 (3)0.009 (3)0.005 (3)
C40.036 (3)0.036 (3)0.058 (5)0.000 (4)0.013 (3)0.013 (3)
C50.048 (5)0.061 (5)0.053 (4)0.011 (4)0.006 (4)0.003 (4)
C60.077 (6)0.105 (7)0.156 (9)0.028 (6)0.026 (6)0.040 (6)
C70.102 (7)0.127 (8)0.173 (9)0.027 (7)0.027 (7)0.054 (7)
C80.105 (8)0.142 (8)0.196 (9)0.010 (7)0.031 (8)0.062 (8)
C90.108 (8)0.129 (8)0.192 (9)0.026 (7)0.043 (8)0.046 (8)
C100.075 (6)0.102 (7)0.161 (9)0.008 (6)0.038 (6)0.048 (6)
Geometric parameters (Å, º) top
Cd1—N22.236 (8)C1—C21.395 (9)
Cd1—N2i2.236 (8)C1—C2ii1.395 (9)
Cd1—O2i2.305 (5)C2—C31.373 (9)
Cd1—O22.305 (5)C3—C41.382 (8)
Cd1—O1i2.429 (5)C3—C51.495 (11)
Cd1—O12.429 (5)C4—C3ii1.382 (8)
Cd1—C5i2.681 (8)C5—O2i1.246 (9)
Cd1—C52.681 (8)C6—C71.321 (16)
I1—C42.098 (8)C6—H60.9300
I2—C22.102 (7)C7—C81.407 (17)
N1—C11.346 (12)C7—H70.9300
N1—H1A0.8600C8—C91.336 (17)
N1—H1B0.8600C8—H80.9300
N2—C101.307 (12)C9—C101.293 (16)
N2—C61.331 (13)C9—H90.9300
O1—C51.239 (10)C10—H100.9300
O2—C5i1.246 (9)
N2—Cd1—N2i116.3 (4)C5i—O2—Cd193.2 (5)
N2—Cd1—O2i104.7 (3)N1—C1—C2122.5 (4)
N2i—Cd1—O2i120.8 (2)N1—C1—C2ii122.5 (4)
N2—Cd1—O2120.8 (2)C2—C1—C2ii115.0 (9)
N2i—Cd1—O2104.7 (3)C3—C2—C1123.1 (7)
O2i—Cd1—O287.0 (3)C3—C2—I2118.8 (5)
N2—Cd1—O1i82.4 (2)C1—C2—I2118.0 (5)
N2i—Cd1—O1i91.2 (2)C2—C3—C4119.8 (7)
O2i—Cd1—O1i136.7 (2)C2—C3—C5121.6 (7)
O2—Cd1—O1i54.96 (18)C4—C3—C5118.6 (6)
N2—Cd1—O191.2 (2)C3ii—C4—C3119.2 (8)
N2i—Cd1—O182.4 (2)C3ii—C4—I1120.4 (4)
O2i—Cd1—O154.96 (18)C3—C4—I1120.4 (4)
O2—Cd1—O1136.7 (2)O1—C5—O2i123.3 (7)
O1i—Cd1—O1167.9 (3)O1—C5—C3117.7 (7)
N2—Cd1—C5i100.6 (3)O2i—C5—C3119.0 (7)
N2i—Cd1—C5i101.2 (3)O1—C5—Cd164.8 (4)
O2i—Cd1—C5i111.4 (2)O2i—C5—Cd159.1 (4)
O2—Cd1—C5i27.7 (2)C3—C5—Cd1169.9 (5)
O1i—Cd1—C5i27.5 (2)C7—C6—N2124.3 (13)
O1—Cd1—C5i164.3 (3)C7—C6—H6117.8
N2—Cd1—C5101.2 (3)N2—C6—H6117.8
N2i—Cd1—C5100.6 (3)C6—C7—C8118.7 (14)
O2i—Cd1—C527.7 (2)C6—C7—H7120.7
O2—Cd1—C5111.4 (2)C8—C7—H7120.7
O1i—Cd1—C5164.3 (3)C9—C8—C7114.6 (15)
O1—Cd1—C527.5 (2)C9—C8—H8122.7
C5i—Cd1—C5138.0 (4)C7—C8—H8122.7
C1—N1—H1A120.0C10—C9—C8122.6 (15)
C1—N1—H1B120.0C10—C9—H9118.7
H1A—N1—H1B120.0C8—C9—H9118.7
C10—N2—C6115.1 (9)C9—C10—N2124.2 (12)
C10—N2—Cd1122.3 (7)C9—C10—H10117.9
C6—N2—Cd1122.5 (7)N2—C10—H10117.9
C5—O1—Cd187.7 (5)
Symmetry codes: (i) y+1, x+1, z+1/2; (ii) y, x, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H2I3NO4)(C5H5N)2]
Mr827.41
Crystal system, space groupTetragonal, P41212
Temperature (K)293
a, c (Å)11.824 (3), 15.841 (9)
V3)2214.7 (15)
Z4
Radiation typeMo Kα
µ (mm1)5.20
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker 2003)
Tmin, Tmax0.357, 0.423
No. of measured, independent and
observed [I > 2σ(I)] reflections
14248, 2714, 1949
Rint0.054
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.02
No. of reflections2714
No. of parameters134
No. of restraints60
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.87
Absolute structureFlack (1983), 1096 Friedel pairs
Absolute structure parameter0.04 (6)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The author thanks the Natural Science Foundation of Zhejiang Province, China (No. Y4080342) and the Science Foundation of Zhejiang Sci-Tech University (No. 0813622-Y) for financial support.

References

First citationBeck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationDai, F., He, H. & Sun, D. (2008). J. Am. Chem. Soc. 130, 14064–14065.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEstep, K. G., Josef, K. A., Bacon, E. R., Illig, C. R., Toner, J. L., Mishra, D., Blazak, W. F., Miller, D. M., Johnson, D. K., Allen, J. M., Spencer, A. & Wilson, S. A. (2000). J. Med. Chem. 43, 1940–1948.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Zhao, J., Tang, G. & Jiang, Z. (2008). Acta Cryst. E64, m1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds