metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-Amino­isophthalato-κN)tri­aqua­(1,10-phenanthroline-κ2N,N′)cobalt(II) trihydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 October 2010; accepted 10 October 2010; online 20 October 2010)

The CoII atom in the title compound, [Co(C8H5NO4)(C12H8N2)(H2O)3]·3H2O, is six-coordinated in a CoN3O3 octa­hedral geometry; the water-coordinated CoII atom is chelated by the N-heterocycle. An inter­molecular N—H⋯O hydrogen bond occurs. The carboxyl­ate entity coordinates through the amino group. The carboxyl­ate donor unit, coordinated and uncoordinated water mol­ecules inter­act through O—H⋯O and N—H⋯O hydrogen bonds, generating a tightly-held three-dimensional cage-like network.

Related literature

For related structures, see: He et al. (2006[He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2006). Chin. J. Inorg. Chem. 22, 142-144.]); Wu et al. (2002a[Wu, C.-D., Liu, C.-Z., Yang, W.-B., Zhuang, H.-H. & Huang, J.-S. (2002a). Inorg. Chem. 41, 3302-3307.],b[Wu, C. D., Liu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002b). Z. Anorg. Allg. Chem. 628, 1935-1937.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H5NO4)(C12H8N2)(H2O)3]·3H2O

  • Mr = 526.36

  • Monoclinic, P 21 /n

  • a = 10.1182 (2) Å

  • b = 13.9659 (2) Å

  • c = 16.2850 (2) Å

  • β = 95.827 (1)°

  • V = 2289.34 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 1.000

  • 18954 measured reflections

  • 5683 independent reflections

  • 5120 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.086

  • S = 1.04

  • 5683 reflections

  • 363 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w1⋯O6wi 0.83 (1) 1.90 (1) 2.734 (1) 175 (2)
O1w—H1w2⋯O2ii 0.84 (1) 1.81 (1) 2.646 (1) 173 (2)
O2w—H2w1⋯O5wi 0.83 (1) 1.93 (1) 2.761 (1) 174 (2)
O2w—H2w2⋯O4iii 0.85 (1) 1.94 (1) 2.790 (1) 173 (2)
O3w—H3w1⋯O5wiv 0.84 (1) 2.16 (2) 2.909 (2) 148 (2)
O3w—H3w2⋯O3ii 0.85 (1) 1.86 (1) 2.694 (1) 167 (2)
O4w—H4w1⋯O6wv 0.85 (1) 1.98 (1) 2.811 (2) 169 (2)
O4w—H4w2⋯O2iv 0.85 (1) 2.05 (1) 2.864 (2) 161 (3)
O5w—H5w1⋯O1 0.85 (1) 1.89 (1) 2.716 (2) 164 (2)
O5w—H5w2⋯O3vi 0.85 (1) 1.90 (1) 2.719 (1) 161 (2)
O6w—H6w1⋯O1 0.85 (1) 1.82 (1) 2.665 (1) 174 (2)
O6w—H6w2⋯O4iii 0.85 (1) 1.94 (1) 2.784 (1) 174 (2)
N1—H1N1⋯O4w 0.85 (1) 2.06 (1) 2.906 (2) 169 (2)
N1—H1N2⋯O4iii 0.84 (1) 2.30 (1) 3.110 (2) 161 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The dianion of 5-aminoisophthalic acid binds to cobalt(II) in a bridging µ4-manner in the monoaqua derivative (Wu et al., 2002a), and the carboxyl oxygen as well as the amino nitrogen atoms are all involved in bonding in the three-dimensional network structure. A diaqua dihydrate has also been reported; the compound has the monoanion in µ2 bridging that gives rise to a chain motif (Wu et al., 2002b). The 4,4'-bipyridine spacer ligand lowers the dimensionality of cobalt 5-aminoisophthalate, and the diqua adduct, which crystallizes as a DMF solvate, exists as linear chains (He et al., 2006). The present 1,10-phenanthroline adduct is a triaqua trihydrate (Scheme I) in which the 5-aminosophthlate dianion binds only through the neutral amino donor site; the coordinated water molecules comprise the fac points of the octahedron around the metal atom (Fig. 1). The zwitterionic dianion, the coordinated and lattice water molecules interact through hydrogen bonds (Table 2) to furnish a tightly-held, three-dimensional network. Pairs of phenanthroline units show π···π interactions about a center-of-inversion at a distance of ca 3.5 Å (Fig. 2).

Related literature top

For related structures, see: He et al. (2006); Wu et al. (2002a,b).

Experimental top

Cobalt(II) nitrate hexahydrate (0.048 g, 0.165 mmol) dissolved in water (5 ml) was added to a mixture of 5-amino-isophthalic acid (0.030 g, 0.165 mmol) and sodium hydroxidie (0.013 g, 0.330 mmol) dissolved in water (5 ml). To this solution was added 1,10-phenanthroline (0.033 g, 0.165 mmol) dissolved in methanol (10 ml). The mixture was filtered and set aside for the growth of deep red crystals (35% yield based on the acid). CHN elemental analaysis. Calc. for C20H25CON3O10: C 45.63, H 4.79, N 7.98%. Found: C, 45.49; H, 4.89; N,7.91%.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino and water bound H-atoms were located in difference Fourier maps, and were refined with a distance restraint of N–H = O–H = 0.85±0.01 Å. Their temperature factors were freely refined.

Structure description top

The dianion of 5-aminoisophthalic acid binds to cobalt(II) in a bridging µ4-manner in the monoaqua derivative (Wu et al., 2002a), and the carboxyl oxygen as well as the amino nitrogen atoms are all involved in bonding in the three-dimensional network structure. A diaqua dihydrate has also been reported; the compound has the monoanion in µ2 bridging that gives rise to a chain motif (Wu et al., 2002b). The 4,4'-bipyridine spacer ligand lowers the dimensionality of cobalt 5-aminoisophthalate, and the diqua adduct, which crystallizes as a DMF solvate, exists as linear chains (He et al., 2006). The present 1,10-phenanthroline adduct is a triaqua trihydrate (Scheme I) in which the 5-aminosophthlate dianion binds only through the neutral amino donor site; the coordinated water molecules comprise the fac points of the octahedron around the metal atom (Fig. 1). The zwitterionic dianion, the coordinated and lattice water molecules interact through hydrogen bonds (Table 2) to furnish a tightly-held, three-dimensional network. Pairs of phenanthroline units show π···π interactions about a center-of-inversion at a distance of ca 3.5 Å (Fig. 2).

For related structures, see: He et al. (2006); Wu et al. (2002a,b).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal displacement ellipsoid plot of (I) at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Two formula units of (I) showing π···π interactions about a center-of-inversion.
(5-Aminoisophthalato-κN)triaqua(1,10-phenanthroline- κ2N,N')cobalt(II) trihydrate top
Crystal data top
[Co(C8H5NO4)(C12H8N2)(H2O)3]·3H2OF(000) = 1092
Mr = 526.36Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9790 reflections
a = 10.1182 (2) Åθ = 2.5–28.5°
b = 13.9659 (2) ŵ = 0.81 mm1
c = 16.2850 (2) ÅT = 293 K
β = 95.827 (1)°Prism, red
V = 2289.34 (8) Å30.24 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5683 independent reflections
Radiation source: fine-focus sealed tube5120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.803, Tmax = 1.000k = 1818
18954 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.5451P]
where P = (Fo2 + 2Fc2)/3
5683 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.47 e Å3
14 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Co(C8H5NO4)(C12H8N2)(H2O)3]·3H2OV = 2289.34 (8) Å3
Mr = 526.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1182 (2) ŵ = 0.81 mm1
b = 13.9659 (2) ÅT = 293 K
c = 16.2850 (2) Å0.24 × 0.22 × 0.18 mm
β = 95.827 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
5683 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5120 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.027
18954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02814 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
5683 reflectionsΔρmin = 0.46 e Å3
363 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.742889 (15)0.684399 (12)0.466367 (10)0.01480 (6)
O11.15673 (10)0.53092 (8)0.26398 (8)0.0313 (2)
O21.22644 (9)0.64316 (8)0.18340 (7)0.0283 (2)
O30.92170 (9)0.91482 (7)0.09694 (6)0.02231 (19)
O40.72213 (9)0.92307 (7)0.14075 (6)0.0237 (2)
O1W0.76586 (10)0.70374 (8)0.59335 (6)0.0228 (2)
H1W10.8296 (15)0.6766 (13)0.6202 (12)0.036 (6)*
H1W20.749 (2)0.7538 (11)0.6187 (13)0.052 (7)*
O2W0.79629 (9)0.54265 (7)0.49718 (6)0.01971 (18)
H2W10.7468 (16)0.5247 (15)0.5321 (10)0.037 (6)*
H2W20.784 (2)0.5056 (14)0.4555 (10)0.049 (6)*
O3W0.53714 (9)0.66780 (8)0.47286 (6)0.0235 (2)
H3W10.486 (2)0.6450 (17)0.4334 (11)0.057 (7)*
H3W20.509 (2)0.6474 (15)0.5168 (9)0.042 (6)*
O4W0.44314 (12)0.71848 (11)0.29095 (9)0.0424 (3)
H4W10.451 (2)0.7710 (11)0.2661 (14)0.056 (7)*
H4W20.390 (2)0.6844 (17)0.2600 (15)0.067 (9)*
O5W1.35918 (11)0.52866 (8)0.38701 (7)0.0276 (2)
H5W11.3070 (18)0.5252 (16)0.3431 (9)0.041 (6)*
H5W21.4231 (15)0.4911 (13)0.3801 (13)0.040 (6)*
O6W1.02652 (9)0.37775 (7)0.31095 (7)0.0248 (2)
H6W11.063 (2)0.4287 (10)0.2960 (13)0.044 (6)*
H6W20.9517 (13)0.3885 (15)0.3285 (13)0.045 (6)*
N10.70534 (10)0.63853 (8)0.33691 (6)0.0168 (2)
H1N10.6259 (11)0.6547 (13)0.3202 (11)0.023 (4)*
H1N20.7054 (19)0.5782 (7)0.3384 (12)0.031 (5)*
N20.71726 (11)0.83333 (8)0.43935 (7)0.0198 (2)
N30.94173 (10)0.73017 (8)0.45306 (7)0.0186 (2)
C10.79644 (12)0.67271 (9)0.28227 (7)0.0155 (2)
C20.91651 (12)0.62476 (9)0.27734 (7)0.0166 (2)
H20.93440.56880.30740.020*
C31.00960 (11)0.66020 (9)0.22771 (7)0.0160 (2)
C40.98255 (12)0.74438 (9)0.18275 (8)0.0170 (2)
H41.04460.76860.14980.020*
C50.86219 (11)0.79214 (9)0.18732 (7)0.0158 (2)
C60.76966 (12)0.75642 (9)0.23778 (7)0.0168 (2)
H60.69020.78880.24150.020*
C71.14016 (11)0.60753 (9)0.22423 (8)0.0180 (2)
C80.83353 (12)0.88295 (9)0.13858 (7)0.0164 (2)
C90.60574 (14)0.88414 (11)0.43592 (9)0.0264 (3)
H90.52780.85340.44660.032*
C100.60072 (16)0.98217 (12)0.41679 (10)0.0316 (3)
H100.52101.01560.41570.038*
C110.71446 (17)1.02817 (11)0.39974 (9)0.0307 (3)
H110.71271.09320.38750.037*
C120.83406 (15)0.97630 (10)0.40083 (9)0.0259 (3)
C130.83020 (13)0.87881 (10)0.42259 (8)0.0195 (2)
C140.95735 (17)1.01683 (12)0.38069 (11)0.0365 (4)
H140.96021.08100.36570.044*
C151.06906 (17)0.96363 (13)0.38306 (12)0.0379 (4)
H151.14690.99120.36820.045*
C161.06940 (14)0.86486 (12)0.40818 (10)0.0280 (3)
C170.95058 (13)0.82265 (10)0.42820 (8)0.0198 (2)
C181.18338 (15)0.80580 (13)0.41512 (11)0.0353 (4)
H181.26400.82970.40130.042*
C191.17504 (14)0.71351 (13)0.44210 (11)0.0326 (3)
H191.25030.67490.44820.039*
C201.05169 (13)0.67760 (10)0.46052 (9)0.0245 (3)
H201.04690.61470.47860.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01501 (9)0.01376 (10)0.01610 (10)0.00058 (5)0.00396 (6)0.00020 (6)
O10.0198 (4)0.0260 (5)0.0490 (7)0.0059 (4)0.0081 (4)0.0196 (5)
O20.0216 (4)0.0249 (5)0.0407 (6)0.0061 (4)0.0137 (4)0.0139 (5)
O30.0215 (4)0.0204 (5)0.0265 (5)0.0018 (4)0.0095 (3)0.0082 (4)
O40.0216 (4)0.0192 (5)0.0320 (5)0.0066 (4)0.0109 (4)0.0087 (4)
O1W0.0260 (5)0.0237 (5)0.0185 (4)0.0059 (4)0.0009 (4)0.0061 (4)
O2W0.0266 (4)0.0146 (4)0.0182 (4)0.0006 (4)0.0031 (3)0.0010 (4)
O3W0.0170 (4)0.0344 (5)0.0198 (5)0.0033 (4)0.0045 (3)0.0009 (4)
O4W0.0265 (5)0.0461 (8)0.0526 (8)0.0063 (5)0.0051 (5)0.0224 (7)
O5W0.0306 (5)0.0256 (5)0.0269 (5)0.0060 (4)0.0045 (4)0.0030 (4)
O6W0.0206 (4)0.0192 (5)0.0354 (5)0.0003 (4)0.0073 (4)0.0018 (4)
N10.0181 (4)0.0166 (5)0.0165 (5)0.0001 (4)0.0058 (4)0.0032 (4)
N20.0202 (5)0.0180 (5)0.0214 (5)0.0022 (4)0.0036 (4)0.0007 (4)
N30.0171 (5)0.0184 (5)0.0205 (5)0.0001 (4)0.0025 (4)0.0015 (4)
C10.0175 (5)0.0165 (5)0.0132 (5)0.0008 (4)0.0041 (4)0.0009 (4)
C20.0192 (5)0.0147 (5)0.0161 (5)0.0009 (4)0.0024 (4)0.0027 (4)
C30.0157 (5)0.0152 (5)0.0172 (5)0.0011 (4)0.0022 (4)0.0005 (4)
C40.0171 (5)0.0167 (6)0.0180 (5)0.0000 (4)0.0051 (4)0.0024 (5)
C50.0175 (5)0.0139 (5)0.0166 (5)0.0008 (4)0.0041 (4)0.0022 (4)
C60.0168 (5)0.0172 (6)0.0171 (5)0.0020 (4)0.0051 (4)0.0006 (5)
C70.0152 (5)0.0166 (6)0.0222 (6)0.0011 (4)0.0020 (4)0.0028 (5)
C80.0194 (5)0.0136 (5)0.0164 (5)0.0008 (4)0.0035 (4)0.0018 (4)
C90.0251 (6)0.0243 (7)0.0308 (7)0.0063 (5)0.0066 (5)0.0030 (6)
C100.0378 (8)0.0258 (7)0.0313 (7)0.0149 (6)0.0044 (6)0.0046 (6)
C110.0465 (8)0.0180 (6)0.0267 (7)0.0059 (6)0.0005 (6)0.0034 (6)
C120.0349 (7)0.0185 (6)0.0236 (6)0.0026 (5)0.0004 (5)0.0037 (5)
C130.0234 (6)0.0172 (6)0.0178 (5)0.0011 (5)0.0019 (4)0.0006 (5)
C140.0441 (9)0.0232 (7)0.0416 (9)0.0111 (6)0.0012 (7)0.0102 (7)
C150.0344 (8)0.0343 (9)0.0454 (9)0.0156 (7)0.0063 (7)0.0089 (7)
C160.0239 (6)0.0296 (7)0.0309 (7)0.0085 (6)0.0050 (5)0.0024 (6)
C170.0196 (6)0.0199 (6)0.0201 (6)0.0025 (5)0.0026 (4)0.0012 (5)
C180.0186 (6)0.0439 (10)0.0441 (9)0.0075 (6)0.0068 (6)0.0006 (7)
C190.0166 (6)0.0376 (8)0.0436 (9)0.0031 (6)0.0034 (6)0.0033 (7)
C200.0202 (6)0.0229 (7)0.0302 (7)0.0027 (5)0.0011 (5)0.0025 (5)
Geometric parameters (Å, º) top
Co1—O1W2.0750 (10)C1—C21.3967 (16)
Co1—O2W2.0995 (9)C2—C31.3927 (16)
Co1—O3W2.1080 (9)C2—H20.9300
Co1—N22.1364 (12)C3—C41.3974 (17)
Co1—N32.1429 (10)C3—C71.5181 (16)
Co1—N12.1992 (11)C4—C51.3971 (16)
O1—C71.2530 (16)C4—H40.9300
O2—C71.2530 (15)C5—C61.3989 (16)
O3—C81.2556 (14)C5—C81.5086 (17)
O4—C81.2624 (15)C6—H60.9300
O1W—H1W10.83 (1)C9—C101.404 (2)
O1W—H1W20.84 (1)C9—H90.9300
O2W—H2W10.83 (1)C10—C111.371 (2)
O2W—H2W20.85 (1)C10—H100.9300
O3W—H3W10.84 (1)C11—C121.409 (2)
O3W—H3W20.85 (1)C11—H110.9300
O4W—H4W10.85 (1)C12—C131.4085 (19)
O4W—H4W20.85 (1)C12—C141.438 (2)
O5W—H5W10.85 (1)C13—C171.4437 (18)
O5W—H5W20.85 (1)C14—C151.350 (3)
O6W—H6W10.85 (1)C14—H140.9300
O6W—H6W20.85 (1)C15—C161.439 (2)
N1—C11.4269 (15)C15—H150.9300
N1—H1N10.85 (1)C16—C171.4066 (18)
N1—H1N20.84 (1)C16—C181.413 (2)
N2—C91.3293 (17)C18—C191.367 (2)
N2—C131.3590 (17)C18—H180.9300
N3—C201.3282 (17)C19—C201.405 (2)
N3—C171.3593 (17)C19—H190.9300
C1—C61.3876 (17)C20—H200.9300
O1W—Co1—O2W83.37 (4)C3—C4—H4120.0
O1W—Co1—O3W88.60 (4)C4—C5—C6120.00 (11)
O2W—Co1—O3W96.65 (4)C4—C5—C8119.70 (10)
O1W—Co1—N294.45 (4)C6—C5—C8120.29 (11)
O2W—Co1—N2171.97 (4)C1—C6—C5120.02 (11)
O3W—Co1—N291.01 (4)C1—C6—H6120.0
O1W—Co1—N392.90 (4)C5—C6—H6120.0
O2W—Co1—N394.82 (4)O2—C7—O1123.33 (11)
O3W—Co1—N3168.53 (4)O2—C7—C3118.90 (11)
N2—Co1—N377.54 (4)O1—C7—C3117.76 (11)
O1W—Co1—N1169.81 (4)O3—C8—O4122.90 (11)
O2W—Co1—N188.26 (4)O3—C8—C5118.22 (11)
O3W—Co1—N186.60 (4)O4—C8—C5118.88 (10)
N2—Co1—N194.62 (4)N2—C9—C10122.77 (14)
N3—Co1—N193.59 (4)N2—C9—H9118.6
Co1—O1W—H1W1117.8 (15)C10—C9—H9118.6
Co1—O1W—H1W2126.2 (16)C11—C10—C9119.33 (14)
H1W1—O1W—H1W2108 (2)C11—C10—H10120.3
Co1—O2W—H2W1106.8 (15)C9—C10—H10120.3
Co1—O2W—H2W2111.5 (16)C10—C11—C12119.61 (14)
H2W1—O2W—H2W2108 (2)C10—C11—H11120.2
Co1—O3W—H3W1122.1 (17)C12—C11—H11120.2
Co1—O3W—H3W2120.1 (15)C13—C12—C11117.03 (13)
H3W1—O3W—H3W2106 (2)C13—C12—C14119.00 (14)
H4W1—O4W—H4W2107 (2)C11—C12—C14123.96 (14)
H5W1—O5W—H5W2106 (2)N2—C13—C12123.20 (12)
H6W1—O6W—H6W2112 (2)N2—C13—C17117.04 (12)
C1—N1—Co1116.15 (8)C12—C13—C17119.75 (12)
C1—N1—H1N1111.1 (12)C15—C14—C12121.35 (14)
Co1—N1—H1N1107.1 (12)C15—C14—H14119.3
C1—N1—H1N2110.7 (13)C12—C14—H14119.3
Co1—N1—H1N2105.3 (13)C14—C15—C16120.90 (14)
H1N1—N1—H1N2105.8 (18)C14—C15—H15119.5
C9—N2—C13118.01 (12)C16—C15—H15119.5
C9—N2—Co1127.81 (10)C17—C16—C18116.54 (14)
C13—N2—Co1114.17 (9)C17—C16—C15119.36 (14)
C20—N3—C17118.20 (11)C18—C16—C15124.11 (14)
C20—N3—Co1127.75 (10)N3—C17—C16123.43 (13)
C17—N3—Co1113.86 (8)N3—C17—C13117.02 (11)
C6—C1—C2119.92 (11)C16—C17—C13119.55 (13)
C6—C1—N1120.22 (11)C19—C18—C16119.97 (14)
C2—C1—N1119.75 (11)C19—C18—H18120.0
C3—C2—C1120.43 (11)C16—C18—H18120.0
C3—C2—H2119.8C18—C19—C20119.35 (14)
C1—C2—H2119.8C18—C19—H19120.3
C2—C3—C4119.67 (11)C20—C19—H19120.3
C2—C3—C7119.46 (11)N3—C20—C19122.48 (14)
C4—C3—C7120.86 (11)N3—C20—H20118.8
C5—C4—C3119.95 (11)C19—C20—H20118.8
C5—C4—H4120.0
O1W—Co1—N1—C1145.0 (2)C4—C5—C8—O32.25 (18)
O2W—Co1—N1—C1110.28 (9)C6—C5—C8—O3176.88 (12)
O3W—Co1—N1—C1152.95 (9)C4—C5—C8—O4177.14 (12)
N2—Co1—N1—C162.21 (9)C6—C5—C8—O43.73 (18)
N3—Co1—N1—C115.56 (9)C13—N2—C9—C100.8 (2)
O1W—Co1—N2—C985.16 (12)Co1—N2—C9—C10179.49 (11)
O3W—Co1—N2—C93.51 (12)N2—C9—C10—C110.9 (2)
N3—Co1—N2—C9177.16 (13)C9—C10—C11—C120.7 (2)
N1—Co1—N2—C990.18 (12)C10—C11—C12—C132.1 (2)
O1W—Co1—N2—C1396.06 (9)C10—C11—C12—C14177.43 (16)
O3W—Co1—N2—C13175.26 (9)C9—N2—C13—C120.9 (2)
N3—Co1—N2—C134.07 (9)Co1—N2—C13—C12178.02 (10)
N1—Co1—N2—C1388.59 (9)C9—N2—C13—C17178.87 (12)
O1W—Co1—N3—C2085.77 (12)Co1—N2—C13—C172.23 (15)
O2W—Co1—N3—C202.19 (12)C11—C12—C13—N22.3 (2)
O3W—Co1—N3—C20176.94 (17)C14—C12—C13—N2177.27 (14)
N2—Co1—N3—C20179.69 (12)C11—C12—C13—C17177.44 (13)
N1—Co1—N3—C2086.36 (12)C14—C12—C13—C173.0 (2)
O1W—Co1—N3—C1799.37 (9)C13—C12—C14—C150.7 (2)
O2W—Co1—N3—C17177.06 (9)C11—C12—C14—C15179.79 (16)
O3W—Co1—N3—C172.1 (3)C12—C14—C15—C161.8 (3)
N2—Co1—N3—C175.45 (9)C14—C15—C16—C171.9 (3)
N1—Co1—N3—C1788.50 (9)C14—C15—C16—C18177.55 (17)
Co1—N1—C1—C692.87 (12)C20—N3—C17—C161.5 (2)
Co1—N1—C1—C283.33 (13)Co1—N3—C17—C16173.89 (11)
C6—C1—C2—C30.27 (19)C20—N3—C17—C13178.51 (12)
N1—C1—C2—C3176.48 (11)Co1—N3—C17—C136.10 (15)
C1—C2—C3—C40.13 (19)C18—C16—C17—N30.1 (2)
C1—C2—C3—C7179.20 (11)C15—C16—C17—N3179.52 (14)
C2—C3—C4—C50.45 (19)C18—C16—C17—C13179.94 (14)
C7—C3—C4—C5179.51 (11)C15—C16—C17—C130.5 (2)
C3—C4—C5—C60.91 (19)N2—C13—C17—N32.64 (18)
C3—C4—C5—C8179.95 (11)C12—C13—C17—N3177.12 (12)
C2—C1—C6—C50.73 (19)N2—C13—C17—C16177.35 (12)
N1—C1—C6—C5176.92 (11)C12—C13—C17—C162.9 (2)
C4—C5—C6—C11.06 (19)C17—C16—C18—C191.6 (2)
C8—C5—C6—C1179.81 (11)C15—C16—C18—C19177.86 (17)
C2—C3—C7—O2175.69 (12)C16—C18—C19—C201.7 (3)
C4—C3—C7—O23.38 (19)C17—N3—C20—C191.3 (2)
C2—C3—C7—O13.05 (18)Co1—N3—C20—C19173.33 (11)
C4—C3—C7—O1177.88 (13)C18—C19—C20—N30.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O6wi0.83 (1)1.90 (1)2.734 (1)175 (2)
O1w—H1w2···O2ii0.84 (1)1.81 (1)2.646 (1)173 (2)
O2w—H2w1···O5wi0.83 (1)1.93 (1)2.761 (1)174 (2)
O2w—H2w2···O4iii0.85 (1)1.94 (1)2.790 (1)173 (2)
O3w—H3w1···O5wiv0.84 (1)2.16 (2)2.909 (2)148 (2)
O3w—H3w2···O3ii0.85 (1)1.86 (1)2.694 (1)167 (2)
O4w—H4w1···O6wv0.85 (1)1.98 (1)2.811 (2)169 (2)
O4w—H4w2···O2iv0.85 (1)2.05 (1)2.864 (2)161 (3)
O5w—H5w1···O10.85 (1)1.89 (1)2.716 (2)164 (2)
O5w—H5w2···O3vi0.85 (1)1.90 (1)2.719 (1)161 (2)
O6w—H6w1···O10.85 (1)1.82 (1)2.665 (1)174 (2)
O6w—H6w2···O4iii0.85 (1)1.94 (1)2.784 (1)174 (2)
N1—H1N1···O4w0.85 (1)2.06 (1)2.906 (2)169 (2)
N1—H1N2···O4iii0.84 (1)2.30 (1)3.110 (2)161 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1, y, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C8H5NO4)(C12H8N2)(H2O)3]·3H2O
Mr526.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.1182 (2), 13.9659 (2), 16.2850 (2)
β (°) 95.827 (1)
V3)2289.34 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.803, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18954, 5683, 5120
Rint0.027
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.086, 1.04
No. of reflections5683
No. of parameters363
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O6wi0.83 (1)1.90 (1)2.734 (1)175 (2)
O1w—H1w2···O2ii0.84 (1)1.81 (1)2.646 (1)173 (2)
O2w—H2w1···O5wi0.83 (1)1.93 (1)2.761 (1)174 (2)
O2w—H2w2···O4iii0.85 (1)1.94 (1)2.790 (1)173 (2)
O3w—H3w1···O5wiv0.84 (1)2.16 (2)2.909 (2)148 (2)
O3w—H3w2···O3ii0.85 (1)1.86 (1)2.694 (1)167 (2)
O4w—H4w1···O6wv0.85 (1)1.98 (1)2.811 (2)169 (2)
O4w—H4w2···O2iv0.85 (1)2.05 (1)2.864 (2)161 (3)
O5w—H5w1···O10.85 (1)1.89 (1)2.716 (2)164 (2)
O5w—H5w2···O3vi0.85 (1)1.90 (1)2.719 (1)161 (2)
O6w—H6w1···O10.85 (1)1.82 (1)2.665 (1)174 (2)
O6w—H6w2···O4iii0.85 (1)1.94 (1)2.784 (1)174 (2)
N1—H1N1···O4w0.85 (1)2.06 (1)2.906 (2)169 (2)
N1—H1N2···O4iii0.84 (1)2.30 (1)3.110 (2)161 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1, y, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+5/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, the National Natural Science Foundation of China (grant No. 20773107), Yangzhou University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationHe, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2006). Chin. J. Inorg. Chem. 22, 142–144.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C.-D., Liu, C.-Z., Yang, W.-B., Zhuang, H.-H. & Huang, J.-S. (2002a). Inorg. Chem. 41, 3302–3307.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, C. D., Liu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002b). Z. Anorg. Allg. Chem. 628, 1935–1937.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds