metal-organic compounds
Diazidobis[4,4,5,5-tetramethyl-2-(1,3-thiazol-2-yl)-2-imidazoline-1-oxyl 3-oxide-κ2N1,O3]nickel(II)
aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com
In the title compound, [Ni(N3)2(C10H14N3O2S)2], the NiII atom lies on an inversion center and adopts a distorted trans-NiO2N4 octahedral geometry, coordinated by two N,O-bidentate 4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2-imidazoline-1-oxyl 3-oxide nitronyl nitroxide radical ligands and two monodentate azide anions.
Related literature
For general background to molecular magnetic materials and metal-radical magnetic materials, see: Vostrikova et al. (2000); Fegy et al. (1998); Kahn et al. (2000); Omata et al. (2001); Yamamoto et al. (2001); Fursova et al. (2003); Sroh et al. (2003); Chang et al. (2009); Schatzschneider et al. (2001). For the synthesis of nitronyl nitroxide radical ligands and the title compound, see: Ullman et al. (1970, 1972).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810042455/sj5040sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810042455/sj5040Isup2.hkl
The nitronyl nitroxide radical(2-(2'-thiazole)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide)was synthesized according to literature procedures (Ullman et al. 1970; Ullman et al. 1972). A mixed solution of nitronyl nitroxide radical ligands (2.00 mmol) and Ni(Ac)2.4H2O (1 mmol) in ethanol (10 ml) was added to an aqueous solution(10 mL) of NaN3(2 mmol) and the resulting mixed solution was stirred for one hour at room temperature and then filtered off. This filtrate was left to evaporate slowly. After one week, deep purple crystals suitable for X-ray analysis were isolated.
All C—H atoms were positioned geometrically, with C—H = 0.93 or 0.96 Å and constrained to ride on their parent atoms with Uiso(H)=1.2U (carrier) or Uiso (H)=1.5U (methyl carrier).
The synthesis and study of transition metal complexes incorporating organic free radicals is a major research focus in the field of molecular magnetism (Vostrikova et al., 2000; Fegy et al., 1998; Kahn et al., 2000; Omata et al., 2001). In this field, nitronyl
acting as useful paramagnetic building blocks have been extensively used to assemble molecular magnetic materials, because many of them are good stable spin carriers even when coordinated to metal ions (Yamamoto et al., 2001; Fursova et al., 2003; Sroh et al., 2003; Chang et al., 2009; Schatzschneider et al., 2001). We report herein the synthesis and of one such nickel complex.The
of the title compound (Fig. 1) contains half molecule. The NiII atom, lying on a an inversion center, is six-coordinated in a distorted octahedral geometry by two N atoms and two O atoms from two 4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2- imidazoline-1-oxyl-3-oxide nitronyl nitroxide radical ligands and two N atoms from two azide anions.For general background to molecular magnetic materials and metal-radical magnetic materials see: Vostrikova et al. (2000); Fegy et al. (1998); Kahn et al. (2000); Omata et al. (2001); Yamamoto et al. (2001); Fursova et al. (2003); Sroh et al. (2003); Chang et al. (2009); Schatzschneider et al. (2001). For the synthesis of nitronyl nitroxide radical ligands and the title compound see: Ullman et al. (1970, 1972).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(N3)2(C10H14N3O2S)2] | F(000) = 648 |
Mr = 623.37 | Dx = 1.572 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5712 reflections |
a = 9.9212 (7) Å | θ = 2.7–29.3° |
b = 12.1732 (8) Å | µ = 0.95 mm−1 |
c = 11.1795 (8) Å | T = 291 K |
β = 102.695 (1)° | Block, dark purple |
V = 1317.17 (16) Å3 | 0.40 × 0.22 × 0.15 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 3005 independent reflections |
Radiation source: fine-focus sealed tube | 2834 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.010 |
φ and ω scans | θmax = 27.5°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick , 1996) | h = −12→9 |
Tmin = 0.703, Tmax = 0.874 | k = −14→15 |
7812 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.031P)2 + 0.5195P] where P = (Fo2 + 2Fc2)/3 |
3005 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
[Ni(N3)2(C10H14N3O2S)2] | V = 1317.17 (16) Å3 |
Mr = 623.37 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.9212 (7) Å | µ = 0.95 mm−1 |
b = 12.1732 (8) Å | T = 291 K |
c = 11.1795 (8) Å | 0.40 × 0.22 × 0.15 mm |
β = 102.695 (1)° |
Bruker SMART APEX CCD diffractometer | 3005 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick , 1996) | 2834 reflections with I > 2σ(I) |
Tmin = 0.703, Tmax = 0.874 | Rint = 0.010 |
7812 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.25 e Å−3 |
3005 reflections | Δρmin = −0.27 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 1.0000 | 0.5000 | 0.02603 (8) | |
S1 | 0.75033 (4) | 1.27825 (3) | 0.38125 (4) | 0.04133 (11) | |
O1 | 0.64775 (12) | 0.90740 (9) | 0.43831 (12) | 0.0486 (3) | |
O2 | 0.89398 (15) | 1.14747 (11) | 0.24875 (14) | 0.0611 (4) | |
N1 | 0.60808 (11) | 1.13921 (9) | 0.47330 (10) | 0.0272 (2) | |
N2 | 0.72751 (11) | 0.94577 (9) | 0.37164 (10) | 0.0285 (2) | |
N3 | 0.84655 (12) | 1.05745 (10) | 0.28101 (11) | 0.0360 (3) | |
N4 | 0.61887 (17) | 0.99070 (14) | 0.67735 (14) | 0.0568 (4) | |
N5 | 0.58855 (14) | 0.95757 (10) | 0.76655 (12) | 0.0380 (3) | |
N6 | 0.5618 (2) | 0.92594 (14) | 0.85593 (15) | 0.0652 (5) | |
C1 | 0.64979 (16) | 1.32436 (12) | 0.47626 (15) | 0.0391 (3) | |
H1 | 0.6423 | 1.3976 | 0.4976 | 0.047* | |
C2 | 0.58239 (15) | 1.24038 (11) | 0.51644 (13) | 0.0329 (3) | |
H2A | 0.5231 | 1.2506 | 0.5694 | 0.039* | |
C3 | 0.69761 (13) | 1.14629 (10) | 0.40176 (12) | 0.0269 (2) | |
C4 | 0.75220 (13) | 1.05162 (11) | 0.35158 (12) | 0.0273 (3) | |
C5 | 0.79699 (14) | 0.86855 (11) | 0.29890 (12) | 0.0312 (3) | |
C6 | 0.90436 (14) | 0.94677 (12) | 0.25934 (13) | 0.0337 (3) | |
C7 | 0.8572 (2) | 0.77211 (15) | 0.37997 (18) | 0.0535 (5) | |
H7A | 0.9144 | 0.7992 | 0.4548 | 0.080* | |
H7B | 0.9117 | 0.7275 | 0.3378 | 0.080* | |
H7C | 0.7834 | 0.7288 | 0.3984 | 0.080* | |
C8 | 0.68251 (19) | 0.82790 (16) | 0.19319 (16) | 0.0524 (4) | |
H8A | 0.6110 | 0.7937 | 0.2256 | 0.079* | |
H8B | 0.7201 | 0.7755 | 0.1452 | 0.079* | |
H8C | 0.6447 | 0.8890 | 0.1424 | 0.079* | |
C9 | 1.04886 (16) | 0.94066 (17) | 0.34192 (17) | 0.0527 (4) | |
H9A | 1.1050 | 0.9986 | 0.3207 | 0.079* | |
H9B | 1.0898 | 0.8709 | 0.3310 | 0.079* | |
H9C | 1.0427 | 0.9486 | 0.4260 | 0.079* | |
C10 | 0.9140 (2) | 0.93844 (17) | 0.12542 (15) | 0.0534 (4) | |
H10A | 0.8244 | 0.9506 | 0.0736 | 0.080* | |
H10B | 0.9463 | 0.8666 | 0.1099 | 0.080* | |
H10C | 0.9772 | 0.9929 | 0.1084 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02752 (13) | 0.02314 (12) | 0.03225 (13) | −0.00064 (8) | 0.01700 (9) | 0.00075 (8) |
S1 | 0.0393 (2) | 0.02794 (18) | 0.0629 (2) | −0.00619 (14) | 0.02443 (18) | 0.00477 (16) |
O1 | 0.0554 (7) | 0.0281 (5) | 0.0793 (8) | 0.0016 (5) | 0.0519 (6) | 0.0040 (5) |
O2 | 0.0673 (8) | 0.0448 (7) | 0.0892 (10) | −0.0049 (6) | 0.0564 (8) | 0.0112 (6) |
N1 | 0.0276 (5) | 0.0250 (5) | 0.0319 (5) | 0.0002 (4) | 0.0125 (4) | 0.0003 (4) |
N2 | 0.0263 (5) | 0.0278 (5) | 0.0360 (6) | 0.0008 (4) | 0.0166 (4) | −0.0009 (4) |
N3 | 0.0350 (6) | 0.0362 (6) | 0.0439 (6) | −0.0003 (5) | 0.0238 (5) | 0.0031 (5) |
N4 | 0.0533 (9) | 0.0743 (11) | 0.0408 (8) | −0.0261 (8) | 0.0058 (7) | 0.0125 (7) |
N5 | 0.0436 (7) | 0.0299 (6) | 0.0405 (7) | −0.0034 (5) | 0.0091 (5) | 0.0021 (5) |
N6 | 0.1006 (14) | 0.0528 (9) | 0.0498 (9) | −0.0085 (9) | 0.0332 (9) | 0.0077 (7) |
C1 | 0.0374 (7) | 0.0253 (6) | 0.0563 (9) | −0.0016 (5) | 0.0136 (7) | −0.0045 (6) |
C2 | 0.0341 (7) | 0.0276 (6) | 0.0392 (7) | 0.0018 (5) | 0.0128 (6) | −0.0042 (5) |
C3 | 0.0244 (6) | 0.0252 (6) | 0.0326 (6) | −0.0015 (5) | 0.0098 (5) | 0.0023 (5) |
C4 | 0.0242 (6) | 0.0302 (6) | 0.0300 (6) | −0.0003 (5) | 0.0114 (5) | 0.0021 (5) |
C5 | 0.0307 (6) | 0.0327 (7) | 0.0337 (6) | 0.0056 (5) | 0.0145 (5) | −0.0028 (5) |
C6 | 0.0293 (7) | 0.0421 (8) | 0.0339 (7) | 0.0037 (6) | 0.0159 (5) | −0.0027 (6) |
C7 | 0.0550 (10) | 0.0485 (10) | 0.0647 (11) | 0.0239 (8) | 0.0300 (9) | 0.0160 (8) |
C8 | 0.0515 (10) | 0.0551 (10) | 0.0507 (9) | −0.0137 (8) | 0.0115 (8) | −0.0167 (8) |
C9 | 0.0299 (8) | 0.0678 (12) | 0.0603 (10) | 0.0029 (7) | 0.0095 (7) | −0.0120 (9) |
C10 | 0.0586 (11) | 0.0703 (12) | 0.0397 (8) | 0.0009 (9) | 0.0288 (8) | −0.0049 (8) |
Ni1—N1 | 2.0619 (11) | C2—H2A | 0.9300 |
Ni1—N1i | 2.0619 (11) | C3—C4 | 1.4387 (18) |
Ni1—N4i | 2.0753 (15) | C5—C7 | 1.523 (2) |
Ni1—N4 | 2.0753 (15) | C5—C8 | 1.530 (2) |
Ni1—O1 | 2.0831 (10) | C5—C6 | 1.563 (2) |
Ni1—O1i | 2.0832 (10) | C6—C10 | 1.5243 (19) |
S1—C1 | 1.7040 (16) | C6—C9 | 1.527 (2) |
S1—C3 | 1.7204 (13) | C7—H7A | 0.9600 |
O1—N2 | 1.2880 (14) | C7—H7B | 0.9600 |
O2—N3 | 1.2756 (17) | C7—H7C | 0.9600 |
N1—C3 | 1.3222 (16) | C8—H8A | 0.9600 |
N1—C2 | 1.3669 (17) | C8—H8B | 0.9600 |
N2—C4 | 1.3398 (18) | C8—H8C | 0.9600 |
N2—C5 | 1.5055 (16) | C9—H9A | 0.9600 |
N3—C4 | 1.3520 (16) | C9—H9B | 0.9600 |
N3—C6 | 1.5047 (19) | C9—H9C | 0.9600 |
N4—N5 | 1.1745 (19) | C10—H10A | 0.9600 |
N5—N6 | 1.1547 (19) | C10—H10B | 0.9600 |
C1—C2 | 1.351 (2) | C10—H10C | 0.9600 |
C1—H1 | 0.9300 | ||
N1—Ni1—N1i | 180.00 (5) | N2—C4—C3 | 127.35 (11) |
N1—Ni1—N4i | 91.22 (5) | N3—C4—C3 | 123.63 (12) |
N1i—Ni1—N4i | 88.78 (5) | N2—C5—C7 | 109.04 (11) |
N1—Ni1—N4 | 88.78 (5) | N2—C5—C8 | 105.60 (12) |
N1i—Ni1—N4 | 91.22 (5) | C7—C5—C8 | 109.74 (15) |
N4i—Ni1—N4 | 180.0 | N2—C5—C6 | 101.18 (10) |
N1—Ni1—O1 | 88.32 (4) | C7—C5—C6 | 115.82 (12) |
N1i—Ni1—O1 | 91.68 (4) | C8—C5—C6 | 114.50 (12) |
N4i—Ni1—O1 | 90.39 (7) | N3—C6—C10 | 109.03 (13) |
N4—Ni1—O1 | 89.61 (7) | N3—C6—C9 | 106.66 (13) |
N1—Ni1—O1i | 91.68 (4) | C10—C6—C9 | 109.73 (13) |
N1i—Ni1—O1i | 88.32 (4) | N3—C6—C5 | 101.08 (10) |
N4i—Ni1—O1i | 89.61 (7) | C10—C6—C5 | 115.53 (13) |
N4—Ni1—O1i | 90.38 (7) | C9—C6—C5 | 114.01 (13) |
O1—Ni1—O1i | 180.0 | C5—C7—H7A | 109.5 |
C1—S1—C3 | 89.29 (7) | C5—C7—H7B | 109.5 |
N2—O1—Ni1 | 124.18 (8) | H7A—C7—H7B | 109.5 |
C3—N1—C2 | 110.91 (11) | C5—C7—H7C | 109.5 |
C3—N1—Ni1 | 125.52 (9) | H7A—C7—H7C | 109.5 |
C2—N1—Ni1 | 123.11 (9) | H7B—C7—H7C | 109.5 |
O1—N2—C4 | 127.15 (11) | C5—C8—H8A | 109.5 |
O1—N2—C5 | 119.91 (11) | C5—C8—H8B | 109.5 |
C4—N2—C5 | 112.82 (10) | H8A—C8—H8B | 109.5 |
O2—N3—C4 | 123.76 (12) | C5—C8—H8C | 109.5 |
O2—N3—C6 | 123.12 (11) | H8A—C8—H8C | 109.5 |
C4—N3—C6 | 112.60 (11) | H8B—C8—H8C | 109.5 |
N5—N4—Ni1 | 129.20 (13) | C6—C9—H9A | 109.5 |
N6—N5—N4 | 178.30 (19) | C6—C9—H9B | 109.5 |
C2—C1—S1 | 110.99 (11) | H9A—C9—H9B | 109.5 |
C2—C1—H1 | 124.5 | C6—C9—H9C | 109.5 |
S1—C1—H1 | 124.5 | H9A—C9—H9C | 109.5 |
C1—C2—N1 | 114.84 (12) | H9B—C9—H9C | 109.5 |
C1—C2—H2A | 122.6 | C6—C10—H10A | 109.5 |
N1—C2—H2A | 122.6 | C6—C10—H10B | 109.5 |
N1—C3—C4 | 122.97 (11) | H10A—C10—H10B | 109.5 |
N1—C3—S1 | 113.94 (10) | C6—C10—H10C | 109.5 |
C4—C3—S1 | 122.99 (9) | H10A—C10—H10C | 109.5 |
N2—C4—N3 | 108.88 (11) | H10B—C10—H10C | 109.5 |
N1—Ni1—O1—N2 | −21.29 (12) | O1—N2—C4—N3 | 177.25 (14) |
N1i—Ni1—O1—N2 | 158.71 (12) | C5—N2—C4—N3 | −6.89 (15) |
N4i—Ni1—O1—N2 | 69.92 (13) | O1—N2—C4—C3 | 1.4 (2) |
N4—Ni1—O1—N2 | −110.08 (13) | C5—N2—C4—C3 | 177.22 (13) |
O1i—Ni1—O1—N2 | −114 (16) | O2—N3—C4—N2 | −178.14 (14) |
N1i—Ni1—N1—C3 | 177 (16) | C6—N3—C4—N2 | −6.19 (16) |
N4i—Ni1—N1—C3 | −70.05 (12) | O2—N3—C4—C3 | −2.1 (2) |
N4—Ni1—N1—C3 | 109.95 (12) | C6—N3—C4—C3 | 169.88 (12) |
O1—Ni1—N1—C3 | 20.30 (11) | N1—C3—C4—N2 | −2.8 (2) |
O1i—Ni1—N1—C3 | −159.70 (11) | S1—C3—C4—N2 | 173.34 (11) |
N1i—Ni1—N1—C2 | −11 (16) | N1—C3—C4—N3 | −178.16 (13) |
N4i—Ni1—N1—C2 | 101.39 (12) | S1—C3—C4—N3 | −1.98 (19) |
N4—Ni1—N1—C2 | −78.61 (12) | O1—N2—C5—C7 | −45.32 (18) |
O1—Ni1—N1—C2 | −168.26 (11) | C4—N2—C5—C7 | 138.49 (14) |
O1i—Ni1—N1—C2 | 11.74 (11) | O1—N2—C5—C8 | 72.54 (16) |
Ni1—O1—N2—C4 | 15.2 (2) | C4—N2—C5—C8 | −103.65 (14) |
Ni1—O1—N2—C5 | −160.42 (9) | O1—N2—C5—C6 | −167.85 (12) |
N1—Ni1—N4—N5 | 148.00 (19) | C4—N2—C5—C6 | 15.96 (14) |
N1i—Ni1—N4—N5 | −32.00 (19) | O2—N3—C6—C10 | −50.34 (19) |
N4i—Ni1—N4—N5 | 21 (16) | C4—N3—C6—C10 | 137.65 (14) |
O1—Ni1—N4—N5 | −123.68 (18) | O2—N3—C6—C9 | 68.08 (18) |
O1i—Ni1—N4—N5 | 56.32 (18) | C4—N3—C6—C9 | −103.93 (14) |
Ni1—N4—N5—N6 | −172 (100) | O2—N3—C6—C5 | −172.49 (14) |
C3—S1—C1—C2 | −0.63 (12) | C4—N3—C6—C5 | 15.50 (15) |
S1—C1—C2—N1 | −0.18 (17) | N2—C5—C6—N3 | −17.26 (12) |
C3—N1—C2—C1 | 1.19 (18) | C7—C5—C6—N3 | −134.97 (13) |
Ni1—N1—C2—C1 | −171.36 (10) | C8—C5—C6—N3 | 95.77 (14) |
C2—N1—C3—C4 | 174.82 (12) | N2—C5—C6—C10 | −134.76 (13) |
Ni1—N1—C3—C4 | −12.85 (18) | C7—C5—C6—C10 | 107.53 (16) |
C2—N1—C3—S1 | −1.67 (15) | C8—C5—C6—C10 | −21.73 (19) |
Ni1—N1—C3—S1 | 170.66 (6) | N2—C5—C6—C9 | 96.76 (13) |
C1—S1—C3—N1 | 1.34 (11) | C7—C5—C6—C9 | −20.95 (18) |
C1—S1—C3—C4 | −175.14 (12) | C8—C5—C6—C9 | −150.21 (14) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(N3)2(C10H14N3O2S)2] |
Mr | 623.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 9.9212 (7), 12.1732 (8), 11.1795 (8) |
β (°) | 102.695 (1) |
V (Å3) | 1317.17 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.95 |
Crystal size (mm) | 0.40 × 0.22 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick , 1996) |
Tmin, Tmax | 0.703, 0.874 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7812, 3005, 2834 |
Rint | 0.010 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.065, 1.06 |
No. of reflections | 3005 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.27 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
Acknowledgements
This work was supported by the Natural Science Foundation and Basic Research Program of Henan province (Nos. 092300410195 and 092300410240).
References
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA. Google Scholar
Chang, J. L., Gao, Z. Y. & Jiang, K. (2009). Acta Cryst. E65, m181. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fegy, K., Luneau, D., Ohm, T., Paulsen, C. & Rey, P. (1998). Angew. Chem. Int. Ed. 37, 1270–1273. CrossRef CAS Google Scholar
Fursova, E. Y., Ovcharenko, V. I., Romanenko, G. V. & Tretyakov, E. V. (2003). Tetrahedron Lett. 44, 6397–6399. Web of Science CSD CrossRef CAS Google Scholar
Kahn, M. L., Sutter, S., Guionneau, P., Ouahab, L., Kahn, O. & Chasseau, D. (2000). J. Am. Chem. Soc. 122, 3413–3421. Web of Science CSD CrossRef CAS Google Scholar
Omata, J., Ishida, T., Hashizume, D., Iwasaki, F. & Nogami, T. (2001). Inorg. Chem. 40, 3954–3958. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schatzschneider, U., Weyhermüller, T. & Rentschler, E. (2001). Eur. J. Inorg. Chem. pp. 2569–2586. CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sroh, C., Belorizky, E., Turek, P., Bolvin, H. & Ziessel, R. (2003). Inorg. Chem. 42, 2938–2949. Web of Science PubMed Google Scholar
Ullman, E. F., Call, L. & Osieckei, J. H. (1970). J. Org. Chem. 35, 3623–3628. CrossRef CAS Web of Science Google Scholar
Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059. CrossRef CAS Web of Science Google Scholar
Vostrikova, K. E., Luneau, D., Wersdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc. 122, 718–719. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2001). J. Chem. Soc. Dalton Trans. pp. 1566–1572. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis and study of transition metal complexes incorporating organic free radicals is a major research focus in the field of molecular magnetism (Vostrikova et al., 2000; Fegy et al., 1998; Kahn et al., 2000; Omata et al., 2001). In this field, nitronyl nitroxides acting as useful paramagnetic building blocks have been extensively used to assemble molecular magnetic materials, because many of them are good stable spin carriers even when coordinated to metal ions (Yamamoto et al., 2001; Fursova et al., 2003; Sroh et al., 2003; Chang et al., 2009; Schatzschneider et al., 2001). We report herein the synthesis and crystal structure of one such nickel complex.
The asymmetric unit of the title compound (Fig. 1) contains half molecule. The NiII atom, lying on a an inversion center, is six-coordinated in a distorted octahedral geometry by two N atoms and two O atoms from two 4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2- imidazoline-1-oxyl-3-oxide nitronyl nitroxide radical ligands and two N atoms from two azide anions.