organic compounds
syn-Dispiro[1,3-dioxolane-2,17′-pentacyclo[12.2.1.16,9.02,13.05,10]octadecane-18′,2′′-[1,3]dioxolane]-7′,15′-diene
aDepartment of Chemistry, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
*Correspondence e-mail: metzkorn@uncc.edu, djones@uncc.edu
The title compound, C22H28O4, is composed of a central octadecane ring and two spiro[bicyclo[2.2.1]hept[2]ene-7,2′-[1,3]dioxolane] units. This polycycle has pseudo twofold symmetry and the central cyclooctane ring has a distorted boat configuration.
Related literature
For related structures, see: Garcia et al. (1991a,b); Tenbusch et al. (2010). For the chemistry of syn-bisquinoxalines, see: Chou et al. (2005); Etzkorn et al. (2010).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae, et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810041565/su2208sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041565/su2208Isup2.hkl
The synthesis of the title compound, 3, is described in Fig. 1. A mixture of cycloocatdiene (3 g, 29 mmol) and spiroketal (1) (15 g, 57 mmol) was refluxed in toluene (3 ml) for three hours. The off-white paste was filtered, washed with methylene chloride (75 ml), dried, and washed again with cold methanol (15 ml) to remove traces of the mono-Diels-Alder adduct. The remaining colorless solid (14.5 g, 83%) was composed of a mixture of 2a and 2 b in a 1:4 ratio, respectively. After repeated recrystallization from diethyl ether, the pure syn-isomer 2a was obtained as colorless platelets (3.7 g, 21%).
A solution of 2a (1 g, 1.58 mmol) and THF (20 ml) was added to a mixture of liquid ammonia (250 ml) and ethanol (1.5 ml). Pieces of sodium metal (0.8 g, 29.6 mmol) were slowly added over two hours; the reaction mixture was then stirred for an additional hour. The reaction was quenched with solid ammonium chloride, and the ammonia was allowed to evaporate. The residue was taken up in water (75 ml) and the aqueous phase was extracted with methylene chloride (4 x 50 ml) to yield 3 as light-brown crystals (0.490 g). Purification of 3 by ν = 2955, 2856 (CH2), 1649 (C═C), 1473 (CH2 bend), 1303, 1290 (C—O—C), 1243, 1224, 1084, 1046, 819, 725 cm-1; 1H NMR (CDCl3; 300 MHz):δ = 6.18 (m, 4H, H-7',-8',-15',-16'), 3.98–3.90 (m, 4H, H-4,-4"), 3.85–3.76 (m, 4H, H-5,-5"), 2.86–2.72 (m, 4H, H-2',-5',-10'-13'), 2.46–2.4 (m, 4H, H-1',-6',-9',-13'); 13C NMR (CDCl3; 75.6 MHz):δ = 133.7 (C-7',-8',-15',-16'), 124.8 (C-17',-18'), 64.8 (C-4,-4"), 64.1 (C-5,-5"), 53.6 (C-2',-5',-10',-13'), 37.4 (C-1',-6', -9',-14'), 25.3 (C-3',-4',-11',-10').
(cyclohexane: ethyl acetate [4:1], Rf = 0.11) afforded colorless crystals (0.439 g, 78%); Mp.>568 K. IR (KBr): ~The H-atoms were included in calculated positions and constrained using a riding model: C—H = 0.97 Å for methylene, 0.98 Å for methine, and 0.93 Å for olefinic H-atoms, with Uiso(H) = 1.2Ueq(C).
The title compound is of interest as a non-chlorinated tether unit for syn-bisquinoxaline molecular tweezers. The non-chlorinated compounds are anticipated to display higher solubility in common organic solvents, thus facilitating the quantitative investigation of host–guest chemistry in solution. The title polycyclic molecule, 3, presented here was obtained by a twofold Diels-Alder reaction of cyclooctadiene and a cyclopentadieneone derivative, 1, followed by subsequent dehalogenation (Fig. 1). Larger molecular frameworks that incorporate scaffold 2a can be found in syn-bisquinoxalines that have previously been investigated for their luminescent properties (Chou et al., 2005) and for their behavior as molecular tweezers (Etzkorn et al., 2010). Compound 3 stems from the chlorinated derivative 2a, which was separated from its anti-isomer 2b via repeated recrystallization from diethyl ether, i.e., the ether solution becomes more enriched in syn-isomer 2a. To improve the solubility of any molecular framework that is derived from scaffold 2a, we reduced the latter with sodium metal in ethanol and liquid ammonia to furnish 3 in good yield. The fully dechlorinated compound 3 did indeed show improved solubility in common organic solvents and, upon further functionalization to tweezer scaffolds, is expected to improve overall solubility.
The title molecule, 3, has pseudo 2-fold symmetry. The central cyclooctane has a distorted boat configuration (Fig. 2). The dioxalane ring (O1,C13,O2,C20,C19) has an envelope configuration with atom O2 at the flap, while ring (O3,C18,O4,C22,C21) has a half-chair configuration being twised about bond O4-C22.
A literature search revealed three related crystal structures. The first (Garcia et al., 1991a) is similar to 3, but has the anti-orientation and an open ketal structure on each of the bridgehead carbon atoms. The second (Tenbusch et al., 2010) is an octachloro derivative with the anti-orientation. The third (Garcia et al., 1991b) is an octachloro syn-structure with an open ketal arrangement on each of the bridgehead carbon atoms; this structure assumes the same distorted boat configuration as does compound 3.
For related structures, see: Garcia et al. (1991a,b); Tenbusch et al. (2010). For related chemistry of syn-bisquinoxalines, see: Chou et al. (2005); Etzkorn et al. (2010).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae, et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Synthesis scheme. | |
Fig. 2. A view of the molecular structure of compound 3, with 50% probability displacement ellipsoids. |
C22H28O4 | F(000) = 768 |
Mr = 356.44 | Dx = 1.309 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 11.4167 (11) Å | θ = 15.3–42.6° |
b = 6.7354 (7) Å | µ = 0.71 mm−1 |
c = 24.185 (2) Å | T = 295 K |
β = 103.521 (9)° | Prism, colorless |
V = 1808.2 (3) Å3 | 0.35 × 0.20 × 0.20 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | θmax = 67.5°, θmin = 3.8° |
Non–profiled ω/2θ scans | h = −13→0 |
8422 measured reflections | k = −8→8 |
3248 independent reflections | l = −28→28 |
2693 reflections with I > 2σ(I) | 3 standard reflections every 79 reflections |
Rint = 0.045 | intensity decay: 2% |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0414P)2 + 0.4578P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.039 | (Δ/σ)max < 0.001 |
wR(F2) = 0.106 | Δρmax = 0.24 e Å−3 |
S = 1.05 | Δρmin = −0.19 e Å−3 |
3248 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
236 parameters | Extinction coefficient: 0.0117 (6) |
0 restraints |
C22H28O4 | V = 1808.2 (3) Å3 |
Mr = 356.44 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 11.4167 (11) Å | µ = 0.71 mm−1 |
b = 6.7354 (7) Å | T = 295 K |
c = 24.185 (2) Å | 0.35 × 0.20 × 0.20 mm |
β = 103.521 (9)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.045 |
8422 measured reflections | 3 standard reflections every 79 reflections |
3248 independent reflections | intensity decay: 2% |
2693 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.24 e Å−3 |
3248 reflections | Δρmin = −0.19 e Å−3 |
236 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
O1 | 0.49270 (9) | 0.9050 (2) | −0.18532 (5) | 0.0544 (4) | |
O2 | 0.56491 (10) | 1.0106 (2) | −0.25975 (4) | 0.0545 (4) | |
O3 | 0.58431 (10) | 0.6331 (2) | 0.05326 (5) | 0.0597 (4) | |
O4 | 0.68575 (10) | 0.66022 (19) | 0.14523 (4) | 0.0534 (4) | |
C1 | 0.68153 (12) | 1.0631 (2) | −0.10437 (6) | 0.0351 (4) | |
C2 | 0.72139 (12) | 0.8459 (2) | −0.11521 (6) | 0.0360 (4) | |
C3 | 0.84705 (13) | 0.7735 (2) | −0.08405 (6) | 0.0419 (5) | |
C4 | 0.87904 (12) | 0.7689 (2) | −0.01860 (6) | 0.0413 (5) | |
C5 | 0.77291 (12) | 0.7502 (2) | 0.00928 (6) | 0.0348 (4) | |
C6 | 0.70386 (12) | 0.9466 (2) | 0.01680 (6) | 0.0362 (4) | |
C7 | 0.75302 (14) | 1.1468 (2) | 0.00213 (6) | 0.0423 (5) | |
C8 | 0.76760 (13) | 1.1811 (2) | −0.05857 (6) | 0.0399 (5) | |
C9 | 0.65659 (13) | 1.1569 (2) | −0.16468 (6) | 0.0416 (5) | |
C10 | 0.80267 (14) | 0.9816 (3) | −0.19355 (7) | 0.0535 (6) | |
C11 | 0.77312 (14) | 1.1653 (3) | −0.18360 (6) | 0.0509 (6) | |
C12 | 0.70828 (13) | 0.8439 (3) | −0.18100 (6) | 0.0445 (5) | |
C13 | 0.59793 (13) | 0.9774 (3) | −0.20041 (6) | 0.0430 (5) | |
C14 | 0.80596 (13) | 0.6639 (2) | 0.07062 (6) | 0.0408 (5) | |
C15 | 0.89060 (14) | 0.8058 (3) | 0.10824 (6) | 0.0484 (5) | |
C16 | 0.82908 (15) | 0.9654 (3) | 0.11512 (6) | 0.0500 (5) | |
C17 | 0.70117 (14) | 0.9382 (2) | 0.08140 (6) | 0.0428 (5) | |
C18 | 0.68912 (13) | 0.7153 (2) | 0.08916 (6) | 0.0419 (5) | |
C19 | 0.39160 (16) | 0.9459 (4) | −0.23040 (8) | 0.0676 (7) | |
C20 | 0.44134 (16) | 1.0615 (3) | −0.27232 (8) | 0.0645 (7) | |
C21 | 0.53301 (14) | 0.4946 (3) | 0.08401 (7) | 0.0488 (5) | |
C22 | 0.62046 (16) | 0.4807 (3) | 0.14092 (8) | 0.0564 (6) | |
H1 | 0.60440 | 1.05420 | −0.09330 | 0.0420* | |
H2 | 0.66180 | 0.75390 | −0.10640 | 0.0430* | |
H3A | 0.90590 | 0.85690 | −0.09600 | 0.0500* | |
H3B | 0.85730 | 0.64010 | −0.09730 | 0.0500* | |
H4A | 0.93320 | 0.65830 | −0.00620 | 0.0500* | |
H4B | 0.92250 | 0.88970 | −0.00490 | 0.0500* | |
H5 | 0.71460 | 0.65960 | −0.01410 | 0.0420* | |
H6 | 0.62090 | 0.93370 | −0.00570 | 0.0430* | |
H7C | 0.70030 | 1.24980 | 0.01050 | 0.0510* | |
H7D | 0.83120 | 1.16620 | 0.02780 | 0.0510* | |
H8C | 0.75610 | 1.32130 | −0.06740 | 0.0480* | |
H8D | 0.84950 | 1.14760 | −0.05990 | 0.0480* | |
H9 | 0.60900 | 1.27950 | −0.16970 | 0.0500* | |
H10 | 0.87030 | 0.94370 | −0.20620 | 0.0640* | |
H11 | 0.81640 | 1.27930 | −0.18760 | 0.0610* | |
H12 | 0.70340 | 0.71250 | −0.19880 | 0.0530* | |
H14 | 0.82980 | 0.52380 | 0.07380 | 0.0490* | |
H15 | 0.97210 | 0.78450 | 0.12390 | 0.0580* | |
H16 | 0.85920 | 1.07580 | 0.13700 | 0.0600* | |
H17 | 0.64040 | 1.02140 | 0.09280 | 0.0510* | |
H19G | 0.33210 | 1.02310 | −0.21700 | 0.0810* | |
H19H | 0.35450 | 0.82380 | −0.24720 | 0.0810* | |
H20E | 0.40210 | 1.02430 | −0.31100 | 0.0770* | |
H20F | 0.43090 | 1.20290 | −0.26760 | 0.0770* | |
H21A | 0.52350 | 0.36670 | 0.06510 | 0.0590* | |
H21B | 0.45480 | 0.53980 | 0.08820 | 0.0590* | |
H22C | 0.57840 | 0.46940 | 0.17130 | 0.0680* | |
H22D | 0.67340 | 0.36730 | 0.14240 | 0.0680* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0405 (6) | 0.0779 (9) | 0.0398 (6) | −0.0133 (5) | −0.0009 (4) | 0.0090 (6) |
O2 | 0.0556 (6) | 0.0750 (9) | 0.0288 (5) | 0.0006 (6) | 0.0017 (5) | 0.0037 (5) |
O3 | 0.0506 (6) | 0.0824 (9) | 0.0389 (6) | −0.0342 (6) | −0.0039 (5) | 0.0101 (6) |
O4 | 0.0637 (7) | 0.0621 (8) | 0.0314 (6) | −0.0194 (6) | 0.0048 (5) | 0.0056 (5) |
C1 | 0.0343 (7) | 0.0386 (8) | 0.0312 (7) | −0.0020 (6) | 0.0055 (5) | 0.0016 (6) |
C2 | 0.0367 (7) | 0.0384 (8) | 0.0319 (7) | −0.0039 (6) | 0.0061 (5) | 0.0006 (6) |
C3 | 0.0398 (7) | 0.0443 (9) | 0.0424 (8) | 0.0042 (6) | 0.0113 (6) | 0.0030 (7) |
C4 | 0.0342 (7) | 0.0452 (9) | 0.0412 (8) | 0.0014 (6) | 0.0021 (6) | 0.0035 (7) |
C5 | 0.0355 (7) | 0.0340 (8) | 0.0311 (7) | −0.0065 (6) | 0.0000 (5) | −0.0010 (6) |
C6 | 0.0367 (7) | 0.0375 (8) | 0.0315 (7) | −0.0043 (6) | 0.0021 (5) | −0.0010 (6) |
C7 | 0.0535 (8) | 0.0346 (8) | 0.0363 (8) | −0.0053 (6) | 0.0055 (6) | −0.0029 (6) |
C8 | 0.0460 (8) | 0.0331 (8) | 0.0382 (8) | −0.0057 (6) | 0.0051 (6) | 0.0018 (6) |
C9 | 0.0464 (8) | 0.0421 (9) | 0.0339 (8) | 0.0000 (6) | 0.0046 (6) | 0.0049 (7) |
C10 | 0.0456 (8) | 0.0806 (13) | 0.0365 (8) | 0.0042 (8) | 0.0143 (7) | 0.0091 (9) |
C11 | 0.0487 (9) | 0.0662 (12) | 0.0355 (8) | −0.0129 (8) | 0.0052 (7) | 0.0122 (8) |
C12 | 0.0518 (9) | 0.0470 (10) | 0.0338 (8) | 0.0015 (7) | 0.0084 (6) | −0.0043 (7) |
C13 | 0.0442 (8) | 0.0543 (10) | 0.0283 (7) | −0.0047 (7) | 0.0041 (6) | 0.0033 (7) |
C14 | 0.0444 (8) | 0.0380 (8) | 0.0346 (8) | −0.0049 (6) | −0.0017 (6) | 0.0030 (6) |
C15 | 0.0410 (8) | 0.0607 (11) | 0.0358 (8) | −0.0132 (7) | −0.0063 (6) | 0.0049 (8) |
C16 | 0.0623 (10) | 0.0507 (10) | 0.0313 (8) | −0.0204 (8) | −0.0006 (7) | −0.0055 (7) |
C17 | 0.0493 (8) | 0.0454 (9) | 0.0328 (8) | −0.0034 (7) | 0.0079 (6) | −0.0024 (7) |
C18 | 0.0427 (8) | 0.0517 (9) | 0.0265 (7) | −0.0136 (7) | −0.0017 (6) | 0.0020 (7) |
C19 | 0.0475 (9) | 0.0934 (16) | 0.0524 (11) | −0.0054 (10) | −0.0072 (8) | 0.0120 (10) |
C20 | 0.0559 (10) | 0.0827 (15) | 0.0455 (10) | 0.0009 (9) | −0.0074 (8) | 0.0076 (10) |
C21 | 0.0448 (8) | 0.0518 (10) | 0.0501 (9) | −0.0117 (7) | 0.0118 (7) | 0.0008 (8) |
C22 | 0.0569 (10) | 0.0599 (11) | 0.0510 (10) | −0.0133 (8) | 0.0099 (8) | 0.0112 (9) |
O1—C13 | 1.4210 (19) | C19—C20 | 1.492 (3) |
O1—C19 | 1.417 (2) | C21—C22 | 1.503 (3) |
O2—C13 | 1.4138 (17) | C1—H1 | 0.9800 |
O2—C20 | 1.414 (2) | C2—H2 | 0.9800 |
O3—C18 | 1.4165 (19) | C3—H3A | 0.9700 |
O3—C21 | 1.404 (2) | C3—H3B | 0.9700 |
O4—C18 | 1.4151 (17) | C4—H4A | 0.9700 |
O4—C22 | 1.411 (2) | C4—H4B | 0.9700 |
C1—C2 | 1.5722 (19) | C5—H5 | 0.9800 |
C1—C8 | 1.522 (2) | C6—H6 | 0.9800 |
C1—C9 | 1.554 (2) | C7—H7C | 0.9700 |
C2—C3 | 1.536 (2) | C7—H7D | 0.9700 |
C2—C12 | 1.563 (2) | C8—H8C | 0.9700 |
C3—C4 | 1.539 (2) | C8—H8D | 0.9700 |
C4—C5 | 1.523 (2) | C9—H9 | 0.9800 |
C5—C6 | 1.5721 (19) | C10—H10 | 0.9300 |
C5—C14 | 1.555 (2) | C11—H11 | 0.9300 |
C6—C7 | 1.534 (2) | C12—H12 | 0.9800 |
C6—C17 | 1.571 (2) | C14—H14 | 0.9800 |
C7—C8 | 1.533 (2) | C15—H15 | 0.9300 |
C9—C11 | 1.506 (2) | C16—H16 | 0.9300 |
C9—C13 | 1.545 (2) | C17—H17 | 0.9800 |
C10—C11 | 1.319 (3) | C19—H19G | 0.9700 |
C10—C12 | 1.506 (2) | C19—H19H | 0.9700 |
C12—C13 | 1.530 (2) | C20—H20E | 0.9700 |
C14—C15 | 1.505 (2) | C20—H20F | 0.9700 |
C14—C18 | 1.543 (2) | C21—H21A | 0.9700 |
C15—C16 | 1.316 (3) | C21—H21B | 0.9700 |
C16—C17 | 1.508 (2) | C22—H22C | 0.9700 |
C17—C18 | 1.5232 (19) | C22—H22D | 0.9700 |
C13—O1—C19 | 108.73 (13) | H3A—C3—H3B | 107.00 |
C13—O2—C20 | 105.81 (12) | C3—C4—H4A | 108.00 |
C18—O3—C21 | 109.41 (12) | C3—C4—H4B | 108.00 |
C18—O4—C22 | 106.62 (12) | C5—C4—H4A | 108.00 |
C2—C1—C8 | 116.40 (12) | C5—C4—H4B | 108.00 |
C2—C1—C9 | 102.62 (11) | H4A—C4—H4B | 107.00 |
C8—C1—C9 | 114.61 (11) | C4—C5—H5 | 107.00 |
C1—C2—C3 | 119.16 (11) | C6—C5—H5 | 107.00 |
C1—C2—C12 | 102.43 (12) | C14—C5—H5 | 107.00 |
C3—C2—C12 | 110.67 (12) | C5—C6—H6 | 108.00 |
C2—C3—C4 | 118.74 (12) | C7—C6—H6 | 108.00 |
C3—C4—C5 | 115.77 (12) | C17—C6—H6 | 108.00 |
C4—C5—C6 | 116.99 (11) | C6—C7—H7C | 108.00 |
C4—C5—C14 | 114.35 (12) | C6—C7—H7D | 108.00 |
C6—C5—C14 | 102.74 (11) | C8—C7—H7C | 108.00 |
C5—C6—C7 | 119.51 (12) | C8—C7—H7D | 108.00 |
C5—C6—C17 | 102.22 (11) | H7C—C7—H7D | 107.00 |
C7—C6—C17 | 110.80 (11) | C1—C8—H8C | 108.00 |
C6—C7—C8 | 118.79 (12) | C1—C8—H8D | 109.00 |
C1—C8—C7 | 114.97 (12) | C7—C8—H8C | 109.00 |
C1—C9—C11 | 108.64 (12) | C7—C8—H8D | 109.00 |
C1—C9—C13 | 99.63 (11) | H8C—C8—H8D | 108.00 |
C11—C9—C13 | 99.07 (12) | C1—C9—H9 | 116.00 |
C11—C10—C12 | 108.38 (15) | C11—C9—H9 | 116.00 |
C9—C11—C10 | 107.58 (15) | C13—C9—H9 | 116.00 |
C2—C12—C10 | 107.29 (13) | C11—C10—H10 | 126.00 |
C2—C12—C13 | 100.56 (12) | C12—C10—H10 | 126.00 |
C10—C12—C13 | 98.80 (15) | C9—C11—H11 | 126.00 |
O1—C13—O2 | 105.91 (12) | C10—C11—H11 | 126.00 |
O1—C13—C9 | 114.01 (13) | C2—C12—H12 | 116.00 |
O1—C13—C12 | 113.87 (15) | C10—C12—H12 | 116.00 |
O2—C13—C9 | 114.95 (15) | C13—C12—H12 | 116.00 |
O2—C13—C12 | 114.18 (13) | C5—C14—H14 | 116.00 |
C9—C13—C12 | 94.02 (12) | C15—C14—H14 | 116.00 |
C5—C14—C15 | 108.52 (12) | C18—C14—H14 | 116.00 |
C5—C14—C18 | 99.20 (11) | C14—C15—H15 | 126.00 |
C15—C14—C18 | 99.11 (11) | C16—C15—H15 | 126.00 |
C14—C15—C16 | 108.01 (14) | C15—C16—H16 | 126.00 |
C15—C16—C17 | 108.08 (15) | C17—C16—H16 | 126.00 |
C6—C17—C16 | 106.97 (12) | C6—C17—H17 | 116.00 |
C6—C17—C18 | 100.45 (11) | C16—C17—H17 | 116.00 |
C16—C17—C18 | 99.04 (13) | C18—C17—H17 | 116.00 |
O3—C18—O4 | 106.06 (12) | O1—C19—H19G | 111.00 |
O3—C18—C14 | 113.46 (12) | O1—C19—H19H | 111.00 |
O3—C18—C17 | 113.42 (12) | C20—C19—H19G | 111.00 |
O4—C18—C14 | 116.03 (12) | C20—C19—H19H | 111.00 |
O4—C18—C17 | 113.58 (12) | H19G—C19—H19H | 109.00 |
C14—C18—C17 | 94.37 (11) | O2—C20—H20E | 111.00 |
O1—C19—C20 | 104.67 (15) | O2—C20—H20F | 111.00 |
O2—C20—C19 | 104.27 (15) | C19—C20—H20E | 111.00 |
O3—C21—C22 | 104.87 (14) | C19—C20—H20F | 111.00 |
O4—C22—C21 | 103.92 (15) | H20E—C20—H20F | 109.00 |
C2—C1—H1 | 108.00 | O3—C21—H21A | 111.00 |
C8—C1—H1 | 108.00 | O3—C21—H21B | 111.00 |
C9—C1—H1 | 108.00 | C22—C21—H21A | 111.00 |
C1—C2—H2 | 108.00 | C22—C21—H21B | 111.00 |
C3—C2—H2 | 108.00 | H21A—C21—H21B | 109.00 |
C12—C2—H2 | 108.00 | O4—C22—H22C | 111.00 |
C2—C3—H3A | 108.00 | O4—C22—H22D | 111.00 |
C2—C3—H3B | 108.00 | C21—C22—H22C | 111.00 |
C4—C3—H3A | 108.00 | C21—C22—H22D | 111.00 |
C4—C3—H3B | 108.00 | H22C—C22—H22D | 109.00 |
C19—O1—C13—O2 | −16.0 (2) | C5—C6—C7—C8 | 59.18 (18) |
C19—O1—C13—C9 | 111.44 (16) | C17—C6—C7—C8 | 177.55 (13) |
C19—O1—C13—C12 | −142.24 (16) | C5—C6—C17—C16 | 68.32 (14) |
C13—O1—C19—C20 | −4.0 (2) | C5—C6—C17—C18 | −34.58 (14) |
C20—O2—C13—O1 | 30.52 (18) | C7—C6—C17—C16 | −60.10 (16) |
C20—O2—C13—C9 | −96.31 (16) | C7—C6—C17—C18 | −162.99 (12) |
C20—O2—C13—C12 | 156.61 (15) | C6—C7—C8—C1 | 27.76 (19) |
C13—O2—C20—C19 | −32.55 (19) | C1—C9—C11—C10 | 70.25 (15) |
C21—O3—C18—O4 | −13.28 (16) | C13—C9—C11—C10 | −33.20 (15) |
C21—O3—C18—C14 | 115.23 (14) | C1—C9—C13—O1 | 58.67 (16) |
C21—O3—C18—C17 | −138.60 (14) | C1—C9—C13—O2 | −178.77 (12) |
C18—O3—C21—C22 | −5.34 (18) | C1—C9—C13—C12 | −59.72 (12) |
C22—O4—C18—O3 | 27.73 (16) | C11—C9—C13—O1 | 169.48 (13) |
C22—O4—C18—C14 | −99.25 (15) | C11—C9—C13—O2 | −67.95 (15) |
C22—O4—C18—C17 | 152.96 (14) | C11—C9—C13—C12 | 51.10 (13) |
C18—O4—C22—C21 | −30.43 (17) | C12—C10—C11—C9 | −0.71 (17) |
C8—C1—C2—C3 | −5.80 (18) | C11—C10—C12—C2 | −69.33 (17) |
C8—C1—C2—C12 | −128.27 (13) | C11—C10—C12—C13 | 34.70 (16) |
C9—C1—C2—C3 | 120.19 (13) | C2—C12—C13—O1 | −60.17 (16) |
C9—C1—C2—C12 | −2.28 (14) | C2—C12—C13—O2 | 178.01 (14) |
C2—C1—C8—C7 | −85.21 (15) | C2—C12—C13—C9 | 58.33 (13) |
C9—C1—C8—C7 | 155.07 (12) | C10—C12—C13—O1 | −169.73 (13) |
C2—C1—C9—C11 | −64.62 (14) | C10—C12—C13—O2 | 68.45 (17) |
C2—C1—C9—C13 | 38.44 (13) | C10—C12—C13—C9 | −51.23 (13) |
C8—C1—C9—C11 | 62.51 (16) | C5—C14—C15—C16 | 70.53 (16) |
C8—C1—C9—C13 | 165.58 (12) | C18—C14—C15—C16 | −32.44 (15) |
C1—C2—C3—C4 | 60.36 (17) | C5—C14—C18—O3 | 57.69 (14) |
C12—C2—C3—C4 | 178.65 (13) | C5—C14—C18—O4 | −179.12 (11) |
C1—C2—C12—C10 | 67.63 (15) | C5—C14—C18—C17 | −60.19 (12) |
C1—C2—C12—C13 | −35.14 (15) | C15—C14—C18—O3 | 168.29 (12) |
C3—C2—C12—C10 | −60.42 (17) | C15—C14—C18—O4 | −68.52 (15) |
C3—C2—C12—C13 | −163.20 (12) | C15—C14—C18—C17 | 50.41 (12) |
C2—C3—C4—C5 | 25.27 (17) | C14—C15—C16—C17 | −1.07 (17) |
C3—C4—C5—C6 | −82.83 (15) | C15—C16—C17—C6 | −69.25 (16) |
C3—C4—C5—C14 | 157.02 (11) | C15—C16—C17—C18 | 34.67 (16) |
C4—C5—C6—C7 | −6.45 (18) | C6—C17—C18—O3 | −59.54 (15) |
C4—C5—C6—C17 | −129.14 (13) | C6—C17—C18—O4 | 179.28 (12) |
C14—C5—C6—C7 | 119.68 (13) | C6—C17—C18—C14 | 58.38 (12) |
C14—C5—C6—C17 | −3.01 (13) | C16—C17—C18—O3 | −168.80 (12) |
C4—C5—C14—C15 | 63.85 (15) | C16—C17—C18—O4 | 70.02 (15) |
C4—C5—C14—C18 | 166.77 (11) | C16—C17—C18—C14 | −50.88 (12) |
C6—C5—C14—C15 | −63.96 (14) | O1—C19—C20—O2 | 22.4 (2) |
C6—C5—C14—C18 | 38.95 (12) | O3—C21—C22—O4 | 21.88 (18) |
Experimental details
Crystal data | |
Chemical formula | C22H28O4 |
Mr | 356.44 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 11.4167 (11), 6.7354 (7), 24.185 (2) |
β (°) | 103.521 (9) |
V (Å3) | 1808.2 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.35 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8422, 3248, 2693 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.106, 1.05 |
No. of reflections | 3248 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.19 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae, et al., 2006), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported in part by funds provided by the University of North Carolina at Charlotte. Support for Research Experience for Undergraduates (REU) participant RMK was provided by the National Science Foundation, award number CHE-0851797. Many helpful discussions with T. Blake Monroe are gratefully acknowledged.
References
Chou, T.-H., Liao, K.-C. & Lin, J.-J. (2005). Org. Lett. 7, 4843–4846. Web of Science CSD CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Etzkorn, M., Timmerman, J. C., Brooker, M. D., Yu, X. & Gerken, M. (2010). Beilstein J. Org. Chem. 6, No. 39. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991a). Acta Cryst. C47, 206–209. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991b). Tetrahedron Lett. 32, 3289–3292. CSD CrossRef CAS Web of Science Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tenbusch, M. E., Brooker, M. D., Timmerman, J. C., Jones, D. S. & Etzkorn, M. (2010). Acta Cryst. E66, o1882. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is of interest as a non-chlorinated tether unit for syn-bisquinoxaline molecular tweezers. The non-chlorinated compounds are anticipated to display higher solubility in common organic solvents, thus facilitating the quantitative investigation of host–guest chemistry in solution. The title polycyclic molecule, 3, presented here was obtained by a twofold Diels-Alder reaction of cyclooctadiene and a cyclopentadieneone derivative, 1, followed by subsequent dehalogenation (Fig. 1). Larger molecular frameworks that incorporate scaffold 2a can be found in syn-bisquinoxalines that have previously been investigated for their luminescent properties (Chou et al., 2005) and for their behavior as molecular tweezers (Etzkorn et al., 2010). Compound 3 stems from the chlorinated derivative 2a, which was separated from its anti-isomer 2b via repeated recrystallization from diethyl ether, i.e., the ether solution becomes more enriched in syn-isomer 2a. To improve the solubility of any molecular framework that is derived from scaffold 2a, we reduced the latter with sodium metal in ethanol and liquid ammonia to furnish 3 in good yield. The fully dechlorinated compound 3 did indeed show improved solubility in common organic solvents and, upon further functionalization to tweezer scaffolds, is expected to improve overall solubility.
The title molecule, 3, has pseudo 2-fold symmetry. The central cyclooctane has a distorted boat configuration (Fig. 2). The dioxalane ring (O1,C13,O2,C20,C19) has an envelope configuration with atom O2 at the flap, while ring (O3,C18,O4,C22,C21) has a half-chair configuration being twised about bond O4-C22.
A literature search revealed three related crystal structures. The first (Garcia et al., 1991a) is similar to 3, but has the anti-orientation and an open ketal structure on each of the bridgehead carbon atoms. The second (Tenbusch et al., 2010) is an octachloro derivative with the anti-orientation. The third (Garcia et al., 1991b) is an octachloro syn-structure with an open ketal arrangement on each of the bridgehead carbon atoms; this structure assumes the same distorted boat configuration as does compound 3.