metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­­(3,5-di­amino-1H-1,2,4-triazol-4-ium)copper(I)] tris­­(hexa­fluoridosilicate)

aDepartment of Inorganic Chemistry, Ivan Franko National University, Cyryla & Mefodia, 6, L'viv, Ukraine, and bDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39 1000 Ljubljana, Slovenia
*Correspondence e-mail: myskiv@franko.lviv.ua

(Received 14 September 2010; accepted 18 October 2010; online 23 October 2010)

In the title compound, [Cu(C2H6N5)2]2(SiF6)3, the asymmetric unit is composed of one [Cu(HL)2]3+ cation (where L is 3,5-diamino-1,2,4-triazole) and one and a half SiF62− anions. The rather large positively charged guanazole ligand moiety promotes the low metal coordination number of 2 for the CuI atom. The compound was obtained using the electrochemical alternating-current technique starting from an ethanol–methanol solution of CuSiF6·4H2O and guanazole. In the crystal, N—H⋯F hydrogen bonds play an important role in the formation of a three-dimensional network. As a result of these hydrogen bonds, there are also ππ inter­actions [centroid–centroid distance = 3.3024 (14) Å] involving one of the triazole groups in mol­ecules related by an inversion center, and short Cu⋯N inter­actions [2.909 (3) Å] involving an –NH2 group, leading to the formation of a dimer-like arrangement.

Related literature

For 1,2,4-triazole and its functionalized derivatives, see: Potts (1984[Potts, K. T. (1984). Editor. Comprehensive Heterocycle Chemistry, Vol. 5. Oxford: Pergamon Press.]). For complexes of the same ligand and copper(I) complexes of similar voluminous ligands, see: Aznar et al. (2006[Aznar, E., Ferrer, S., Borrás, J., Lloret, F., Liu-González, M., Rodríguez-Prieto, M. & García-Granda, S. (2006). Eur. J. Inorg. Chem. pp. 5115-5125.]); Fabretti (1992[Fabretti, A. C. (1992). J. Crystallogr. Spectrosc. Res. 22, 523-526.]); Goreshnik et al. (2004[Goreshnik, E., Schollmeyer, D. & Mys'kiv, M. (2004). Acta Cryst. E60, m279-m281.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H6N5)2]2(SiF6)3

  • Mr = 953.84

  • Triclinic, [P \overline 1]

  • a = 7.482 (2) Å

  • b = 8.366 (1) Å

  • c = 12.131 (3) Å

  • α = 87.98 (2)°

  • β = 89.11 (2)°

  • γ = 67.89 (2)°

  • V = 703.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.04 mm

Data collection
  • Siemens AED2 diffractometer

  • Absorption correction: numerical (de Meulanaer & Tompa, 1965)[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.] Tmin = 0.649, Tmax = 0.935

  • 4089 measured reflections

  • 4089 independent reflections

  • 3367 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.155

  • S = 1.06

  • 4089 reflections

  • 244 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯F2i 0.86 (2) 1.86 (2) 2.694 (3) 166 (4)
N3—H3⋯F8 0.88 (2) 2.02 (3) 2.798 (3) 146 (4)
N4—H4B⋯F1ii 0.86 1.95 2.742 (4) 153
N4—H4A⋯F9ii 0.86 1.95 2.801 (3) 171
N5—H5A⋯F6iii 0.86 1.95 2.803 (3) 174
N5—H5B⋯F9iv 0.86 2.07 2.898 (3) 162
N7—H7⋯F4i 0.86 (2) 1.85 (2) 2.686 (3) 162 (4)
N8—H8⋯F7v 0.86 (2) 2.04 (3) 2.812 (3) 148 (4)
N8—H8⋯F3v 0.86 (2) 2.22 (3) 2.813 (3) 126 (3)
N9—H9B⋯F8vi 0.86 2.05 2.892 (3) 166
N9—H9A⋯F5vii 0.86 2.02 2.841 (4) 159
N10—H10B⋯F5v 0.86 2.22 2.909 (3) 137
N10—H10A⋯F6iii 0.86 2.02 2.845 (3) 160
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) x, y-1, z; (iv) -x+2, -y, -z; (v) -x+1, -y, -z+1; (vi) x-1, y, z+1; (vii) -x, -y+1, -z+1.

Data collection: STADI4 (Stoe & Cie, 1998[Stoe & Cie (1998). STADI4 and X-RED. Stoe &Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1998[Stoe & Cie (1998). STADI4 and X-RED. Stoe &Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2010[Crystal Impact (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

1,2,4-triazole and its functionalized derivatives, particularly 3,5-diamino-1,2,4-triazole (L), have attracted great interest and are actively studied as ligands in the synthesis of coordination compounds, biologically active compounds with a wide range efficiency, and as components of high-energy compositions [Potts, 1984]. On the other hand only a few X-ray crystal structures of complexes of this triazole have been reported (Aznar et al., 2006). The formation of low soluble polynuclear metal derivatives is one of the hindrances for structural studies of such compounds. It may be expected that the protonated form of the ligand (LH) will possess lower affinity to metal centers. Herein, we report on the synthesis and crystal structure of the title copper(I) hexafluorosilicate complex of LH.

Beside the positively charged state, the LH moiety demonstrates ability of metal coordination. In the structure of [Cu(LH)2]2(SiF6)3 each metal atom is bound to two nitrogen atoms from two LH moieties (Fig. 1). A similar linear copper(I) surrounding comprising of two nitrogen atoms from two voluminous ligand molecules was observed, for example, in the structure of bis(2-methylbenzimidazole)copper(I) dichlorocuprate(I) (Goreshnik et al., 2004). Because of the low copper(I) ion coordination number both Cu–N distances appear to be rather short, 1.8747 (18) and 1.8749 (17) Å. Despite the cationic status of the ligand moiety the Cu - N bond length is practically the same [1.874 (2) Å] as in the above mentioned bis(2-methylbenzimidazole)copper(I) cation.

In the crystal each NH and NH2 hydrogen atom participates in the formation of strong N—H···F hydrogen bonds (Table 1). The closest NH2 group to the coordinated copper ion [Cu1···N10i = 2.9092 (29) Å, symmetry code (i) = -x + 1, -y, -z + 1], forms noticeably shorter hydrogen bonds than all the others. Each of the two crystallographically independent SiF62- anions is bound to six LH units (Fig. 2). The [Cu(LH)]3+ and SiF62- units are interconnected by N—H···F bonds to form a three dimensional network (Fig. 3). In the crystal there are also ππ interactions involving triazole rings (N1—N3,C3,C4 = Cg2) related by an inversion center, with a centroid-to-centroid distance of 3.3024 (14)Å for Cg2···Cg2ii [symmetry code (ii) = -x, -y, 1 - z].

As was already mentioned, the guanazolium moiety in this structure acts as a ligand despite its cationic status. Such behaviour was observed previously in the structure of platinum(II) dibromo bis(3,5-diamino-1(2)-triazolium) dibromide (Fabretti, 1992). It emphasizes the high affinity of this triazole derivative towards metal ions. The relatively large size of the LH units and their positive charge lead to the low coordination number of the copper ion.

Related literature top

For on 1,2,4-triazole and its functionalized derivatives, see: Potts (1984). For complexes of the same ligand and copper(I) complexes of similar voluminous ligands, see: Aznar et al. (2006); Fabretti (1992); Goreshnik et al. (2004)

Experimental top

The title compound was prepared using electrochemical synthesis. An ethanol solution of (LH)2SiF6 (where L = 3,5-diamino-1,2,4-triazole) was added to a solution of Cu2SiF6.4H2O (prepared by dissolving [(CuOH)2CO3] in H2SiF6) in CH3OH. This solution was then placed in a small test-tube and copper-wire electrodes were inserted. By usage of the alternating-current electrochemical technique at 0.5 V of tension during some days colourless crystals of the title compound appeared on the electrodes.

Refinement top

The N-bound H-atoms could all be located in difference Fourier maps. In the final cycles of least-squares refinement they were refined with distance restraints of 0.86 (2) Å with Uiso(H) = 1.2Ueq(N).

Structure description top

1,2,4-triazole and its functionalized derivatives, particularly 3,5-diamino-1,2,4-triazole (L), have attracted great interest and are actively studied as ligands in the synthesis of coordination compounds, biologically active compounds with a wide range efficiency, and as components of high-energy compositions [Potts, 1984]. On the other hand only a few X-ray crystal structures of complexes of this triazole have been reported (Aznar et al., 2006). The formation of low soluble polynuclear metal derivatives is one of the hindrances for structural studies of such compounds. It may be expected that the protonated form of the ligand (LH) will possess lower affinity to metal centers. Herein, we report on the synthesis and crystal structure of the title copper(I) hexafluorosilicate complex of LH.

Beside the positively charged state, the LH moiety demonstrates ability of metal coordination. In the structure of [Cu(LH)2]2(SiF6)3 each metal atom is bound to two nitrogen atoms from two LH moieties (Fig. 1). A similar linear copper(I) surrounding comprising of two nitrogen atoms from two voluminous ligand molecules was observed, for example, in the structure of bis(2-methylbenzimidazole)copper(I) dichlorocuprate(I) (Goreshnik et al., 2004). Because of the low copper(I) ion coordination number both Cu–N distances appear to be rather short, 1.8747 (18) and 1.8749 (17) Å. Despite the cationic status of the ligand moiety the Cu - N bond length is practically the same [1.874 (2) Å] as in the above mentioned bis(2-methylbenzimidazole)copper(I) cation.

In the crystal each NH and NH2 hydrogen atom participates in the formation of strong N—H···F hydrogen bonds (Table 1). The closest NH2 group to the coordinated copper ion [Cu1···N10i = 2.9092 (29) Å, symmetry code (i) = -x + 1, -y, -z + 1], forms noticeably shorter hydrogen bonds than all the others. Each of the two crystallographically independent SiF62- anions is bound to six LH units (Fig. 2). The [Cu(LH)]3+ and SiF62- units are interconnected by N—H···F bonds to form a three dimensional network (Fig. 3). In the crystal there are also ππ interactions involving triazole rings (N1—N3,C3,C4 = Cg2) related by an inversion center, with a centroid-to-centroid distance of 3.3024 (14)Å for Cg2···Cg2ii [symmetry code (ii) = -x, -y, 1 - z].

As was already mentioned, the guanazolium moiety in this structure acts as a ligand despite its cationic status. Such behaviour was observed previously in the structure of platinum(II) dibromo bis(3,5-diamino-1(2)-triazolium) dibromide (Fabretti, 1992). It emphasizes the high affinity of this triazole derivative towards metal ions. The relatively large size of the LH units and their positive charge lead to the low coordination number of the copper ion.

For on 1,2,4-triazole and its functionalized derivatives, see: Potts (1984). For complexes of the same ligand and copper(I) complexes of similar voluminous ligands, see: Aznar et al. (2006); Fabretti (1992); Goreshnik et al. (2004)

Computing details top

Data collection: STADI4 (Stoe & Cie, 1998); cell refinement: STADI4 (Stoe & Cie, 1998); data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2010), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Copper surrounding of the title cation with displaceent ellipsoids drawn at the 50% probability level [Symmetry operation: (') = x, y-1, z].
[Figure 2] Fig. 2. The environment of the SiF62- dianions in the title compound.
[Figure 3] Fig. 3. A view along the b-axis of the crystal packing of the title compound.
Bis[bis(3,5-diamino-1H-1,2,4-triazol-4-ium)copper(I)] tris(hexafluoridosilicate) top
Crystal data top
[Cu(C2H6N5)2]2(SiF6)3Z = 1
Mr = 953.84F(000) = 474
Triclinic, P1Dx = 2.253 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.482 (2) ÅCell parameters from 25 reflections
b = 8.366 (1) Åθ = 35–45°
c = 12.131 (3) ŵ = 1.81 mm1
α = 87.98 (2)°T = 293 K
β = 89.11 (2)°Plate, colourless
γ = 67.89 (2)°0.24 × 0.20 × 0.04 mm
V = 703.1 (3) Å3
Data collection top
Siemens AED2
diffractometer
3367 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 30.0°, θmin = 1.7°
θ/2ω scansh = 1010
Absorption correction: numerical
(de Meulanaer & Tompa, 1965)
k = 1111
Tmin = 0.649, Tmax = 0.935l = 017
4089 measured reflections3 standard reflections every 60 min
4089 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1004P)2 + 0.624P]
where P = (Fo2 + 2Fc2)/3
4089 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.23 e Å3
4 restraintsΔρmin = 1.01 e Å3
Crystal data top
[Cu(C2H6N5)2]2(SiF6)3γ = 67.89 (2)°
Mr = 953.84V = 703.1 (3) Å3
Triclinic, P1Z = 1
a = 7.482 (2) ÅMo Kα radiation
b = 8.366 (1) ŵ = 1.81 mm1
c = 12.131 (3) ÅT = 293 K
α = 87.98 (2)°0.24 × 0.20 × 0.04 mm
β = 89.11 (2)°
Data collection top
Siemens AED2
diffractometer
3367 reflections with I > 2σ(I)
Absorption correction: numerical
(de Meulanaer & Tompa, 1965)
Rint = 0.000
Tmin = 0.649, Tmax = 0.9353 standard reflections every 60 min
4089 measured reflections intensity decay: 2%
4089 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0534 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.23 e Å3
4089 reflectionsΔρmin = 1.01 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23338 (6)0.16548 (5)0.35785 (3)0.03274 (14)
N10.2950 (4)0.2228 (3)0.2154 (2)0.0266 (5)
N20.1956 (4)0.3827 (3)0.1626 (2)0.0286 (5)
H20.084 (4)0.453 (5)0.182 (3)0.034*
N30.4365 (3)0.2455 (3)0.0583 (2)0.0248 (5)
H30.512 (5)0.226 (5)0.000 (2)0.030*
N40.2278 (5)0.5262 (4)0.0040 (2)0.0389 (7)
H4A0.12650.61650.00810.047*
H4B0.29420.52110.06320.047*
N50.5685 (4)0.0176 (3)0.1625 (2)0.0322 (6)
H5A0.56250.07920.21970.039*
H5B0.65800.05940.11430.039*
N60.1586 (3)0.1111 (3)0.49796 (19)0.0236 (4)
N70.0093 (4)0.2215 (3)0.54935 (19)0.0245 (5)
H70.091 (5)0.318 (3)0.524 (3)0.029*
N80.1222 (3)0.0061 (3)0.66222 (19)0.0238 (4)
H80.132 (6)0.065 (4)0.717 (2)0.029*
N90.1716 (4)0.2238 (4)0.7183 (2)0.0342 (6)
H9A0.26470.31940.70160.041*
H9B0.17170.17220.78090.041*
N100.4006 (4)0.1545 (3)0.5565 (2)0.0296 (5)
H10A0.46840.16180.49760.036*
H10B0.43930.23400.60740.036*
C10.2813 (4)0.3948 (4)0.0686 (2)0.0257 (5)
C20.4398 (4)0.1416 (4)0.1488 (2)0.0226 (5)
C30.0290 (4)0.1567 (4)0.6484 (2)0.0230 (5)
C40.2343 (4)0.0189 (3)0.5689 (2)0.0215 (5)
Si10.68995 (11)0.55369 (9)0.31802 (7)0.02457 (18)
F10.5751 (3)0.5922 (3)0.19565 (17)0.0403 (5)
F20.8718 (3)0.5985 (3)0.25878 (19)0.0408 (5)
F30.8049 (4)0.3448 (3)0.2924 (2)0.0525 (6)
F40.7987 (3)0.5232 (3)0.44239 (19)0.0426 (5)
F50.5036 (3)0.5137 (3)0.37463 (18)0.0370 (4)
F60.5785 (3)0.7657 (2)0.34582 (15)0.0305 (4)
Si21.00000.00000.00000.0211 (2)
F70.9165 (3)0.0973 (3)0.11859 (16)0.0347 (4)
F80.7827 (3)0.1080 (3)0.05936 (16)0.0344 (4)
F91.0741 (3)0.1610 (2)0.03969 (18)0.0344 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0426 (2)0.0340 (2)0.0220 (2)0.01538 (17)0.01182 (15)0.00019 (14)
N10.0254 (11)0.0263 (11)0.0219 (11)0.0033 (9)0.0087 (8)0.0016 (8)
N20.0266 (11)0.0262 (11)0.0235 (11)0.0004 (9)0.0108 (9)0.0012 (9)
N30.0242 (10)0.0222 (10)0.0244 (11)0.0048 (9)0.0127 (8)0.0032 (8)
N40.0456 (16)0.0234 (12)0.0305 (13)0.0056 (11)0.0124 (11)0.0047 (10)
N50.0250 (11)0.0271 (12)0.0372 (14)0.0022 (9)0.0096 (10)0.0048 (10)
N60.0254 (10)0.0238 (10)0.0204 (10)0.0081 (8)0.0065 (8)0.0014 (8)
N70.0259 (11)0.0228 (10)0.0208 (10)0.0049 (9)0.0040 (8)0.0014 (8)
N80.0225 (10)0.0276 (11)0.0200 (10)0.0084 (9)0.0051 (8)0.0010 (8)
N90.0238 (11)0.0422 (15)0.0272 (12)0.0021 (10)0.0094 (9)0.0018 (10)
N100.0252 (11)0.0258 (12)0.0319 (13)0.0033 (9)0.0076 (9)0.0002 (9)
C10.0280 (13)0.0222 (12)0.0223 (12)0.0041 (10)0.0100 (10)0.0043 (9)
C20.0194 (11)0.0240 (12)0.0219 (12)0.0057 (9)0.0071 (9)0.0012 (9)
C30.0209 (11)0.0275 (13)0.0204 (11)0.0090 (10)0.0036 (9)0.0012 (9)
C40.0230 (11)0.0223 (11)0.0204 (11)0.0102 (9)0.0042 (9)0.0006 (9)
Si10.0230 (3)0.0170 (3)0.0284 (4)0.0017 (3)0.0092 (3)0.0018 (3)
F10.0443 (11)0.0473 (12)0.0260 (9)0.0130 (9)0.0055 (8)0.0072 (8)
F20.0294 (9)0.0356 (10)0.0544 (13)0.0091 (8)0.0225 (9)0.0072 (9)
F30.0511 (13)0.0212 (9)0.0772 (17)0.0041 (9)0.0209 (12)0.0134 (10)
F40.0439 (11)0.0338 (10)0.0439 (12)0.0083 (9)0.0108 (9)0.0122 (9)
F50.0336 (9)0.0348 (10)0.0425 (11)0.0134 (8)0.0122 (8)0.0030 (8)
F60.0348 (9)0.0183 (7)0.0297 (9)0.0005 (6)0.0104 (7)0.0020 (6)
Si20.0195 (4)0.0196 (4)0.0209 (5)0.0037 (3)0.0087 (3)0.0007 (3)
F70.0376 (10)0.0352 (10)0.0269 (9)0.0087 (8)0.0158 (7)0.0087 (7)
F80.0236 (8)0.0379 (10)0.0326 (9)0.0019 (7)0.0047 (7)0.0052 (8)
F90.0327 (9)0.0246 (8)0.0454 (11)0.0108 (7)0.0164 (8)0.0009 (7)
Geometric parameters (Å, º) top
Cu1—N11.874 (2)N8—C41.372 (3)
Cu1—N61.875 (2)N8—H80.864 (19)
N1—C21.321 (3)N9—C31.315 (3)
N1—N21.399 (4)N9—H9A0.8600
N2—C11.320 (3)N9—H9B0.8600
N2—H20.856 (19)N10—C41.342 (4)
N3—C11.356 (3)N10—H10A0.8600
N3—C21.371 (4)N10—H10B0.8600
N3—H30.877 (19)Si1—F31.670 (2)
N4—C11.324 (4)Si1—F51.683 (2)
N4—H4A0.8600Si1—F11.686 (2)
N4—H4B0.8600Si1—F21.686 (2)
N5—C21.324 (4)Si1—F41.691 (2)
N5—H5A0.8600Si1—F61.6959 (19)
N5—H5B0.8600Si2—F7i1.6716 (18)
N6—C41.316 (4)Si2—F71.6716 (18)
N6—N71.401 (3)Si2—F9i1.6912 (18)
N7—C31.329 (4)Si2—F91.6912 (18)
N7—H70.863 (19)Si2—F81.6920 (19)
N8—C31.347 (4)Si2—F8i1.6920 (19)
N1—Cu1—N6177.04 (11)N9—C3—N7126.7 (3)
C2—N1—N2105.2 (2)N9—C3—N8126.3 (3)
C2—N1—Cu1131.5 (2)N7—C3—N8106.9 (2)
N2—N1—Cu1122.95 (18)N6—C4—N10126.3 (2)
C1—N2—N1110.1 (2)N6—C4—N8110.1 (2)
C1—N2—H2125 (3)N10—C4—N8123.5 (3)
N1—N2—H2124 (3)F3—Si1—F590.85 (12)
C1—N3—C2107.6 (2)F3—Si1—F191.99 (14)
C1—N3—H3122 (3)F5—Si1—F188.81 (12)
C2—N3—H3131 (3)F3—Si1—F290.24 (12)
C1—N4—H4A120.0F5—Si1—F2178.23 (12)
C1—N4—H4B120.0F1—Si1—F289.76 (12)
H4A—N4—H4B120.0F3—Si1—F490.31 (14)
C2—N5—H5A120.0F5—Si1—F490.60 (12)
C2—N5—H5B120.0F1—Si1—F4177.64 (12)
H5A—N5—H5B120.0F2—Si1—F490.79 (13)
C4—N6—N7104.9 (2)F3—Si1—F6178.49 (13)
C4—N6—Cu1133.6 (2)F5—Si1—F690.04 (10)
N7—N6—Cu1121.44 (18)F1—Si1—F689.24 (11)
C3—N7—N6110.1 (2)F2—Si1—F688.90 (11)
C3—N7—H7122 (3)F4—Si1—F688.47 (11)
N6—N7—H7128 (3)F7i—Si2—F7180.00 (15)
C3—N8—C4107.9 (2)F7i—Si2—F9i90.37 (10)
C3—N8—H8123 (3)F7—Si2—F9i89.63 (10)
C4—N8—H8129 (3)F7i—Si2—F989.63 (10)
C3—N9—H9A120.0F7—Si2—F990.37 (10)
C3—N9—H9B120.0F9i—Si2—F9180.00 (16)
H9A—N9—H9B120.0F7i—Si2—F890.01 (10)
C4—N10—H10A120.0F7—Si2—F889.99 (10)
C4—N10—H10B120.0F9i—Si2—F889.66 (10)
H10A—N10—H10B120.0F9—Si2—F890.34 (10)
N2—C1—N4127.3 (3)F7i—Si2—F8i89.99 (10)
N2—C1—N3107.2 (3)F7—Si2—F8i90.01 (10)
N4—C1—N3125.4 (3)F9i—Si2—F8i90.34 (10)
N1—C2—N5126.8 (3)F9—Si2—F8i89.66 (10)
N1—C2—N3109.8 (2)F8—Si2—F8i180.00 (12)
N5—C2—N3123.3 (2)
N6—Cu1—N1—C2133 (2)N2—N1—C2—N31.2 (3)
N6—Cu1—N1—N254 (2)Cu1—N1—C2—N3172.2 (2)
C2—N1—N2—C10.6 (3)C1—N3—C2—N11.3 (3)
Cu1—N1—N2—C1173.4 (2)C1—N3—C2—N5176.9 (3)
N1—Cu1—N6—C4135 (2)N6—N7—C3—N9178.5 (3)
N1—Cu1—N6—N746 (2)N6—N7—C3—N80.3 (3)
C4—N6—N7—C30.5 (3)C4—N8—C3—N9178.2 (3)
Cu1—N6—N7—C3178.76 (19)C4—N8—C3—N70.0 (3)
N1—N2—C1—N4179.3 (3)N7—N6—C4—N10177.9 (3)
N1—N2—C1—N30.2 (4)Cu1—N6—C4—N101.2 (5)
C2—N3—C1—N20.9 (3)N7—N6—C4—N80.5 (3)
C2—N3—C1—N4178.6 (3)Cu1—N6—C4—N8178.6 (2)
N2—N1—C2—N5177.0 (3)C3—N8—C4—N60.3 (3)
Cu1—N1—C2—N59.7 (5)C3—N8—C4—N10177.8 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F2ii0.86 (2)1.86 (2)2.694 (3)166 (4)
N3—H3···F80.88 (2)2.02 (3)2.798 (3)146 (4)
N4—H4B···F1iii0.861.952.742 (4)153
N4—H4A···F9iii0.861.952.801 (3)171
N5—H5A···F6iv0.861.952.803 (3)174
N5—H5B···F9i0.862.072.898 (3)162
N7—H7···F4ii0.86 (2)1.85 (2)2.686 (3)162 (4)
N8—H8···F7v0.86 (2)2.04 (3)2.812 (3)148 (4)
N8—H8···F3v0.86 (2)2.22 (3)2.813 (3)126 (3)
N9—H9B···F8vi0.862.052.892 (3)166
N9—H9A···F5vii0.862.022.841 (4)159
N10—H10B···F5v0.862.222.909 (3)137
N10—H10A···F6iv0.862.022.845 (3)160
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x+1, y, z+1; (vi) x1, y, z+1; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H6N5)2]2(SiF6)3
Mr953.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.482 (2), 8.366 (1), 12.131 (3)
α, β, γ (°)87.98 (2), 89.11 (2), 67.89 (2)
V3)703.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.24 × 0.20 × 0.04
Data collection
DiffractometerSiemens AED2
Absorption correctionNumerical
(de Meulanaer & Tompa, 1965)
Tmin, Tmax0.649, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
4089, 4089, 3367
Rint0.000
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.155, 1.06
No. of reflections4089
No. of parameters244
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.23, 1.01

Computer programs: STADI4 (Stoe & Cie, 1998), X-RED (Stoe & Cie, 1998), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2010), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 Farrugia, 1997), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F2i0.856 (19)1.86 (2)2.694 (3)166 (4)
N3—H3···F80.877 (19)2.02 (3)2.798 (3)146 (4)
N4—H4B···F1ii0.861.952.742 (4)152.8
N4—H4A···F9ii0.861.952.801 (3)170.9
N5—H5A···F6iii0.861.952.803 (3)173.7
N5—H5B···F9iv0.862.072.898 (3)162.2
N7—H7···F4i0.863 (19)1.85 (2)2.686 (3)162 (4)
N8—H8···F7v0.864 (19)2.04 (3)2.812 (3)148 (4)
N8—H8···F3v0.864 (19)2.22 (3)2.813 (3)126 (3)
N9—H9B···F8vi0.862.052.892 (3)165.9
N9—H9A···F5vii0.862.022.841 (4)159.3
N10—H10B···F5v0.862.222.909 (3)137.3
N10—H10A···F6iii0.862.022.845 (3)159.6
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+2, y, z; (v) x+1, y, z+1; (vi) x1, y, z+1; (vii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Slovenian Research Agency (ARRS) and the Ukrainian Ministry for Science and Higher Education for financial support (bilateral project BI—UA/09–10–015, M/55–2009)

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAznar, E., Ferrer, S., Borrás, J., Lloret, F., Liu-González, M., Rodríguez-Prieto, M. & García-Granda, S. (2006). Eur. J. Inorg. Chem. pp. 5115–5125.  Web of Science CSD CrossRef Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCrystal Impact (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany  Google Scholar
First citationFabretti, A. C. (1992). J. Crystallogr. Spectrosc. Res. 22, 523–526.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoreshnik, E., Schollmeyer, D. & Mys'kiv, M. (2004). Acta Cryst. E60, m279–m281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPotts, K. T. (1984). Editor. Comprehensive Heterocycle Chemistry, Vol. 5. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1998). STADI4 and X-RED. Stoe &Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds