organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,6,8-tri­methyl-1,2-di­hydro­quinoline-2,4-di­carboxylate

aDepartment of Chemistry, Çankırı Karatekin University, TR-18100, Çankırı, Turkey, bUniversität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 6 October 2010; accepted 14 October 2010; online 23 October 2010)

The title compound, C16H19NO4, the hydrogenated ring adopts a twisted conformation. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric R22(10) dimers. These dimers are further connected via inter­molecular N—H⋯O hydrogen bonds, forming infinite double chains along [001].

Related literature

For the preparation of 1,2-dihydro­quinoline, see: Edwards et al. (1998[Edwards, J. P., Ringgenberg, J. D. & Jones, T. K. (1998). Tetrahedron Lett. 39, 5139-5142.]); Yan et al. (2004[Yan, M. C., Tu, Z. J., Lin, C. C., Ko, S. K., Hsu, J. M. & Yao, C. F. (2004). J. Org. Chem. 69, 1565-1570.]); Petasis & Butkevich (2009[Petasis, N. A. & Butkevich, A. N. (2009). J. Organomet. Chem. 694, 1747-1753.]); Johnson et al. (1989[Johnson, J. V., Rauckman, B. S., Baccanari, D. P. & Roth, B. (1989). J. Med. Chem. 32, 1942-1949.]); Waldmann et al. (2008[Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159-2162.]); Rueping & Gültekin (2009[Rueping, M. & Gültekin, Z. (2009). Unpublished results, Aachen.]). For the biological activity of dihydro­quinolines, see: Elmore et al. (2001[Elmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481-4491.]); Dillard et al. (1973[Dillard, R. D., Pavey, D. E. & Benslay, D. N. (1973). J. Med. Chem. 16, 251-253.]); Muren & Weissmann (1971[Muren, J. F. & Weissmann, A. (1971). J. Med. Chem. 14, 49-53.]). For the preparation of quinolines, see: Dauphinee & Forrest (1978[Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632-634.]); Yan et al. (2004[Yan, M. C., Tu, Z. J., Lin, C. C., Ko, S. K., Hsu, J. M. & Yao, C. F. (2004). J. Org. Chem. 69, 1565-1570.]); Tom & Ruel (2001[Tom, N. J. & Ruel, E. M. (2001). Synthesis. pp. 1351-1355.]); Tokuyama et al. (2001[Tokuyama, H., Sato, M., Ueda, T. & Fukuyama, T. (2001). Heterocycles. 54, 105-108.]); Sarma & Prajapati (2008[Sarma, R. & Prajapati, D. (2008). Synlett. pp. 3001-3005.]); Martinez et al. (2008[Martinez, R., Ramon, D. J. & Yus, M. (2008). J. Org. Chem. 73, 9778-9780.]); Huang et al. (2009[Huang, H., Jiang, H., Chen, K. & Liu, H. (2009). J. Org. Chem. 74, 5476-5480.]); Katritzky et al. (1996[Katritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron. 52, 15031-15070.]). For the biological activity of quinolines, see: Hamann et al. (1998[Hamann, L. G., Higuchi, R. I., Zhi, L., Edwards, J. P., Wang, X. N., Marschke, K. B., Kong, J. W., Farmer, L. J. & Jones, T. K. (1998). J. Med. Chem. 41, 623-639.]); He et al. (2003[He, L., Chang, H. X., Chou, T. C., Savaraj, N. & Cheng, C. C. (2003). Eur. J. Med. Chem. 38, 101-107.]); LaMontagne et al. (1989[LaMontagne, M. P., Blumbergs, B. & Smith, D. C. (1989). J. Med. Chem. 32, 1728-1732.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO4

  • Mr = 289.33

  • Monoclinic, P 21 /n

  • a = 7.7944 (5) Å

  • b = 23.4621 (8) Å

  • c = 8.2551 (5) Å

  • β = 93.729 (5)°

  • V = 1506.44 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.45 × 0.35 × 0.05 mm

Data collection
  • Nicolet P3 diffractometer

  • 3188 measured reflections

  • 2971 independent reflections

  • 1999 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 50 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.144

  • S = 1.07

  • 2971 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (3) 2.30 (3) 3.190 (3) 166 (3)
C2—H2⋯O4ii 0.94 (3) 2.54 (3) 3.444 (3) 162 (2)
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dihydroquinolines have been widely studied and found an important structural unit in synthetic organic and medicinal chemistry (Elmore et al., 2001; Dillard et al., 1973; Muren & Weissmann, 1971). Many dihydroquinoline derivatives have been reported in the literature (Edwards et al., 1998; Yan et al., 2004; Petasis & Butkevich, 2009) and some of them have biological effects. For example, 2,2,4-substituted 1,2-dihydroquinolines have been shown antibacterial activities (Johnson et al., 1989). They are also powerful intermediates for the preparation of quinolines (Dauphinee & Forrest, 1978; Yan et al., 2004; Tom & Ruel, 2001; Tokuyama et al., 2001) and 1,2,3,4-tetrahydroquinolines (Katritzky et al., 1996). Many synthetic methods have been developed for the preparation of quinolines (Sarma & Prajapati, 2008; Martinez et al., 2008; Huang et al., 2009) and many quinolines display biological effects (Hamann et al., 1998; He et al., 2003; LaMontagne et al., 1989).

In the title molecule, illustrated in Fig. 1, ring A (C1-C4/C9/N1) is not planar with the puckering parameters (Cremer & Pople, 1975) QT = 0.358 (2) Å, φ = 155.3 (4)° and θ = 67.1 (4)°.

In the crystal of the title compound intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into R22(10) dimers centered about an inversion center (Bernstein et al., 1995). These dimers are further connected via intermolecular N-H···O hydrogen bonds (Table 1) to form infinite double chains propagating along [001] (Fig. 2).

Related literature top

For the preparation of 1,2-dihydroquinoline, see: Edwards et al. (1998); Yan et al. (2004); Petasis & Butkevich (2009); Johnson et al. (1989); Waldmann et al. (2008); Rueping & Gültekin (2009). For the biological activity of dihydroquinolines, see: Elmore et al. (2001); Dillard et al. (1973); Muren & Weissmann (1971). For the preparation of quinolines, see: Dauphinee & Forrest (1978); Yan et al. (2004); Tom & Ruel (2001); Tokuyama et al. (2001); Sarma & Prajapati (2008); Martinez et al. (2008); Huang et al. (2009); Katritzky et al. (1996). For the biological activity of quinolines, see: Hamann et al. (1998); He et al. (2003); LaMontagne et al. (1989). For graph-set analysis, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by the literature method (Waldmann et al., 2008). 2,4-dimethylaniline (100 mg, 1 eq) was dissolved in chloroform (1.5 ml) in a screw-capped test tube and Bi(OTf)3 (5 mol%, 0.05 eq) was added to the mixture. The mixture was stirred at room temperature for 6 d until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc:Cylohexane 2:98) and gave, in 60% yield, a pale yellow solid. This solid was recrystallized over pentane and ethyl acetate (70:30) to give a pale yellow crystalline solid; Rf 0.25 (2:1 Cyclohexanone/EtOAc); mp. 420-421 K (Rueping & Gültekin, 2009).

Refinement top

The C14 and C16 methyl H-atoms were positioned geometrically and constrained to ride on their parent atoms: C-H = 0.96 Å with Uiso(H) = 1.5Ueq(C). The remaining H-atoms were located in a difference Fourier map and were refined isotropically.

Structure description top

Dihydroquinolines have been widely studied and found an important structural unit in synthetic organic and medicinal chemistry (Elmore et al., 2001; Dillard et al., 1973; Muren & Weissmann, 1971). Many dihydroquinoline derivatives have been reported in the literature (Edwards et al., 1998; Yan et al., 2004; Petasis & Butkevich, 2009) and some of them have biological effects. For example, 2,2,4-substituted 1,2-dihydroquinolines have been shown antibacterial activities (Johnson et al., 1989). They are also powerful intermediates for the preparation of quinolines (Dauphinee & Forrest, 1978; Yan et al., 2004; Tom & Ruel, 2001; Tokuyama et al., 2001) and 1,2,3,4-tetrahydroquinolines (Katritzky et al., 1996). Many synthetic methods have been developed for the preparation of quinolines (Sarma & Prajapati, 2008; Martinez et al., 2008; Huang et al., 2009) and many quinolines display biological effects (Hamann et al., 1998; He et al., 2003; LaMontagne et al., 1989).

In the title molecule, illustrated in Fig. 1, ring A (C1-C4/C9/N1) is not planar with the puckering parameters (Cremer & Pople, 1975) QT = 0.358 (2) Å, φ = 155.3 (4)° and θ = 67.1 (4)°.

In the crystal of the title compound intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into R22(10) dimers centered about an inversion center (Bernstein et al., 1995). These dimers are further connected via intermolecular N-H···O hydrogen bonds (Table 1) to form infinite double chains propagating along [001] (Fig. 2).

For the preparation of 1,2-dihydroquinoline, see: Edwards et al. (1998); Yan et al. (2004); Petasis & Butkevich (2009); Johnson et al. (1989); Waldmann et al. (2008); Rueping & Gültekin (2009). For the biological activity of dihydroquinolines, see: Elmore et al. (2001); Dillard et al. (1973); Muren & Weissmann (1971). For the preparation of quinolines, see: Dauphinee & Forrest (1978); Yan et al. (2004); Tom & Ruel (2001); Tokuyama et al. (2001); Sarma & Prajapati (2008); Martinez et al. (2008); Huang et al. (2009); Katritzky et al. (1996). For the biological activity of quinolines, see: Hamann et al. (1998); He et al. (2003); LaMontagne et al. (1989). For graph-set analysis, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram, viewed down the a-axis, of the title compound. Hydrogen bonds are shown as dashed cyan lines (see Table 1 for details).
Dimethyl 2,6,8-trimethyl-1,2-dihydroquinoline-2,4-dicarboxylate top
Crystal data top
C16H19NO4F(000) = 616
Mr = 289.33Dx = 1.276 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 26 reflections
a = 7.7944 (5) Åθ = 12–14°
b = 23.4621 (8) ŵ = 0.09 mm1
c = 8.2551 (5) ÅT = 294 K
β = 93.729 (5)°Plate, pale yellow
V = 1506.44 (14) Å30.45 × 0.35 × 0.05 mm
Z = 4
Data collection top
Nicolet P3
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.7°
Graphite monochromatorh = 09
Wyckoff–Scan scansk = 028
3188 measured reflectionsl = 1010
2971 independent reflections3 standard reflections every 50 reflections
1999 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.6624P]
where P = (Fo2 + 2Fc2)/3
2971 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H19NO4V = 1506.44 (14) Å3
Mr = 289.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7944 (5) ŵ = 0.09 mm1
b = 23.4621 (8) ÅT = 294 K
c = 8.2551 (5) Å0.45 × 0.35 × 0.05 mm
β = 93.729 (5)°
Data collection top
Nicolet P3
diffractometer
Rint = 0.030
3188 measured reflections3 standard reflections every 50 reflections
2971 independent reflections intensity decay: 2%
1999 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.19 e Å3
2971 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7764 (3)0.59692 (11)0.3063 (2)0.0640 (6)
O20.5173 (2)0.61471 (9)0.2180 (2)0.0502 (5)
O31.1234 (3)0.60687 (11)0.3726 (3)0.0738 (7)
O41.1641 (2)0.56175 (9)0.1411 (2)0.0539 (6)
N10.7690 (3)0.60501 (9)0.3076 (3)0.0393 (5)
H10.792 (4)0.6030 (12)0.417 (4)0.054 (9)*
C10.7476 (3)0.61554 (11)0.0238 (3)0.0334 (5)
C20.8247 (3)0.56972 (11)0.0436 (3)0.0352 (6)
H20.849 (3)0.5376 (11)0.018 (3)0.035 (7)*
C30.8769 (3)0.56643 (10)0.2214 (3)0.0353 (6)
C40.7347 (3)0.65906 (11)0.2432 (3)0.0341 (5)
C50.7101 (3)0.70451 (12)0.3481 (3)0.0415 (6)
H50.733 (3)0.6993 (10)0.464 (3)0.033 (6)*
C60.6669 (3)0.75784 (12)0.2865 (3)0.0447 (7)
C70.6494 (4)0.76513 (12)0.1202 (4)0.0466 (7)
H70.620 (3)0.8011 (12)0.074 (3)0.046 (8)*
C80.6763 (3)0.72106 (11)0.0118 (3)0.0403 (6)
C90.7161 (3)0.66663 (11)0.0741 (3)0.0342 (5)
C100.6878 (3)0.60882 (11)0.1978 (3)0.0389 (6)
C110.4423 (5)0.60908 (19)0.3831 (4)0.0605 (9)
H1110.475 (5)0.6429 (16)0.448 (4)0.084 (12)*
H1120.485 (5)0.5743 (16)0.428 (4)0.077 (12)*
H1130.322 (6)0.6056 (16)0.371 (5)0.095 (13)*
C120.8522 (4)0.50594 (13)0.2861 (4)0.0500 (7)
H1210.873 (4)0.5072 (12)0.407 (4)0.057 (9)*
H1230.734 (4)0.4934 (13)0.252 (4)0.064 (9)*
H1220.926 (4)0.4786 (14)0.238 (4)0.070 (10)*
C131.0681 (3)0.58165 (11)0.2556 (3)0.0376 (6)
C141.3481 (4)0.57041 (17)0.1667 (5)0.0720 (10)
H14A1.40290.56040.06980.108*
H14B1.39240.54680.25490.108*
H14C1.37090.60970.19240.108*
C150.6472 (6)0.80746 (16)0.4010 (5)0.0637 (9)
H1510.582 (6)0.7969 (18)0.496 (5)0.108 (15)*
H1520.588 (6)0.840 (2)0.347 (5)0.115 (16)*
H1530.754 (6)0.8168 (18)0.450 (5)0.109 (16)*
C160.6685 (4)0.73525 (12)0.1667 (3)0.0536 (8)
H16A0.75860.71540.21720.080*
H16B0.68280.77560.18020.080*
H16C0.55910.72380.21630.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0579 (13)0.0996 (18)0.0346 (11)0.0201 (12)0.0036 (9)0.0042 (11)
O20.0363 (10)0.0755 (14)0.0376 (10)0.0025 (9)0.0070 (8)0.0008 (9)
O30.0470 (12)0.106 (2)0.0664 (15)0.0009 (12)0.0122 (11)0.0370 (14)
O40.0303 (9)0.0749 (14)0.0564 (12)0.0054 (9)0.0028 (8)0.0166 (10)
N10.0414 (12)0.0463 (13)0.0301 (11)0.0068 (10)0.0026 (9)0.0048 (10)
C10.0252 (11)0.0435 (14)0.0316 (12)0.0012 (10)0.0020 (9)0.0001 (10)
C20.0292 (12)0.0376 (14)0.0385 (14)0.0003 (10)0.0001 (10)0.0036 (11)
C30.0321 (13)0.0362 (13)0.0372 (13)0.0009 (10)0.0006 (10)0.0014 (11)
C40.0245 (11)0.0414 (14)0.0365 (12)0.0002 (10)0.0029 (9)0.0015 (11)
C50.0391 (14)0.0533 (17)0.0326 (14)0.0000 (12)0.0064 (11)0.0036 (12)
C60.0367 (14)0.0442 (16)0.0538 (17)0.0013 (12)0.0085 (12)0.0081 (13)
C70.0454 (15)0.0377 (15)0.0563 (18)0.0041 (12)0.0013 (13)0.0031 (13)
C80.0360 (13)0.0437 (15)0.0411 (14)0.0009 (11)0.0015 (11)0.0032 (12)
C90.0282 (11)0.0398 (14)0.0344 (13)0.0003 (10)0.0016 (10)0.0004 (10)
C100.0385 (13)0.0449 (15)0.0330 (13)0.0026 (11)0.0014 (11)0.0008 (11)
C110.056 (2)0.078 (3)0.0452 (18)0.0146 (19)0.0160 (15)0.0065 (18)
C120.0518 (18)0.0420 (17)0.0555 (19)0.0044 (14)0.0012 (15)0.0088 (14)
C130.0371 (13)0.0382 (14)0.0365 (13)0.0019 (11)0.0047 (10)0.0003 (11)
C140.0314 (15)0.102 (3)0.083 (2)0.0042 (17)0.0006 (15)0.008 (2)
C150.068 (2)0.055 (2)0.070 (2)0.0065 (18)0.014 (2)0.0184 (18)
C160.066 (2)0.0452 (17)0.0492 (17)0.0033 (14)0.0014 (14)0.0094 (13)
Geometric parameters (Å, º) top
O1—C101.199 (3)C6—C151.513 (4)
O2—C101.336 (3)C7—H70.95 (3)
O2—C111.454 (3)C8—C71.392 (4)
O3—C131.189 (3)C8—C161.508 (4)
O4—C131.328 (3)C9—C81.404 (3)
O4—C141.450 (3)C11—H1111.00 (4)
N1—C31.453 (3)C11—H1120.96 (4)
N1—C41.394 (3)C11—H1130.95 (4)
N1—H10.91 (3)C12—H1211.01 (3)
C1—C21.335 (3)C12—H1220.97 (3)
C1—C91.475 (3)C12—H1230.99 (3)
C1—C101.490 (3)C14—H14A0.9600
C2—H20.94 (3)C14—H14B0.9600
C3—C21.499 (3)C14—H14C0.9600
C3—C121.533 (4)C15—H1510.99 (4)
C3—C131.541 (3)C15—H1530.93 (5)
C4—C51.395 (4)C15—H1520.98 (5)
C4—C91.405 (3)C16—H16A0.9600
C5—H50.97 (2)C16—H16B0.9600
C6—C51.384 (4)C16—H16C0.9600
C6—C71.381 (4)
C10—O2—C11116.3 (2)O1—C10—C1125.8 (2)
C13—O4—C14116.4 (2)O2—C10—C1110.9 (2)
C3—N1—H1111.9 (19)O2—C11—H111109 (2)
C4—N1—C3118.9 (2)O2—C11—H112108 (2)
C4—N1—H1116.5 (18)O2—C11—H113104 (2)
C2—C1—C9120.9 (2)H111—C11—H112111 (3)
C2—C1—C10114.9 (2)H113—C11—H111114 (3)
C9—C1—C10124.1 (2)H113—C11—H112110 (3)
C1—C2—C3122.4 (2)C3—C12—H121107.6 (17)
C1—C2—H2121.5 (15)C3—C12—H122112.1 (19)
C3—C2—H2116.2 (15)C3—C12—H123108.2 (18)
N1—C3—C2108.6 (2)H121—C12—H122112 (3)
N1—C3—C12108.4 (2)H121—C12—H123112 (2)
N1—C3—C13110.5 (2)H123—C12—H122105 (3)
C2—C3—C12110.9 (2)O3—C13—O4124.2 (2)
C2—C3—C13111.4 (2)O3—C13—C3124.0 (2)
C12—C3—C13107.0 (2)O4—C13—C3111.8 (2)
N1—C4—C5119.3 (2)O4—C14—H14A109.5
N1—C4—C9119.9 (2)O4—C14—H14B109.5
C5—C4—C9120.7 (2)O4—C14—H14C109.5
C4—C5—H5119.5 (15)H14A—C14—H14B109.5
C6—C5—C4120.2 (2)H14A—C14—H14C109.5
C6—C5—H5120.1 (15)H14B—C14—H14C109.5
C5—C6—C15119.9 (3)C6—C15—H151112 (3)
C7—C6—C5118.9 (3)C6—C15—H152112 (3)
C7—C6—C15121.2 (3)C6—C15—H153109 (3)
C6—C7—C8122.5 (3)H151—C15—H152108 (4)
C6—C7—H7121.0 (16)H151—C15—H153102 (4)
C8—C7—H7116.5 (16)H153—C15—H152113 (4)
C7—C8—C9118.6 (2)C8—C16—H16A109.5
C7—C8—C16117.8 (2)C8—C16—H16B109.5
C9—C8—C16123.5 (2)C8—C16—H16C109.5
C4—C9—C1115.5 (2)H16A—C16—H16B109.5
C8—C9—C1125.4 (2)H16A—C16—H16C109.5
C8—C9—C4119.0 (2)H16B—C16—H16C109.5
O1—C10—O2123.2 (2)
C11—O2—C10—O13.4 (4)N1—C3—C13—O323.5 (4)
C11—O2—C10—C1180.0 (3)N1—C3—C13—O4158.4 (2)
C14—O4—C13—O32.1 (4)C2—C3—C13—O3144.2 (3)
C14—O4—C13—C3176.1 (2)C2—C3—C13—O437.6 (3)
C4—N1—C3—C243.0 (3)C12—C3—C13—O394.4 (3)
C4—N1—C3—C12163.6 (2)C12—C3—C13—O483.7 (3)
C4—N1—C3—C1379.5 (3)N1—C4—C5—C6176.6 (2)
C3—N1—C4—C5148.5 (2)C9—C4—C5—C60.0 (4)
C3—N1—C4—C934.8 (3)N1—C4—C9—C14.2 (3)
C9—C1—C2—C32.5 (4)N1—C4—C9—C8178.1 (2)
C10—C1—C2—C3173.5 (2)C5—C4—C9—C1179.2 (2)
C2—C1—C9—C414.1 (3)C5—C4—C9—C81.5 (4)
C2—C1—C9—C8163.4 (2)C7—C6—C5—C40.3 (4)
C10—C1—C9—C4161.5 (2)C15—C6—C5—C4177.6 (3)
C10—C1—C9—C821.0 (4)C5—C6—C7—C81.0 (4)
C2—C1—C10—O158.1 (4)C15—C6—C7—C8176.3 (3)
C2—C1—C10—O2118.4 (2)C9—C8—C7—C62.6 (4)
C9—C1—C10—O1126.0 (3)C16—C8—C7—C6174.9 (3)
C9—C1—C10—O257.5 (3)C1—C9—C8—C7179.8 (2)
N1—C3—C2—C124.7 (3)C1—C9—C8—C162.9 (4)
C12—C3—C2—C1143.8 (3)C4—C9—C8—C72.7 (4)
C13—C3—C2—C197.2 (3)C4—C9—C8—C16174.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (3)2.30 (3)3.190 (3)166 (3)
C2—H2···O4ii0.94 (3)2.54 (3)3.444 (3)162 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H19NO4
Mr289.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.7944 (5), 23.4621 (8), 8.2551 (5)
β (°) 93.729 (5)
V3)1506.44 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.35 × 0.05
Data collection
DiffractometerNicolet P3
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3188, 2971, 1999
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.144, 1.07
No. of reflections2971
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (3)2.30 (3)3.190 (3)166 (3)
C2—H2···O4ii0.94 (3)2.54 (3)3.444 (3)162 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634.  CrossRef CAS Web of Science Google Scholar
First citationDillard, R. D., Pavey, D. E. & Benslay, D. N. (1973). J. Med. Chem. 16, 251–253.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEdwards, J. P., Ringgenberg, J. D. & Jones, T. K. (1998). Tetrahedron Lett. 39, 5139–5142.  Web of Science CrossRef CAS Google Scholar
First citationElmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481–4491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHamann, L. G., Higuchi, R. I., Zhi, L., Edwards, J. P., Wang, X. N., Marschke, K. B., Kong, J. W., Farmer, L. J. & Jones, T. K. (1998). J. Med. Chem. 41, 623–639.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHe, L., Chang, H. X., Chou, T. C., Savaraj, N. & Cheng, C. C. (2003). Eur. J. Med. Chem. 38, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, H., Jiang, H., Chen, K. & Liu, H. (2009). J. Org. Chem. 74, 5476–5480.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, J. V., Rauckman, B. S., Baccanari, D. P. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKatritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron. 52, 15031–15070.  CrossRef CAS Web of Science Google Scholar
First citationLaMontagne, M. P., Blumbergs, B. & Smith, D. C. (1989). J. Med. Chem. 32, 1728–1732.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartinez, R., Ramon, D. J. & Yus, M. (2008). J. Org. Chem. 73, 9778–9780.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuren, J. F. & Weissmann, A. (1971). J. Med. Chem. 14, 49–53.  CAS PubMed Web of Science Google Scholar
First citationPetasis, N. A. & Butkevich, A. N. (2009). J. Organomet. Chem. 694, 1747–1753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRueping, M. & Gültekin, Z. (2009). Unpublished results, Aachen.  Google Scholar
First citationSarma, R. & Prajapati, D. (2008). Synlett. pp. 3001–3005.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTokuyama, H., Sato, M., Ueda, T. & Fukuyama, T. (2001). Heterocycles. 54, 105–108.  CAS Google Scholar
First citationTom, N. J. & Ruel, E. M. (2001). Synthesis. pp. 1351–1355.  CrossRef Google Scholar
First citationWaldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYan, M. C., Tu, Z. J., Lin, C. C., Ko, S. K., Hsu, J. M. & Yao, C. F. (2004). J. Org. Chem. 69, 1565–1570.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds