organic compounds
Dimethyl 2,6,8-trimethyl-1,2-dihydroquinoline-2,4-dicarboxylate
aDepartment of Chemistry, Çankırı Karatekin University, TR-18100, Çankırı, Turkey, bUniversität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The title compound, C16H19NO4, the hydrogenated ring adopts a twisted conformation. In the crystal, intermolecular C—H⋯O hydrogen bonds link the molecules into centrosymmetric R22(10) dimers. These dimers are further connected via intermolecular N—H⋯O hydrogen bonds, forming infinite double chains along [001].
Related literature
For the preparation of 1,2-dihydroquinoline, see: Edwards et al. (1998); Yan et al. (2004); Petasis & Butkevich (2009); Johnson et al. (1989); Waldmann et al. (2008); Rueping & Gültekin (2009). For the biological activity of dihydroquinolines, see: Elmore et al. (2001); Dillard et al. (1973); Muren & Weissmann (1971). For the preparation of quinolines, see: Dauphinee & Forrest (1978); Yan et al. (2004); Tom & Ruel (2001); Tokuyama et al. (2001); Sarma & Prajapati (2008); Martinez et al. (2008); Huang et al. (2009); Katritzky et al. (1996). For the biological activity of quinolines, see: Hamann et al. (1998); He et al. (2003); LaMontagne et al. (1989). For graph-set analysis, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S160053681004153X/su2218sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681004153X/su2218Isup2.hkl
The title compound was synthesized by the literature method (Waldmann et al., 2008). 2,4-dimethylaniline (100 mg, 1 eq) was dissolved in chloroform (1.5 ml) in a screw-capped test tube and Bi(OTf)3 (5 mol%, 0.05 eq) was added to the mixture. The mixture was stirred at room temperature for 6 d until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash
on silica (EtOAc:Cylohexane 2:98) and gave, in 60% yield, a pale yellow solid. This solid was recrystallized over pentane and ethyl acetate (70:30) to give a pale yellow crystalline solid; Rf 0.25 (2:1 Cyclohexanone/EtOAc); mp. 420-421 K (Rueping & Gültekin, 2009).The C14 and C16 methyl H-atoms were positioned geometrically and constrained to ride on their parent atoms: C-H = 0.96 Å with Uiso(H) = 1.5Ueq(C). The remaining H-atoms were located in a difference Fourier map and were refined isotropically.
Dihydroquinolines have been widely studied and found an important structural unit in synthetic organic and medicinal chemistry (Elmore et al., 2001; Dillard et al., 1973; Muren & Weissmann, 1971). Many dihydroquinoline derivatives have been reported in the literature (Edwards et al., 1998; Yan et al., 2004; Petasis & Butkevich, 2009) and some of them have biological effects. For example, 2,2,4-substituted 1,2-dihydroquinolines have been shown antibacterial activities (Johnson et al., 1989). They are also powerful intermediates for the preparation of quinolines (Dauphinee & Forrest, 1978; Yan et al., 2004; Tom & Ruel, 2001; Tokuyama et al., 2001) and 1,2,3,4-tetrahydroquinolines (Katritzky et al., 1996). Many synthetic methods have been developed for the preparation of quinolines (Sarma & Prajapati, 2008; Martinez et al., 2008; Huang et al., 2009) and many quinolines display biological effects (Hamann et al., 1998; He et al., 2003; LaMontagne et al., 1989).
In the title molecule, illustrated in Fig. 1, ring A (C1-C4/C9/N1) is not planar with the puckering parameters (Cremer & Pople, 1975) QT = 0.358 (2) Å, φ = 155.3 (4)° and θ = 67.1 (4)°.
In the crystal of the title compound intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into R22(10) dimers centered about an inversion center (Bernstein et al., 1995). These dimers are further connected via intermolecular N-H···O hydrogen bonds (Table 1) to form infinite double chains propagating along [001] (Fig. 2).
For the preparation of 1,2-dihydroquinoline, see: Edwards et al. (1998); Yan et al. (2004); Petasis & Butkevich (2009); Johnson et al. (1989); Waldmann et al. (2008); Rueping & Gültekin (2009). For the biological activity of dihydroquinolines, see: Elmore et al. (2001); Dillard et al. (1973); Muren & Weissmann (1971). For the preparation of quinolines, see: Dauphinee & Forrest (1978); Yan et al. (2004); Tom & Ruel (2001); Tokuyama et al. (2001); Sarma & Prajapati (2008); Martinez et al. (2008); Huang et al. (2009); Katritzky et al. (1996). For the biological activity of quinolines, see: Hamann et al. (1998); He et al. (2003); LaMontagne et al. (1989). For graph-set analysis, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C16H19NO4 | F(000) = 616 |
Mr = 289.33 | Dx = 1.276 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 26 reflections |
a = 7.7944 (5) Å | θ = 12–14° |
b = 23.4621 (8) Å | µ = 0.09 mm−1 |
c = 8.2551 (5) Å | T = 294 K |
β = 93.729 (5)° | Plate, pale yellow |
V = 1506.44 (14) Å3 | 0.45 × 0.35 × 0.05 mm |
Z = 4 |
Nicolet P3 diffractometer | Rint = 0.030 |
Radiation source: fine-focus sealed tube | θmax = 26.0°, θmin = 1.7° |
Graphite monochromator | h = 0→9 |
Wyckoff–Scan scans | k = 0→28 |
3188 measured reflections | l = −10→10 |
2971 independent reflections | 3 standard reflections every 50 reflections |
1999 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0504P)2 + 0.6624P] where P = (Fo2 + 2Fc2)/3 |
2971 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C16H19NO4 | V = 1506.44 (14) Å3 |
Mr = 289.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.7944 (5) Å | µ = 0.09 mm−1 |
b = 23.4621 (8) Å | T = 294 K |
c = 8.2551 (5) Å | 0.45 × 0.35 × 0.05 mm |
β = 93.729 (5)° |
Nicolet P3 diffractometer | Rint = 0.030 |
3188 measured reflections | 3 standard reflections every 50 reflections |
2971 independent reflections | intensity decay: 2% |
1999 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.144 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.19 e Å−3 |
2971 reflections | Δρmin = −0.21 e Å−3 |
244 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7764 (3) | 0.59692 (11) | −0.3063 (2) | 0.0640 (6) | |
O2 | 0.5173 (2) | 0.61471 (9) | −0.2180 (2) | 0.0502 (5) | |
O3 | 1.1234 (3) | 0.60687 (11) | 0.3726 (3) | 0.0738 (7) | |
O4 | 1.1641 (2) | 0.56175 (9) | 0.1411 (2) | 0.0539 (6) | |
N1 | 0.7690 (3) | 0.60501 (9) | 0.3076 (3) | 0.0393 (5) | |
H1 | 0.792 (4) | 0.6030 (12) | 0.417 (4) | 0.054 (9)* | |
C1 | 0.7476 (3) | 0.61554 (11) | −0.0238 (3) | 0.0334 (5) | |
C2 | 0.8247 (3) | 0.56972 (11) | 0.0436 (3) | 0.0352 (6) | |
H2 | 0.849 (3) | 0.5376 (11) | −0.018 (3) | 0.035 (7)* | |
C3 | 0.8769 (3) | 0.56643 (10) | 0.2214 (3) | 0.0353 (6) | |
C4 | 0.7347 (3) | 0.65906 (11) | 0.2432 (3) | 0.0341 (5) | |
C5 | 0.7101 (3) | 0.70451 (12) | 0.3481 (3) | 0.0415 (6) | |
H5 | 0.733 (3) | 0.6993 (10) | 0.464 (3) | 0.033 (6)* | |
C6 | 0.6669 (3) | 0.75784 (12) | 0.2865 (3) | 0.0447 (7) | |
C7 | 0.6494 (4) | 0.76513 (12) | 0.1202 (4) | 0.0466 (7) | |
H7 | 0.620 (3) | 0.8011 (12) | 0.074 (3) | 0.046 (8)* | |
C8 | 0.6763 (3) | 0.72106 (11) | 0.0118 (3) | 0.0403 (6) | |
C9 | 0.7161 (3) | 0.66663 (11) | 0.0741 (3) | 0.0342 (5) | |
C10 | 0.6878 (3) | 0.60882 (11) | −0.1978 (3) | 0.0389 (6) | |
C11 | 0.4423 (5) | 0.60908 (19) | −0.3831 (4) | 0.0605 (9) | |
H111 | 0.475 (5) | 0.6429 (16) | −0.448 (4) | 0.084 (12)* | |
H112 | 0.485 (5) | 0.5743 (16) | −0.428 (4) | 0.077 (12)* | |
H113 | 0.322 (6) | 0.6056 (16) | −0.371 (5) | 0.095 (13)* | |
C12 | 0.8522 (4) | 0.50594 (13) | 0.2861 (4) | 0.0500 (7) | |
H121 | 0.873 (4) | 0.5072 (12) | 0.407 (4) | 0.057 (9)* | |
H123 | 0.734 (4) | 0.4934 (13) | 0.252 (4) | 0.064 (9)* | |
H122 | 0.926 (4) | 0.4786 (14) | 0.238 (4) | 0.070 (10)* | |
C13 | 1.0681 (3) | 0.58165 (11) | 0.2556 (3) | 0.0376 (6) | |
C14 | 1.3481 (4) | 0.57041 (17) | 0.1667 (5) | 0.0720 (10) | |
H14A | 1.4029 | 0.5604 | 0.0698 | 0.108* | |
H14B | 1.3924 | 0.5468 | 0.2549 | 0.108* | |
H14C | 1.3709 | 0.6097 | 0.1924 | 0.108* | |
C15 | 0.6472 (6) | 0.80746 (16) | 0.4010 (5) | 0.0637 (9) | |
H151 | 0.582 (6) | 0.7969 (18) | 0.496 (5) | 0.108 (15)* | |
H152 | 0.588 (6) | 0.840 (2) | 0.347 (5) | 0.115 (16)* | |
H153 | 0.754 (6) | 0.8168 (18) | 0.450 (5) | 0.109 (16)* | |
C16 | 0.6685 (4) | 0.73525 (12) | −0.1667 (3) | 0.0536 (8) | |
H16A | 0.7586 | 0.7154 | −0.2172 | 0.080* | |
H16B | 0.6828 | 0.7756 | −0.1802 | 0.080* | |
H16C | 0.5591 | 0.7238 | −0.2163 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0579 (13) | 0.0996 (18) | 0.0346 (11) | 0.0201 (12) | 0.0036 (9) | −0.0042 (11) |
O2 | 0.0363 (10) | 0.0755 (14) | 0.0376 (10) | −0.0025 (9) | −0.0070 (8) | 0.0008 (9) |
O3 | 0.0470 (12) | 0.106 (2) | 0.0664 (15) | −0.0009 (12) | −0.0122 (11) | −0.0370 (14) |
O4 | 0.0303 (9) | 0.0749 (14) | 0.0564 (12) | −0.0054 (9) | 0.0028 (8) | −0.0166 (10) |
N1 | 0.0414 (12) | 0.0463 (13) | 0.0301 (11) | 0.0068 (10) | 0.0026 (9) | 0.0048 (10) |
C1 | 0.0252 (11) | 0.0435 (14) | 0.0316 (12) | −0.0012 (10) | 0.0020 (9) | −0.0001 (10) |
C2 | 0.0292 (12) | 0.0376 (14) | 0.0385 (14) | −0.0003 (10) | −0.0001 (10) | −0.0036 (11) |
C3 | 0.0321 (13) | 0.0362 (13) | 0.0372 (13) | 0.0009 (10) | −0.0006 (10) | 0.0014 (11) |
C4 | 0.0245 (11) | 0.0414 (14) | 0.0365 (12) | 0.0002 (10) | 0.0029 (9) | 0.0015 (11) |
C5 | 0.0391 (14) | 0.0533 (17) | 0.0326 (14) | 0.0000 (12) | 0.0064 (11) | −0.0036 (12) |
C6 | 0.0367 (14) | 0.0442 (16) | 0.0538 (17) | 0.0013 (12) | 0.0085 (12) | −0.0081 (13) |
C7 | 0.0454 (15) | 0.0377 (15) | 0.0563 (18) | 0.0041 (12) | 0.0013 (13) | 0.0031 (13) |
C8 | 0.0360 (13) | 0.0437 (15) | 0.0411 (14) | 0.0009 (11) | 0.0015 (11) | 0.0032 (12) |
C9 | 0.0282 (11) | 0.0398 (14) | 0.0344 (13) | 0.0003 (10) | 0.0016 (10) | −0.0004 (10) |
C10 | 0.0385 (13) | 0.0449 (15) | 0.0330 (13) | 0.0026 (11) | −0.0014 (11) | −0.0008 (11) |
C11 | 0.056 (2) | 0.078 (3) | 0.0452 (18) | −0.0146 (19) | −0.0160 (15) | 0.0065 (18) |
C12 | 0.0518 (18) | 0.0420 (17) | 0.0555 (19) | −0.0044 (14) | −0.0012 (15) | 0.0088 (14) |
C13 | 0.0371 (13) | 0.0382 (14) | 0.0365 (13) | 0.0019 (11) | −0.0047 (10) | 0.0003 (11) |
C14 | 0.0314 (15) | 0.102 (3) | 0.083 (2) | −0.0042 (17) | 0.0006 (15) | −0.008 (2) |
C15 | 0.068 (2) | 0.055 (2) | 0.070 (2) | 0.0065 (18) | 0.014 (2) | −0.0184 (18) |
C16 | 0.066 (2) | 0.0452 (17) | 0.0492 (17) | 0.0033 (14) | 0.0014 (14) | 0.0094 (13) |
O1—C10 | 1.199 (3) | C6—C15 | 1.513 (4) |
O2—C10 | 1.336 (3) | C7—H7 | 0.95 (3) |
O2—C11 | 1.454 (3) | C8—C7 | 1.392 (4) |
O3—C13 | 1.189 (3) | C8—C16 | 1.508 (4) |
O4—C13 | 1.328 (3) | C9—C8 | 1.404 (3) |
O4—C14 | 1.450 (3) | C11—H111 | 1.00 (4) |
N1—C3 | 1.453 (3) | C11—H112 | 0.96 (4) |
N1—C4 | 1.394 (3) | C11—H113 | 0.95 (4) |
N1—H1 | 0.91 (3) | C12—H121 | 1.01 (3) |
C1—C2 | 1.335 (3) | C12—H122 | 0.97 (3) |
C1—C9 | 1.475 (3) | C12—H123 | 0.99 (3) |
C1—C10 | 1.490 (3) | C14—H14A | 0.9600 |
C2—H2 | 0.94 (3) | C14—H14B | 0.9600 |
C3—C2 | 1.499 (3) | C14—H14C | 0.9600 |
C3—C12 | 1.533 (4) | C15—H151 | 0.99 (4) |
C3—C13 | 1.541 (3) | C15—H153 | 0.93 (5) |
C4—C5 | 1.395 (4) | C15—H152 | 0.98 (5) |
C4—C9 | 1.405 (3) | C16—H16A | 0.9600 |
C5—H5 | 0.97 (2) | C16—H16B | 0.9600 |
C6—C5 | 1.384 (4) | C16—H16C | 0.9600 |
C6—C7 | 1.381 (4) | ||
C10—O2—C11 | 116.3 (2) | O1—C10—C1 | 125.8 (2) |
C13—O4—C14 | 116.4 (2) | O2—C10—C1 | 110.9 (2) |
C3—N1—H1 | 111.9 (19) | O2—C11—H111 | 109 (2) |
C4—N1—C3 | 118.9 (2) | O2—C11—H112 | 108 (2) |
C4—N1—H1 | 116.5 (18) | O2—C11—H113 | 104 (2) |
C2—C1—C9 | 120.9 (2) | H111—C11—H112 | 111 (3) |
C2—C1—C10 | 114.9 (2) | H113—C11—H111 | 114 (3) |
C9—C1—C10 | 124.1 (2) | H113—C11—H112 | 110 (3) |
C1—C2—C3 | 122.4 (2) | C3—C12—H121 | 107.6 (17) |
C1—C2—H2 | 121.5 (15) | C3—C12—H122 | 112.1 (19) |
C3—C2—H2 | 116.2 (15) | C3—C12—H123 | 108.2 (18) |
N1—C3—C2 | 108.6 (2) | H121—C12—H122 | 112 (3) |
N1—C3—C12 | 108.4 (2) | H121—C12—H123 | 112 (2) |
N1—C3—C13 | 110.5 (2) | H123—C12—H122 | 105 (3) |
C2—C3—C12 | 110.9 (2) | O3—C13—O4 | 124.2 (2) |
C2—C3—C13 | 111.4 (2) | O3—C13—C3 | 124.0 (2) |
C12—C3—C13 | 107.0 (2) | O4—C13—C3 | 111.8 (2) |
N1—C4—C5 | 119.3 (2) | O4—C14—H14A | 109.5 |
N1—C4—C9 | 119.9 (2) | O4—C14—H14B | 109.5 |
C5—C4—C9 | 120.7 (2) | O4—C14—H14C | 109.5 |
C4—C5—H5 | 119.5 (15) | H14A—C14—H14B | 109.5 |
C6—C5—C4 | 120.2 (2) | H14A—C14—H14C | 109.5 |
C6—C5—H5 | 120.1 (15) | H14B—C14—H14C | 109.5 |
C5—C6—C15 | 119.9 (3) | C6—C15—H151 | 112 (3) |
C7—C6—C5 | 118.9 (3) | C6—C15—H152 | 112 (3) |
C7—C6—C15 | 121.2 (3) | C6—C15—H153 | 109 (3) |
C6—C7—C8 | 122.5 (3) | H151—C15—H152 | 108 (4) |
C6—C7—H7 | 121.0 (16) | H151—C15—H153 | 102 (4) |
C8—C7—H7 | 116.5 (16) | H153—C15—H152 | 113 (4) |
C7—C8—C9 | 118.6 (2) | C8—C16—H16A | 109.5 |
C7—C8—C16 | 117.8 (2) | C8—C16—H16B | 109.5 |
C9—C8—C16 | 123.5 (2) | C8—C16—H16C | 109.5 |
C4—C9—C1 | 115.5 (2) | H16A—C16—H16B | 109.5 |
C8—C9—C1 | 125.4 (2) | H16A—C16—H16C | 109.5 |
C8—C9—C4 | 119.0 (2) | H16B—C16—H16C | 109.5 |
O1—C10—O2 | 123.2 (2) | ||
C11—O2—C10—O1 | −3.4 (4) | N1—C3—C13—O3 | 23.5 (4) |
C11—O2—C10—C1 | 180.0 (3) | N1—C3—C13—O4 | −158.4 (2) |
C14—O4—C13—O3 | 2.1 (4) | C2—C3—C13—O3 | 144.2 (3) |
C14—O4—C13—C3 | −176.1 (2) | C2—C3—C13—O4 | −37.6 (3) |
C4—N1—C3—C2 | −43.0 (3) | C12—C3—C13—O3 | −94.4 (3) |
C4—N1—C3—C12 | −163.6 (2) | C12—C3—C13—O4 | 83.7 (3) |
C4—N1—C3—C13 | 79.5 (3) | N1—C4—C5—C6 | −176.6 (2) |
C3—N1—C4—C5 | −148.5 (2) | C9—C4—C5—C6 | 0.0 (4) |
C3—N1—C4—C9 | 34.8 (3) | N1—C4—C9—C1 | −4.2 (3) |
C9—C1—C2—C3 | 2.5 (4) | N1—C4—C9—C8 | 178.1 (2) |
C10—C1—C2—C3 | −173.5 (2) | C5—C4—C9—C1 | 179.2 (2) |
C2—C1—C9—C4 | −14.1 (3) | C5—C4—C9—C8 | 1.5 (4) |
C2—C1—C9—C8 | 163.4 (2) | C7—C6—C5—C4 | −0.3 (4) |
C10—C1—C9—C4 | 161.5 (2) | C15—C6—C5—C4 | −177.6 (3) |
C10—C1—C9—C8 | −21.0 (4) | C5—C6—C7—C8 | −1.0 (4) |
C2—C1—C10—O1 | −58.1 (4) | C15—C6—C7—C8 | 176.3 (3) |
C2—C1—C10—O2 | 118.4 (2) | C9—C8—C7—C6 | 2.6 (4) |
C9—C1—C10—O1 | 126.0 (3) | C16—C8—C7—C6 | −174.9 (3) |
C9—C1—C10—O2 | −57.5 (3) | C1—C9—C8—C7 | 179.8 (2) |
N1—C3—C2—C1 | 24.7 (3) | C1—C9—C8—C16 | −2.9 (4) |
C12—C3—C2—C1 | 143.8 (3) | C4—C9—C8—C7 | −2.7 (4) |
C13—C3—C2—C1 | −97.2 (3) | C4—C9—C8—C16 | 174.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.91 (3) | 2.30 (3) | 3.190 (3) | 166 (3) |
C2—H2···O4ii | 0.94 (3) | 2.54 (3) | 3.444 (3) | 162 (2) |
Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H19NO4 |
Mr | 289.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 7.7944 (5), 23.4621 (8), 8.2551 (5) |
β (°) | 93.729 (5) |
V (Å3) | 1506.44 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.45 × 0.35 × 0.05 |
Data collection | |
Diffractometer | Nicolet P3 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3188, 2971, 1999 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.144, 1.07 |
No. of reflections | 2971 |
No. of parameters | 244 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.21 |
Computer programs: XSCANS (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.91 (3) | 2.30 (3) | 3.190 (3) | 166 (3) |
C2—H2···O4ii | 0.94 (3) | 2.54 (3) | 3.444 (3) | 162 (2) |
Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z. |
Acknowledgements
The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions.
References
Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634. CrossRef CAS Web of Science Google Scholar
Dillard, R. D., Pavey, D. E. & Benslay, D. N. (1973). J. Med. Chem. 16, 251–253. CrossRef CAS PubMed Web of Science Google Scholar
Edwards, J. P., Ringgenberg, J. D. & Jones, T. K. (1998). Tetrahedron Lett. 39, 5139–5142. Web of Science CrossRef CAS Google Scholar
Elmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481–4491. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hamann, L. G., Higuchi, R. I., Zhi, L., Edwards, J. P., Wang, X. N., Marschke, K. B., Kong, J. W., Farmer, L. J. & Jones, T. K. (1998). J. Med. Chem. 41, 623–639. Web of Science CrossRef CAS PubMed Google Scholar
He, L., Chang, H. X., Chou, T. C., Savaraj, N. & Cheng, C. C. (2003). Eur. J. Med. Chem. 38, 101–107. Web of Science CrossRef PubMed CAS Google Scholar
Huang, H., Jiang, H., Chen, K. & Liu, H. (2009). J. Org. Chem. 74, 5476–5480. Web of Science CrossRef PubMed CAS Google Scholar
Johnson, J. V., Rauckman, B. S., Baccanari, D. P. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949. CrossRef CAS PubMed Web of Science Google Scholar
Katritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron. 52, 15031–15070. CrossRef CAS Web of Science Google Scholar
LaMontagne, M. P., Blumbergs, B. & Smith, D. C. (1989). J. Med. Chem. 32, 1728–1732. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Martinez, R., Ramon, D. J. & Yus, M. (2008). J. Org. Chem. 73, 9778–9780. Web of Science CrossRef PubMed CAS Google Scholar
Muren, J. F. & Weissmann, A. (1971). J. Med. Chem. 14, 49–53. CAS PubMed Web of Science Google Scholar
Petasis, N. A. & Butkevich, A. N. (2009). J. Organomet. Chem. 694, 1747–1753. Web of Science CrossRef CAS PubMed Google Scholar
Rueping, M. & Gültekin, Z. (2009). Unpublished results, Aachen. Google Scholar
Sarma, R. & Prajapati, D. (2008). Synlett. pp. 3001–3005. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tokuyama, H., Sato, M., Ueda, T. & Fukuyama, T. (2001). Heterocycles. 54, 105–108. CAS Google Scholar
Tom, N. J. & Ruel, E. M. (2001). Synthesis. pp. 1351–1355. CrossRef Google Scholar
Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162. Web of Science CrossRef PubMed CAS Google Scholar
Yan, M. C., Tu, Z. J., Lin, C. C., Ko, S. K., Hsu, J. M. & Yao, C. F. (2004). J. Org. Chem. 69, 1565–1570. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dihydroquinolines have been widely studied and found an important structural unit in synthetic organic and medicinal chemistry (Elmore et al., 2001; Dillard et al., 1973; Muren & Weissmann, 1971). Many dihydroquinoline derivatives have been reported in the literature (Edwards et al., 1998; Yan et al., 2004; Petasis & Butkevich, 2009) and some of them have biological effects. For example, 2,2,4-substituted 1,2-dihydroquinolines have been shown antibacterial activities (Johnson et al., 1989). They are also powerful intermediates for the preparation of quinolines (Dauphinee & Forrest, 1978; Yan et al., 2004; Tom & Ruel, 2001; Tokuyama et al., 2001) and 1,2,3,4-tetrahydroquinolines (Katritzky et al., 1996). Many synthetic methods have been developed for the preparation of quinolines (Sarma & Prajapati, 2008; Martinez et al., 2008; Huang et al., 2009) and many quinolines display biological effects (Hamann et al., 1998; He et al., 2003; LaMontagne et al., 1989).
In the title molecule, illustrated in Fig. 1, ring A (C1-C4/C9/N1) is not planar with the puckering parameters (Cremer & Pople, 1975) QT = 0.358 (2) Å, φ = 155.3 (4)° and θ = 67.1 (4)°.
In the crystal of the title compound intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into R22(10) dimers centered about an inversion center (Bernstein et al., 1995). These dimers are further connected via intermolecular N-H···O hydrogen bonds (Table 1) to form infinite double chains propagating along [001] (Fig. 2).