organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(1,3-Dioxoisoindolin-2-yl)acetamido]­acetic acid

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong
*Correspondence e-mail: moazzamhussain_b@yahoo.com, rwywong@hkbu.edu.hk

(Received 12 October 2010; accepted 22 October 2010; online 30 October 2010)

The title mol­ecule, C12H10N2O5, is non-planar with dihedral angles of 89.08 (7) and 83.21 (7)° between the phthalimide and acetamide mean planes, and the acetamide and acetic acid mean planes, respectively. In the crystal, symmetry-related mol­ecules are linked via N—H⋯O and O—H⋯O hydrogen bonds, forming an undulating two-dimensional network. There are also a number of weak C—H⋯O inter­actions, leading to the formation of a three-dimensional arrangement.

Related literature

For the structures and biological properties of phthalimides and various derivatives, see: Antunes et al. (1998[Antunes, R., Batista, H., Srivastava, R. M., Thomas, G. & Araujo, C. C. (1998). Bioorg. Med. Chem. Lett. 8, 3071-3076.]); Barooah & Baruah (2007[Barooah, N. & Baruah, J. B. (2007). Mini-Rev. Org. Chem. 4, 292-309.]); Barooah et al. (2006[Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006). J. Mol. Struct. 791, 122-130.]); Khan et al. (2002[Khan, M. N. & Ismail, N. H. (2002). J. Chem. Res. 12, 593-595.]); Sharma et al. (2010[Sharma, U., Kumar, P., Kumar, N. & Singh, B. (2010). Mini Rev. Med. Chem. 10, 678-704.]); Yunus et al. (2008[Yunus, U., Tahir, M. K., Bhatti, M. H., Yousaf, N. & Helliwell, M. (2008). Acta Cryst. E64, o476-o477.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For bond lengths and angles in the phthalimide group, see: Feeder & Jones (1996[Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 913-919.]); Ng (1992[Ng, S. W. (1992). Acta Cryst. C48, 1694-1695.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O5

  • Mr = 262.22

  • Monoclinic, P 21 /n

  • a = 4.8195 (5) Å

  • b = 10.3415 (11) Å

  • c = 22.629 (2) Å

  • β = 90.17 (1)°

  • V = 1127.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.34 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.939, Tmax = 1.000

  • 6788 measured reflections

  • 2731 independent reflections

  • 2533 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.07

  • 2731 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.908 (18) 2.172 (19) 3.0208 (13) 155.3 (17)
O5—H5⋯O3ii 0.93 (2) 1.67 (2) 2.5777 (13) 165.4 (17)
C2—H2A⋯O5iii 0.95 2.52 3.3142 (17) 141
C9—H9A⋯O4iv 0.99 2.56 3.2407 (15) 126
C9—H9B⋯O4v 0.99 2.59 3.3378 (15) 132
C11—H11A⋯O5i 0.99 2.48 3.4364 (14) 162
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phthalimides and its derivatives are one of the important class of organic molecules that possess diverse structural (Barooah & Baruah, 2007) and biological applications (Sharma et al., 2010). Among phthalimides derivatives, N-phthaloylglycine has been the most widely studied for its metal complexes with supramolecular structures (Barooah et al., 2006), kinetic studies for cleavage with various amines (Khan & Ismail, 2002) and heterocyclic derivatives such as oxadiazole (Antunes et al., 1998) and 1,2,4-triazole (Yunus et al., 2008). In the present investigation we report on the crystal structure of an acetamide derivative of the N-phthaloylglycine moiety.

The molecular structure of the title molecule is illustrated in Fig. 1. As a whole the molecule is non-planar and consists of three groups, namely phthalimide, acetamide and acetic acid, which are individually planar. The dihedral angle between the phthalimide (N1/C8/C5/C6/C7) and acetamide (C9/C10/N2/O3) mean planes is 89.08 (7)°, while between the acetamide (C9/C10/N2/O3) and acetic acid (C11/C12/O4/O5) mean planes the dihedral angle is 83.21 (7)°.

The phthalimide group is planar and the bond lengths and angles are within normal ranges (Ng, 1992; Feeder & Jones, 1996). The acetamide and acetic acid groups have trigonal planar geometry with the sum of the bond angles being 359.98 ° and 359.96 °, respectively. The CN bond lengths in the acetamide moiety, [C10—N2 1.3290 (14) Å and C11—N2 1.4546 (16) Å] are very close to those expected for double and single CN bonds, respectively (Allen et al., 1987). The C=O bond length [C10-O3 = 1.2399 (14) Å] is significantly longer than the C—O bond length in the acetic acid moiety [C12—O4 = 1.2086 (15) Å]. This suggests that some tautomerism of the type OC—NH and HOC=N exists in the acetamide moiety. The carbon oxygen distances in the carboxylate (COO-) group show typical double and single bond values [C12—O4 = 1.2086 (15) Å and C12—O5 = 1.3265 (14) Å, respectively].

In the crystal neighbouring and symmetry related molecules are linked via N-H···O and O-H···O hydrogen bonds to form an undulating two-dimensional network (Fig. 2 and Table 1). Together with a number of intermolecular C-H···O contacts (Table 1) these interactions lead to the formation of a three dimensional arrangement.

Related literature top

For the structures and biological properties of phthalimides and various derivatives, see: Antunes et al. (1998); Barooah & Baruah (2007); Barooah et al. (2006); Khan et al. (2002); Sharma et al. (2010); Yunus et al. (2008). For standard bond lengths, see: Allen et al. (1987). For bond lengths and angles in the phthalimide group, see: Feeder & Jones (1996); Ng (1992).

Experimental top

The title compound was synthesized by the treatment of N-phthaloylglycyl chloride (30 mmol) with potassium thiocyanate (30 mmol) in dry acetone (50 ml). The mixture was stirred at 328 - 333 K for 1 h, followed by the addition of glycine (30 mmol) and a few drops of pyridine, and then refluxed for 6 h. After reflux, the mixture was treated with ice cold water untill a precipitate appeared, which was collected by filtration, washed with water, and recrystallized with ethanol to give colourless block-like crystals, suitable for X-ray diffraction analysis.

Refinement top

The OH and NH H-atoms were located in a difference electron density map and were freely refined: N-H = 0.908 (19) Å, O-H = 0.93 (3) Å. The C-bound H-atoms were included in calculated positions and treated as riding: C-H = 0.95 and 0.99Å for CH and CH2 H-atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Structure description top

Phthalimides and its derivatives are one of the important class of organic molecules that possess diverse structural (Barooah & Baruah, 2007) and biological applications (Sharma et al., 2010). Among phthalimides derivatives, N-phthaloylglycine has been the most widely studied for its metal complexes with supramolecular structures (Barooah et al., 2006), kinetic studies for cleavage with various amines (Khan & Ismail, 2002) and heterocyclic derivatives such as oxadiazole (Antunes et al., 1998) and 1,2,4-triazole (Yunus et al., 2008). In the present investigation we report on the crystal structure of an acetamide derivative of the N-phthaloylglycine moiety.

The molecular structure of the title molecule is illustrated in Fig. 1. As a whole the molecule is non-planar and consists of three groups, namely phthalimide, acetamide and acetic acid, which are individually planar. The dihedral angle between the phthalimide (N1/C8/C5/C6/C7) and acetamide (C9/C10/N2/O3) mean planes is 89.08 (7)°, while between the acetamide (C9/C10/N2/O3) and acetic acid (C11/C12/O4/O5) mean planes the dihedral angle is 83.21 (7)°.

The phthalimide group is planar and the bond lengths and angles are within normal ranges (Ng, 1992; Feeder & Jones, 1996). The acetamide and acetic acid groups have trigonal planar geometry with the sum of the bond angles being 359.98 ° and 359.96 °, respectively. The CN bond lengths in the acetamide moiety, [C10—N2 1.3290 (14) Å and C11—N2 1.4546 (16) Å] are very close to those expected for double and single CN bonds, respectively (Allen et al., 1987). The C=O bond length [C10-O3 = 1.2399 (14) Å] is significantly longer than the C—O bond length in the acetic acid moiety [C12—O4 = 1.2086 (15) Å]. This suggests that some tautomerism of the type OC—NH and HOC=N exists in the acetamide moiety. The carbon oxygen distances in the carboxylate (COO-) group show typical double and single bond values [C12—O4 = 1.2086 (15) Å and C12—O5 = 1.3265 (14) Å, respectively].

In the crystal neighbouring and symmetry related molecules are linked via N-H···O and O-H···O hydrogen bonds to form an undulating two-dimensional network (Fig. 2 and Table 1). Together with a number of intermolecular C-H···O contacts (Table 1) these interactions lead to the formation of a three dimensional arrangement.

For the structures and biological properties of phthalimides and various derivatives, see: Antunes et al. (1998); Barooah & Baruah (2007); Barooah et al. (2006); Khan et al. (2002); Sharma et al. (2010); Yunus et al. (2008). For standard bond lengths, see: Allen et al. (1987). For bond lengths and angles in the phthalimide group, see: Feeder & Jones (1996); Ng (1992).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with displacement ellipsodes drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing viewed along the c axis of the title compound, showing the N-H···O and O-H···O hydrogen bonds as cyan lines (H-atoms not involved in hydrogen bonding have been omitted for clarity).
2-[2-(1,3-Dioxoisoindolin-2-yl)acetamido]acetic acid top
Crystal data top
C12H10N2O5F(000) = 544
Mr = 262.22Dx = 1.544 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6788 reflections
a = 4.8195 (5) Åθ = 2.7–28.3°
b = 10.3415 (11) ŵ = 0.12 mm1
c = 22.629 (2) ÅT = 173 K
β = 90.17 (1)°Block, colorless
V = 1127.9 (2) Å30.34 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2731 independent reflections
Radiation source: fine-focus sealed tube2533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω and φ scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 56
Tmin = 0.939, Tmax = 1.000k = 613
6788 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.037P)2 + 0.579P]
where P = (Fo2 + 2Fc2)/3
2731 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H10N2O5V = 1127.9 (2) Å3
Mr = 262.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8195 (5) ŵ = 0.12 mm1
b = 10.3415 (11) ÅT = 173 K
c = 22.629 (2) Å0.34 × 0.24 × 0.20 mm
β = 90.17 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2731 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2533 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 1.000Rint = 0.015
6788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
2731 reflectionsΔρmin = 0.24 e Å3
180 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.42937 (19)0.17860 (9)0.07903 (4)0.0274 (3)
O20.7194 (2)0.46000 (10)0.04263 (4)0.0338 (3)
O31.11056 (19)0.36795 (9)0.23395 (4)0.0250 (3)
O40.8527 (2)0.07998 (11)0.31666 (4)0.0333 (3)
O51.05382 (19)0.04425 (9)0.22876 (4)0.0264 (3)
N11.0744 (2)0.32888 (10)0.07534 (4)0.0205 (3)
N20.8077 (2)0.25359 (10)0.18003 (4)0.0214 (3)
C11.1901 (3)0.10108 (14)0.04587 (6)0.0285 (4)
C21.0418 (3)0.09730 (15)0.09889 (6)0.0336 (4)
C30.8300 (3)0.18476 (15)0.11078 (6)0.0329 (4)
C40.7551 (3)0.27995 (14)0.06977 (6)0.0279 (4)
C50.9028 (2)0.28280 (12)0.01754 (5)0.0223 (3)
C61.1163 (2)0.19590 (12)0.00576 (5)0.0219 (3)
C71.2343 (2)0.22725 (12)0.05335 (5)0.0208 (3)
C80.8738 (2)0.37080 (12)0.03419 (5)0.0223 (3)
C91.1328 (2)0.39863 (11)0.12934 (5)0.0206 (3)
C101.0158 (2)0.33726 (11)0.18492 (5)0.0190 (3)
C110.6866 (2)0.19718 (13)0.23289 (6)0.0245 (3)
C120.8745 (2)0.10203 (12)0.26443 (5)0.0218 (3)
H1A1.334800.041300.037800.0340*
H20.743 (4)0.2331 (18)0.1435 (8)0.037 (5)*
H2A1.086900.033400.127500.0400*
H3A0.734300.179800.147400.0390*
H4A0.609700.339600.077500.0340*
H51.159 (4)0.018 (2)0.2480 (8)0.043 (5)*
H9A1.056600.487200.125700.0250*
H9B1.336400.406300.133800.0250*
H11A0.512500.152400.221900.0290*
H11B0.637900.267700.260600.0290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (4)0.0280 (5)0.0271 (5)0.0052 (4)0.0068 (4)0.0024 (4)
O20.0349 (5)0.0362 (5)0.0302 (5)0.0138 (4)0.0064 (4)0.0023 (4)
O30.0277 (4)0.0293 (5)0.0180 (4)0.0050 (4)0.0041 (3)0.0004 (3)
O40.0375 (5)0.0401 (6)0.0224 (4)0.0032 (4)0.0029 (4)0.0082 (4)
O50.0292 (5)0.0281 (5)0.0218 (4)0.0061 (4)0.0019 (3)0.0023 (4)
N10.0219 (5)0.0227 (5)0.0168 (4)0.0014 (4)0.0018 (4)0.0003 (4)
N20.0225 (5)0.0223 (5)0.0195 (5)0.0013 (4)0.0043 (4)0.0029 (4)
C10.0313 (6)0.0291 (7)0.0251 (6)0.0009 (5)0.0007 (5)0.0051 (5)
C20.0411 (7)0.0366 (7)0.0232 (6)0.0061 (6)0.0011 (5)0.0094 (5)
C30.0370 (7)0.0434 (8)0.0183 (6)0.0096 (6)0.0047 (5)0.0007 (5)
C40.0281 (6)0.0352 (7)0.0205 (6)0.0041 (5)0.0039 (5)0.0045 (5)
C50.0235 (5)0.0254 (6)0.0181 (5)0.0028 (5)0.0002 (4)0.0020 (4)
C60.0227 (5)0.0243 (6)0.0187 (5)0.0036 (4)0.0009 (4)0.0002 (4)
C70.0219 (5)0.0209 (5)0.0197 (5)0.0021 (4)0.0001 (4)0.0003 (4)
C80.0225 (5)0.0260 (6)0.0185 (5)0.0000 (4)0.0014 (4)0.0033 (4)
C90.0235 (5)0.0210 (5)0.0173 (5)0.0016 (4)0.0013 (4)0.0008 (4)
C100.0201 (5)0.0186 (5)0.0182 (5)0.0028 (4)0.0020 (4)0.0003 (4)
C110.0200 (5)0.0275 (6)0.0259 (6)0.0005 (5)0.0012 (4)0.0054 (5)
C120.0207 (5)0.0219 (6)0.0228 (6)0.0051 (4)0.0021 (4)0.0021 (4)
Geometric parameters (Å, º) top
O1—C71.2130 (14)C3—C41.401 (2)
O2—C81.2008 (15)C4—C51.3782 (18)
O3—C101.2399 (14)C5—C81.4896 (17)
O4—C121.2086 (15)C5—C61.3913 (16)
O5—C121.3265 (14)C6—C71.4877 (16)
O5—H50.93 (2)C9—C101.5188 (16)
N1—C81.4087 (14)C11—C121.5146 (17)
N1—C91.4459 (15)C1—H1A0.9500
N1—C71.3959 (15)C2—H2A0.9500
N2—C101.3290 (14)C3—H3A0.9500
N2—C111.4546 (16)C4—H4A0.9500
N2—H20.908 (18)C9—H9A0.9900
C1—C21.395 (2)C9—H9B0.9900
C1—C61.3834 (18)C11—H11A0.9900
C2—C31.390 (2)C11—H11B0.9900
C12—O5—H5112.5 (11)O3—C10—N2121.14 (10)
C7—N1—C9124.79 (9)O3—C10—C9119.83 (10)
C8—N1—C9122.45 (10)N2—C11—C12114.03 (9)
C7—N1—C8112.00 (9)O4—C12—O5124.66 (11)
C10—N2—C11119.81 (10)O4—C12—C11121.99 (11)
C10—N2—H2119.0 (12)O5—C12—C11113.31 (10)
C11—N2—H2121.2 (12)C2—C1—H1A121.00
C2—C1—C6116.87 (13)C6—C1—H1A122.00
C1—C2—C3121.49 (13)C1—C2—H2A119.00
C2—C3—C4121.31 (13)C3—C2—H2A119.00
C3—C4—C5116.72 (13)C2—C3—H3A119.00
C4—C5—C8129.61 (11)C4—C3—H3A119.00
C4—C5—C6122.03 (11)C3—C4—H4A122.00
C6—C5—C8108.37 (9)C5—C4—H4A122.00
C1—C6—C5121.57 (11)N1—C9—H9A109.00
C1—C6—C7130.24 (11)N1—C9—H9B108.00
C5—C6—C7108.18 (10)C10—C9—H9A108.00
N1—C7—C6105.94 (9)C10—C9—H9B109.00
O1—C7—C6129.35 (11)H9A—C9—H9B108.00
O1—C7—N1124.71 (11)N2—C11—H11A109.00
O2—C8—N1123.76 (11)N2—C11—H11B109.00
O2—C8—C5130.84 (10)C12—C11—H11A109.00
N1—C8—C5105.41 (9)C12—C11—H11B109.00
N1—C9—C10114.81 (9)H11A—C11—H11B108.00
N2—C10—C9119.02 (10)
C9—N1—C7—C6173.65 (10)C3—C4—C5—C8179.94 (13)
C7—N1—C8—O2177.27 (11)C3—C4—C5—C60.06 (19)
C9—N1—C8—O26.78 (17)C4—C5—C6—C10.53 (19)
C7—N1—C8—C52.75 (12)C6—C5—C8—N10.90 (12)
C8—N1—C7—O1176.11 (11)C8—C5—C6—C71.12 (12)
C9—N1—C7—O15.88 (18)C4—C5—C6—C7178.88 (11)
C8—N1—C7—C63.42 (12)C8—C5—C6—C1179.47 (11)
C8—N1—C9—C10104.76 (12)C6—C5—C8—O2179.13 (12)
C9—N1—C8—C5173.24 (9)C4—C5—C8—O20.9 (2)
C7—N1—C9—C1085.99 (12)C4—C5—C8—N1179.11 (12)
C11—N2—C10—O30.39 (17)C1—C6—C7—O12.6 (2)
C11—N2—C10—C9177.90 (10)C5—C6—C7—O1176.76 (12)
C10—N2—C11—C1270.18 (14)C5—C6—C7—N12.74 (12)
C2—C1—C6—C7178.78 (12)C1—C6—C7—N1177.93 (12)
C2—C1—C6—C50.48 (19)N1—C9—C10—O3161.21 (10)
C6—C1—C2—C30.0 (2)N1—C9—C10—N220.48 (14)
C1—C2—C3—C40.5 (2)N2—C11—C12—O4154.71 (12)
C2—C3—C4—C50.4 (2)N2—C11—C12—O527.42 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.908 (18)2.172 (19)3.0208 (13)155.3 (17)
O5—H5···O3ii0.93 (2)1.67 (2)2.5777 (13)165.4 (17)
C2—H2A···O5iii0.952.523.3142 (17)141
C9—H9A···O4iv0.992.563.2407 (15)126
C9—H9B···O4v0.992.593.3378 (15)132
C11—H11A···O5i0.992.483.4364 (14)162
Symmetry codes: (i) x1, y, z; (ii) x+5/2, y1/2, z+1/2; (iii) x+2, y, z; (iv) x+3/2, y+1/2, z+1/2; (v) x+5/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N2O5
Mr262.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)4.8195 (5), 10.3415 (11), 22.629 (2)
β (°) 90.17 (1)
V3)1127.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.34 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.939, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6788, 2731, 2533
Rint0.015
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.07
No. of reflections2731
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.908 (18)2.172 (19)3.0208 (13)155.3 (17)
O5—H5···O3ii0.93 (2)1.67 (2)2.5777 (13)165.4 (17)
C2—H2A···O5iii0.952.523.3142 (17)141
C9—H9A···O4iv0.992.563.2407 (15)126
C9—H9B···O4v0.992.593.3378 (15)132
C11—H11A···O5i0.992.483.4364 (14)162
Symmetry codes: (i) x1, y, z; (ii) x+5/2, y1/2, z+1/2; (iii) x+2, y, z; (iv) x+3/2, y+1/2, z+1/2; (v) x+5/2, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAntunes, R., Batista, H., Srivastava, R. M., Thomas, G. & Araujo, C. C. (1998). Bioorg. Med. Chem. Lett. 8, 3071–3076.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBarooah, N. & Baruah, J. B. (2007). Mini-Rev. Org. Chem. 4, 292–309.  Web of Science CrossRef CAS Google Scholar
First citationBarooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006). J. Mol. Struct. 791, 122–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeeder, N. & Jones, W. (1996). Acta Cryst. C52, 913–919.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, M. N. & Ismail, N. H. (2002). J. Chem. Res. 12, 593–595.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. (1992). Acta Cryst. C48, 1694–1695.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSharma, U., Kumar, P., Kumar, N. & Singh, B. (2010). Mini Rev. Med. Chem. 10, 678–704.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Yousaf, N. & Helliwell, M. (2008). Acta Cryst. E64, o476–o477.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds