organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl­enedi­ammonium bis­­(3,4-dihy­dr­oxy­benzoate) monohydrate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 12 October 2010; accepted 18 October 2010; online 23 October 2010)

In the title compound, C2H10N22+·2C7H5O4·H2O, the cation lies on a centre of symmetry. The crystal structure is stabilized by various inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, and by weak ππ stacking inter­actions with centroid–centroid distances between symmetry-related benzene rings ranging from 3.5249 (13) to 3.7566 (14) Å.

Related literature

For protocatechuic acid (3,4-dihydroxybenzoic acid) and its pharmacological activity, see: An et al. (2006[An, L. J., Guan, S., Shi, G. F., Bao, Y. M., Duan, Y. L. & Jiang, B. (2006). Food Chem. Toxicol. 44, 436-443.]); Guan et al. (2006[Guan, S., Bao, Y. M., Jiang, B. & An, L. J. (2006). Eur. J. Pharmacol. 538, 73-79.]); Lin et al. (2009[Lin, C. Y., Huang, C. S., Huang, C. Y. & Yin, M. C. (2009). J. Agric. Food Chem. 57, 6661-6667.]); Tseng et al. (1998[Tseng, T. H., Hsu, J. D., Lo, M. H., Chu, C. Y., Chou, F. P., Huang, C. L. & Wang, C. J. (1998). Cancer Lett. 126, 199-207.]); Yip et al. (2006[Yip, E. C. H., Chan, A. S. L., Pang, H., Tam, Y. K. & Wong, Y. H. (2006). Cell Biol. Toxicol. 22, 293-302.]). For related structures, see: Mazurek et al. (2007[Mazurek, J., Dova, E. & Helmond, R. (2007). Acta Cryst. E63, o3289.]); Xu et al. (2008[Xu, R., Xu, X., Wang, D., Yang, X. & Wang, X. (2008). Acta Cryst. E64, o1808-o1809.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·2C7H5O4·H2O

  • Mr = 386.36

  • Triclinic, [P \overline 1]

  • a = 6.8489 (8) Å

  • b = 10.7999 (12) Å

  • c = 12.0137 (13) Å

  • α = 75.866 (1)°

  • β = 81.387 (2)°

  • γ = 83.599 (1)°

  • V = 849.40 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.969

  • 4432 measured reflections

  • 3011 independent reflections

  • 2215 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.02

  • 3011 reflections

  • 256 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.89 2.04 2.904 (3) 163
N1—H1C⋯O4ii 0.89 1.94 2.803 (3) 163
N1—H1D⋯O4 0.89 1.98 2.741 (3) 143
N2—H2B⋯O3iii 0.89 2.09 2.931 (3) 158
N2—H2B⋯O6iii 0.89 2.54 3.079 (3) 120
N2—H2C⋯O8 0.89 1.90 2.742 (2) 157
N2—H2D⋯O7iv 0.89 1.94 2.799 (3) 163
O1—H1A⋯O1Wv 0.82 1.94 2.753 (3) 169
O2—H2A⋯O7vi 0.82 1.95 2.755 (2) 168
O5—H5A⋯O3 0.82 2.07 2.834 (2) 156
O5—H5A⋯O4 0.82 2.35 3.014 (3) 139
O6—H6⋯O1Wvii 0.82 1.90 2.686 (2) 160
O1W—H1W⋯O3 0.85 (2) 1.86 (2) 2.676 (2) 159 (3)
O1W—H2W⋯O8vi 0.88 (2) 1.85 (2) 2.725 (2) 173 (3)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) x-1, y, z; (v) -x, -y+2, -z+1; (vi) x-1, y+1, z; (vii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Protocatechuic acid (3,4-dihydroxybenzoic acid) is one of the main secondary metabolites in the plant kingdom (Guan et al., 2006). Significantly, it has been found that protocatechuic acid and its derivatives possess diverse pharmacological activities such as, antioxidant, antiapoptosis, anticarcinogen, anticoagulatory and antiinflammatory (An et al., 2006; Lin et al., 2009; Tseng et al., 1998; Yip et al., 2006). Herein, we report on the molecular and crystal structure of the title compound.

In the asymmetric unit of the title compound, illustrated in Fig. 1, there are two half protonated ethylenediammonium cations located about inversion centers, two singly deprotonated 3,4-dihydroxybenzoate anions, and one water molecule of crystallization. The bond distances and angles in the title compound are normal (Mazurek et al., 2007; Xu et al., 2008).

In the crystal the cations and anions are self-assembled by various intermolecular O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2) to form a supramolecular network. The crystal structure is further stabilized by weak π-π stacking interactions (Fig. 2) occurring between adjacent benzene rings, with centroid-to-centroid distances of 3.5249 (13) Å [Cg1···Cg1i; Cg1 = centroid of ring (C1-C6); symmetry code (i) = 1-x, 2-y, 1-z], 3.7165 (13) Å [Cg1···Cg1ii; Cg1 = centroid of ring (C1-C6); symmetry code (ii) = -x, 2-y, 1-z] and 3.7566 (14) [Cg2···Cg2iii; Cg2 = centroid of ring (C8-C13); symmetry code (iii) = 2-x, 1-y, -z] .

Related literature top

For protocatechuic acid and its pharmacological activity, see: An et al. (2006); Guan et al. (2006); Lin et al. (2009); Tseng et al. (1998); Yip et al. (2006). For related structures, see: Mazurek et al. (2007); Xu et al. (2008).

Experimental top

A solution of ethylenediamine (1 mmol in 0.2 ml water) was added dropwise to a solution of protocatechuic acid (2 mmol) in acetonitrile (15 ml), and the mixture was stirred for 30 min at RT. After several days colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solution.

Refinement top

The water molecule H-atoms were located in difference Fourier maps and were refined distance restraints of O—H = 0.86 Å and Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and refined as riding: N—H = 0.89 Å, O—H = 0.82 Å, and C—H = 0.93 and 0.97 Å for CH and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(parent N, O or C-atom), with k = 1.2 for CH and CH2 H-atoms, and k = 1.5 for the NH3+ and OH H-atoms.

Structure description top

Protocatechuic acid (3,4-dihydroxybenzoic acid) is one of the main secondary metabolites in the plant kingdom (Guan et al., 2006). Significantly, it has been found that protocatechuic acid and its derivatives possess diverse pharmacological activities such as, antioxidant, antiapoptosis, anticarcinogen, anticoagulatory and antiinflammatory (An et al., 2006; Lin et al., 2009; Tseng et al., 1998; Yip et al., 2006). Herein, we report on the molecular and crystal structure of the title compound.

In the asymmetric unit of the title compound, illustrated in Fig. 1, there are two half protonated ethylenediammonium cations located about inversion centers, two singly deprotonated 3,4-dihydroxybenzoate anions, and one water molecule of crystallization. The bond distances and angles in the title compound are normal (Mazurek et al., 2007; Xu et al., 2008).

In the crystal the cations and anions are self-assembled by various intermolecular O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2) to form a supramolecular network. The crystal structure is further stabilized by weak π-π stacking interactions (Fig. 2) occurring between adjacent benzene rings, with centroid-to-centroid distances of 3.5249 (13) Å [Cg1···Cg1i; Cg1 = centroid of ring (C1-C6); symmetry code (i) = 1-x, 2-y, 1-z], 3.7165 (13) Å [Cg1···Cg1ii; Cg1 = centroid of ring (C1-C6); symmetry code (ii) = -x, 2-y, 1-z] and 3.7566 (14) [Cg2···Cg2iii; Cg2 = centroid of ring (C8-C13); symmetry code (iii) = 2-x, 1-y, -z] .

For protocatechuic acid and its pharmacological activity, see: An et al. (2006); Guan et al. (2006); Lin et al. (2009); Tseng et al. (1998); Yip et al. (2006). For related structures, see: Mazurek et al. (2007); Xu et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 1 - x, -y, -z; (B) -x, 1 - y, 1 - z.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the intermolecular hydrogen bonding interactions as broken lines (see Table 1 for details).
Ethylenediammonium bis(3,4-dihydroxybenzoate) monohydrate top
Crystal data top
C2H10N22+·2C7H5O4·H2OZ = 2
Mr = 386.36F(000) = 408
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8489 (8) ÅCell parameters from 1194 reflections
b = 10.7999 (12) Åθ = 2.9–24.2°
c = 12.0137 (13) ŵ = 0.13 mm1
α = 75.866 (1)°T = 296 K
β = 81.387 (2)°Block, colourless
γ = 83.599 (1)°0.30 × 0.28 × 0.25 mm
V = 849.40 (16) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3011 independent reflections
Radiation source: fine-focus sealed tube2215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.963, Tmax = 0.969k = 1112
4432 measured reflectionsl = 714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.4204P]
where P = (Fo2 + 2Fc2)/3
3011 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.38 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C2H10N22+·2C7H5O4·H2Oγ = 83.599 (1)°
Mr = 386.36V = 849.40 (16) Å3
Triclinic, P1Z = 2
a = 6.8489 (8) ÅMo Kα radiation
b = 10.7999 (12) ŵ = 0.13 mm1
c = 12.0137 (13) ÅT = 296 K
α = 75.866 (1)°0.30 × 0.28 × 0.25 mm
β = 81.387 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3011 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2215 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.969Rint = 0.018
4432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.38 e Å3
3011 reflectionsΔρmin = 0.22 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2895 (3)0.8335 (2)0.5353 (2)0.0292 (6)
H10.30310.74890.57690.035*
C20.2487 (3)0.9308 (2)0.5934 (2)0.0301 (6)
H20.23220.91100.67380.036*
C30.2320 (3)1.0577 (2)0.5330 (2)0.0262 (5)
C40.2557 (3)1.0857 (2)0.4127 (2)0.0261 (5)
C50.2916 (3)0.9881 (2)0.3553 (2)0.0268 (5)
H50.30371.00760.27480.032*
C60.3103 (3)0.8606 (2)0.4157 (2)0.0258 (5)
C70.3510 (3)0.7571 (2)0.3514 (2)0.0280 (5)
C80.7469 (3)0.3983 (2)0.1577 (2)0.0295 (6)
H80.65710.33860.16100.035*
C90.6777 (3)0.5199 (2)0.1690 (2)0.0297 (6)
C100.8130 (3)0.6106 (2)0.1619 (2)0.0269 (5)
C111.0130 (3)0.5753 (2)0.1497 (2)0.0291 (6)
H111.10300.63440.14810.035*
C121.0809 (3)0.4523 (2)0.1397 (2)0.0286 (5)
H121.21630.42920.13180.034*
C130.9487 (3)0.3636 (2)0.1413 (2)0.0258 (5)
C141.0255 (3)0.2336 (2)0.12291 (19)0.0247 (5)
C150.5818 (4)0.0203 (2)0.0254 (2)0.0299 (6)
H15A0.56880.01560.10820.036*
H15B0.70910.01170.00850.036*
C160.0738 (4)0.4632 (3)0.5389 (2)0.0377 (6)
H16A0.10910.51730.58530.045*
H16B0.01450.38960.59100.045*
N10.2550 (3)0.41936 (18)0.46971 (18)0.0344 (5)
H1B0.22490.36270.43350.052*
H1C0.34520.38300.51640.052*
H1D0.30360.48620.41780.052*
N20.5721 (3)0.16219 (18)0.00223 (18)0.0323 (5)
H2B0.58030.19490.07370.048*
H2C0.67230.18570.02980.048*
H2D0.45790.19100.03670.048*
O10.1944 (3)1.15782 (15)0.58542 (14)0.0342 (4)
H1A0.15751.13110.65450.051*
O20.2417 (3)1.21302 (14)0.35551 (14)0.0358 (4)
H2A0.23851.21870.28650.054*
O30.3090 (2)0.77974 (16)0.24853 (15)0.0343 (4)
O40.4239 (3)0.64879 (15)0.40190 (15)0.0359 (4)
O50.4788 (3)0.55228 (19)0.1832 (2)0.0518 (6)
H5A0.45670.61280.21450.078*
O60.7346 (2)0.73121 (15)0.16717 (17)0.0385 (5)
H60.82450.77750.16140.058*
O71.2060 (2)0.19869 (15)0.13369 (14)0.0319 (4)
O80.9088 (2)0.16349 (15)0.09982 (15)0.0344 (4)
O1W0.0308 (3)0.90641 (16)0.18631 (16)0.0340 (4)
H1W0.084 (4)0.885 (3)0.208 (2)0.051*
H2W0.040 (4)0.990 (2)0.159 (2)0.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (14)0.0220 (12)0.0300 (14)0.0018 (10)0.0076 (11)0.0010 (10)
C20.0336 (14)0.0305 (14)0.0256 (13)0.0035 (10)0.0042 (11)0.0043 (11)
C30.0246 (12)0.0263 (13)0.0301 (14)0.0003 (10)0.0049 (10)0.0109 (11)
C40.0278 (13)0.0202 (12)0.0304 (14)0.0019 (9)0.0088 (10)0.0031 (10)
C50.0301 (13)0.0284 (13)0.0229 (13)0.0034 (10)0.0069 (10)0.0055 (10)
C60.0233 (12)0.0222 (12)0.0319 (14)0.0018 (9)0.0053 (10)0.0050 (10)
C70.0216 (12)0.0260 (13)0.0369 (15)0.0029 (10)0.0032 (11)0.0079 (11)
C80.0287 (13)0.0263 (13)0.0367 (15)0.0064 (10)0.0054 (11)0.0107 (11)
C90.0228 (12)0.0336 (14)0.0361 (15)0.0005 (10)0.0051 (11)0.0146 (11)
C100.0319 (13)0.0220 (12)0.0286 (13)0.0009 (10)0.0073 (10)0.0080 (10)
C110.0310 (13)0.0260 (13)0.0319 (14)0.0080 (10)0.0073 (11)0.0055 (11)
C120.0259 (13)0.0261 (13)0.0334 (14)0.0002 (10)0.0084 (11)0.0041 (11)
C130.0271 (12)0.0258 (12)0.0250 (13)0.0001 (10)0.0062 (10)0.0057 (10)
C140.0304 (13)0.0235 (12)0.0191 (12)0.0016 (10)0.0052 (10)0.0016 (10)
C150.0289 (13)0.0294 (13)0.0317 (14)0.0011 (10)0.0066 (10)0.0071 (11)
C160.0424 (15)0.0335 (14)0.0356 (15)0.0022 (12)0.0085 (12)0.0051 (12)
N10.0377 (12)0.0235 (11)0.0413 (13)0.0021 (9)0.0100 (10)0.0031 (9)
N20.0302 (11)0.0325 (12)0.0365 (12)0.0019 (9)0.0078 (9)0.0105 (10)
O10.0466 (11)0.0267 (9)0.0298 (10)0.0037 (8)0.0008 (8)0.0098 (7)
O20.0575 (12)0.0204 (9)0.0296 (10)0.0020 (8)0.0139 (9)0.0018 (7)
O30.0369 (10)0.0352 (10)0.0339 (10)0.0056 (8)0.0091 (8)0.0151 (8)
O40.0416 (10)0.0203 (9)0.0457 (11)0.0010 (7)0.0107 (9)0.0057 (8)
O50.0277 (10)0.0471 (13)0.0925 (17)0.0009 (8)0.0053 (10)0.0408 (11)
O60.0314 (10)0.0264 (9)0.0618 (13)0.0010 (7)0.0062 (9)0.0183 (9)
O70.0299 (9)0.0305 (9)0.0351 (10)0.0051 (7)0.0080 (8)0.0082 (8)
O80.0386 (10)0.0249 (9)0.0445 (11)0.0009 (7)0.0168 (8)0.0112 (8)
O1W0.0348 (10)0.0251 (9)0.0438 (11)0.0016 (8)0.0115 (8)0.0074 (8)
Geometric parameters (Å, º) top
C1—C21.379 (3)C12—H120.9300
C1—C61.383 (3)C13—C141.500 (3)
C1—H10.9300C14—O81.262 (3)
C2—C31.386 (3)C14—O71.268 (3)
C2—H20.9300C15—N21.485 (3)
C3—O11.362 (3)C15—C15i1.506 (5)
C3—C41.391 (3)C15—H15A0.9700
C4—C51.376 (3)C15—H15B0.9700
C4—O21.379 (3)C16—N11.486 (3)
C5—C61.393 (3)C16—C16ii1.507 (5)
C5—H50.9300C16—H16A0.9700
C6—C71.487 (3)C16—H16B0.9700
C7—O41.265 (3)N1—H1B0.8900
C7—O31.270 (3)N1—H1C0.8900
C8—C91.377 (3)N1—H1D0.8900
C8—C131.389 (3)N2—H2B0.8900
C8—H80.9300N2—H2C0.8900
C9—O51.364 (3)N2—H2D0.8900
C9—C101.401 (3)O1—H1A0.8200
C10—O61.365 (3)O2—H2A0.8200
C10—C111.376 (3)O5—H5A0.8200
C11—C121.385 (3)O6—H60.8200
C11—H110.9300O1W—H1W0.85 (2)
C12—C131.384 (3)O1W—H2W0.88 (2)
C2—C1—C6120.6 (2)C12—C13—C8119.0 (2)
C2—C1—H1119.7C12—C13—C14119.6 (2)
C6—C1—H1119.7C8—C13—C14121.4 (2)
C1—C2—C3120.7 (2)O8—C14—O7123.1 (2)
C1—C2—H2119.7O8—C14—C13119.3 (2)
C3—C2—H2119.7O7—C14—C13117.6 (2)
O1—C3—C2123.4 (2)N2—C15—C15i109.9 (2)
O1—C3—C4117.6 (2)N2—C15—H15A109.7
C2—C3—C4119.0 (2)C15i—C15—H15A109.7
C5—C4—O2122.5 (2)N2—C15—H15B109.7
C5—C4—C3120.1 (2)C15i—C15—H15B109.7
O2—C4—C3117.4 (2)H15A—C15—H15B108.2
C4—C5—C6121.0 (2)N1—C16—C16ii110.7 (3)
C4—C5—H5119.5N1—C16—H16A109.5
C6—C5—H5119.5C16ii—C16—H16A109.5
C1—C6—C5118.6 (2)N1—C16—H16B109.5
C1—C6—C7121.5 (2)C16ii—C16—H16B109.5
C5—C6—C7119.9 (2)H16A—C16—H16B108.1
O4—C7—O3122.3 (2)C16—N1—H1B109.5
O4—C7—C6118.7 (2)C16—N1—H1C109.5
O3—C7—C6119.1 (2)H1B—N1—H1C109.5
C9—C8—C13121.0 (2)C16—N1—H1D109.5
C9—C8—H8119.5H1B—N1—H1D109.5
C13—C8—H8119.5H1C—N1—H1D109.5
O5—C9—C8119.9 (2)C15—N2—H2B109.5
O5—C9—C10120.6 (2)C15—N2—H2C109.5
C8—C9—C10119.5 (2)H2B—N2—H2C109.5
O6—C10—C11123.9 (2)C15—N2—H2D109.5
O6—C10—C9116.5 (2)H2B—N2—H2D109.5
C11—C10—C9119.6 (2)H2C—N2—H2D109.5
C10—C11—C12120.3 (2)C3—O1—H1A109.5
C10—C11—H11119.8C4—O2—H2A109.5
C12—C11—H11119.8C9—O5—H5A109.5
C13—C12—C11120.5 (2)C10—O6—H6109.5
C13—C12—H12119.8H1W—O1W—H2W108 (2)
C11—C12—H12119.8
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2iii0.892.042.904 (3)163
N1—H1C···O4iv0.891.942.803 (3)163
N1—H1D···O40.891.982.741 (3)143
N2—H2B···O3v0.892.092.931 (3)158
N2—H2B···O6v0.892.543.079 (3)120
N2—H2C···O80.891.902.742 (2)157
N2—H2D···O7vi0.891.942.799 (3)163
O1—H1A···O1Wvii0.821.942.753 (3)169
O2—H2A···O7viii0.821.952.755 (2)168
O5—H5A···O30.822.072.834 (2)156
O5—H5A···O40.822.353.014 (3)139
O6—H6···O1Wix0.821.902.686 (2)160
O1W—H1W···O30.85 (2)1.86 (2)2.676 (2)159 (3)
O1W—H2W···O8viii0.88 (2)1.85 (2)2.725 (2)173 (3)
Symmetry codes: (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x, y+2, z+1; (viii) x1, y+1, z; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC2H10N22+·2C7H5O4·H2O
Mr386.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8489 (8), 10.7999 (12), 12.0137 (13)
α, β, γ (°)75.866 (1), 81.387 (2), 83.599 (1)
V3)849.40 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
4432, 3011, 2215
Rint0.018
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.02
No. of reflections3011
No. of parameters256
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.892.042.904 (3)162.8
N1—H1C···O4ii0.891.942.803 (3)163.1
N1—H1D···O40.891.982.741 (3)142.9
N2—H2B···O3iii0.892.092.931 (3)158.2
N2—H2B···O6iii0.892.543.079 (3)119.6
N2—H2C···O80.891.902.742 (2)156.9
N2—H2D···O7iv0.891.942.799 (3)162.5
O1—H1A···O1Wv0.821.942.753 (3)169.2
O2—H2A···O7vi0.821.952.755 (2)168.2
O5—H5A···O30.822.072.834 (2)155.8
O5—H5A···O40.822.353.014 (3)138.5
O6—H6···O1Wvii0.821.902.686 (2)160.3
O1W—H1W···O30.85 (2)1.86 (2)2.676 (2)159 (3)
O1W—H2W···O8vi0.88 (2)1.85 (2)2.725 (2)173 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x, y+2, z+1; (vi) x1, y+1, z; (vii) x+1, y, z.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationAn, L. J., Guan, S., Shi, G. F., Bao, Y. M., Duan, Y. L. & Jiang, B. (2006). Food Chem. Toxicol. 44, 436–443.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationGuan, S., Bao, Y. M., Jiang, B. & An, L. J. (2006). Eur. J. Pharmacol. 538, 73–79.  PubMed CAS Google Scholar
First citationLin, C. Y., Huang, C. S., Huang, C. Y. & Yin, M. C. (2009). J. Agric. Food Chem. 57, 6661–6667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazurek, J., Dova, E. & Helmond, R. (2007). Acta Cryst. E63, o3289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTseng, T. H., Hsu, J. D., Lo, M. H., Chu, C. Y., Chou, F. P., Huang, C. L. & Wang, C. J. (1998). Cancer Lett. 126, 199–207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXu, R., Xu, X., Wang, D., Yang, X. & Wang, X. (2008). Acta Cryst. E64, o1808–o1809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYip, E. C. H., Chan, A. S. L., Pang, H., Tam, Y. K. & Wong, Y. H. (2006). Cell Biol. Toxicol. 22, 293–302.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds