organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Methyl­phen­yl)-2,3-di­phenyl-5,6-di­hydro­imidazo[1,2-c]quinazoline

aKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, People's Republic of China
*Correspondence e-mail: xingqin118@126.com

(Received 9 September 2010; accepted 29 September 2010; online 9 October 2010)

In the title compound, C29H23N3, the pyrimidine ring adopts an envelope conformation. The dihedral angle between the phenyl rings attached to the pyrimidine-ring double bond is 62.09 (7)°. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming extended chains in the c-axis direction

Related literature

For background to quinazolines, see: Blackman et al. (1987[Blackman, A., Hambley, T. W., Picker, R., Taylor, W. C. & Thirasana, N. (1987). Tetrahedron Lett. 28, 5561-5564.]); Billimora & Cava (1994[Billimora, A. D. & Cava, M. P. (1994). J. Org. Chem. 59, 6777-6782.]); Helissey et al. (1994[Helissey, P., Cros, S. & Giorgi-Renault, S. (1994). Anti-Cancer Drugs Des. 9, 51-57.]); Brana et al. (1994[Brana, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martin, Y., Redondo, C., Schlick, E. & Walker, N. (1994). Anti-Cancer Drugs Des. 9, 527-538.]); Riou et al. (1991[Riou, J. F., Helissey, P., Grondard, L. & Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699-706.]); Ibrahim et al. (1988[Ibrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. & Green, B. (1988). Eur. J. Med. Chem. 23, 183-188.]); Shi et al. (1993[Shi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. & Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963-2964.], 2003[Shi, D. Q., Rong, L. C., Wang, J. X., Zhung, Q. Y., Wang, X. S. & Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.]); McMurry (1983[McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.]). For ttypical Csp2—N bond distances, see: Lorente et al. (1995[Lorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546-1555.]).

[Scheme 1]

Experimental

Crystal data
  • C29H23N3

  • Mr = 413.50

  • Monoclinic, P 21 /c

  • a = 16.006 (4) Å

  • b = 11.382 (3) Å

  • c = 11.906 (3) Å

  • β = 91.810 (4)°

  • V = 2167.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.44 × 0.42 × 0.33 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.976

  • 11276 measured reflections

  • 3819 independent reflections

  • 2071 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.146

  • S = 0.95

  • 3819 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.86 2.46 3.058 (3) 127
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinazolines are an important class of compounds found in many natural products (e.g. hinckdentin A, Blackman et al., 1987; Billimora & Cava, 1994), and employed as potent agents (Helissey et al., 1994; Brana et al., 1994; Riou et al., 1991; Ibrahim et al., 1988). Low-valent titanium reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 1993; 2003).

We report here the crystal structure of the title compound, (I), which was synthesized by the reaction of 4,5-diphenyl-2-(2-nitrophenyl)imidazole with 4-methylbenzaldehyde oxime, induced by low-valent titanium reagent (TiCl4/Sm) using THF as solvent at refluxing temperature.

In (I), atoms N1, C1, N2, C4, C5 and C10 form a fused pyrimidine ring, with interatomic distances of 1.445 (3)Å for N1—C1 and 1.475 (3)Å for N2—C1, which indicate that these C—N bonds are single. The pyrimidine ring adopts an envelope conformation; atoms N1, N2, C4, C5 and C10 are coplanar, while atom C1 deviates from this plane by -0.383 (3) Å. The dihedral angle between the C18—C23 and C24—C29 phenyl rings is 62.09 (7)°. In addition, because of the existence of a conjugated system, the N1—C10 [1.384 (3) Å], N2—C2 [1.382 (3) Å] and N2—C4 [1.362 (3) Å] distances are significantly shorter than the typical Csp2—N bond distnec (1.426 Å; Lorente et al., 1995). The molecules are linked by N—H···N hydrogen bonds to form extended chains in the c direction (Table 1, Fig. 2).

Related literature top

For background to quinazolines, see: Blackman et al. (1987); Billimora & Cava (1994); Helissey et al. (1994); Brana et al. (1994); Riou et al. (1991); Ibrahim et al. (1988); Shi et al. (1993, 2003); McMurry (1983). For ttypical Csp2—N bond distances, see: Lorente et al. (1995).

Experimental top

The title compound, (I), was prepared by the reaction of 4,5-diphenyl-2-(2-nitrophenyl)imidazole with 4-methylbenzaldehyde oxime, induced by low-valent titanium reagent (TiCl4/Sm). The single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a ethanol solution. 1H NMR (DMSO-d6, δ): 2.18 (3H, s, CH3), 6.32 (1H, d, J = 2.4 Hz, CH), 6.72 (2H, d, J = 8.4 Hz, ArH), 6.77–6.82 (2H, m, ArH), 7.01 (2H, d, J = 8.0 Hz, ArH), 7.09–7.26 (6H, m, ArH), 7.33 (1H, d, J = 2.4 Hz, ArH), 7.38–7.44 (3H, m, ArH), 7.51 (2H, d, J = 8.8 Hz, ArH), 7.84 (1H, d, J = 7.6 Hz, NH).

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances in the range 0.93–0.98Å and N—H distance of 0.86 Å; the Uiso(H) values were set equal to 1.2–1.5Ueq(C).

Structure description top

Quinazolines are an important class of compounds found in many natural products (e.g. hinckdentin A, Blackman et al., 1987; Billimora & Cava, 1994), and employed as potent agents (Helissey et al., 1994; Brana et al., 1994; Riou et al., 1991; Ibrahim et al., 1988). Low-valent titanium reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 1993; 2003).

We report here the crystal structure of the title compound, (I), which was synthesized by the reaction of 4,5-diphenyl-2-(2-nitrophenyl)imidazole with 4-methylbenzaldehyde oxime, induced by low-valent titanium reagent (TiCl4/Sm) using THF as solvent at refluxing temperature.

In (I), atoms N1, C1, N2, C4, C5 and C10 form a fused pyrimidine ring, with interatomic distances of 1.445 (3)Å for N1—C1 and 1.475 (3)Å for N2—C1, which indicate that these C—N bonds are single. The pyrimidine ring adopts an envelope conformation; atoms N1, N2, C4, C5 and C10 are coplanar, while atom C1 deviates from this plane by -0.383 (3) Å. The dihedral angle between the C18—C23 and C24—C29 phenyl rings is 62.09 (7)°. In addition, because of the existence of a conjugated system, the N1—C10 [1.384 (3) Å], N2—C2 [1.382 (3) Å] and N2—C4 [1.362 (3) Å] distances are significantly shorter than the typical Csp2—N bond distnec (1.426 Å; Lorente et al., 1995). The molecules are linked by N—H···N hydrogen bonds to form extended chains in the c direction (Table 1, Fig. 2).

For background to quinazolines, see: Blackman et al. (1987); Billimora & Cava (1994); Helissey et al. (1994); Brana et al. (1994); Riou et al. (1991); Ibrahim et al. (1988); Shi et al. (1993, 2003); McMurry (1983). For ttypical Csp2—N bond distances, see: Lorente et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I).
5-(4-Methylphenyl)-2,3-diphenyl-5,6-dihydroimidazo[1,2-c]quinazoline top
Crystal data top
C29H23N3F(000) = 872
Mr = 413.50Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2039 reflections
a = 16.006 (4) Åθ = 2.6–23.2°
b = 11.382 (3) ŵ = 0.08 mm1
c = 11.906 (3) ÅT = 298 K
β = 91.810 (4)°Block, yellow
V = 2167.8 (10) Å30.44 × 0.42 × 0.33 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3819 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1819
Tmin = 0.968, Tmax = 0.976k = 1013
11276 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.8501P]
where P = (Fo2 + 2Fc2)/3
3819 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C29H23N3V = 2167.8 (10) Å3
Mr = 413.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.006 (4) ŵ = 0.08 mm1
b = 11.382 (3) ÅT = 298 K
c = 11.906 (3) Å0.44 × 0.42 × 0.33 mm
β = 91.810 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3819 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2071 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.976Rint = 0.038
11276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.95Δρmax = 0.21 e Å3
3819 reflectionsΔρmin = 0.25 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14553 (14)0.83172 (18)0.85068 (18)0.0517 (6)
H1A0.14950.89430.89100.062*
N20.21849 (13)0.69225 (17)0.74512 (16)0.0418 (5)
N30.16675 (13)0.59511 (17)0.59709 (16)0.0429 (5)
C10.21383 (16)0.7487 (2)0.8563 (2)0.0442 (6)
H10.26570.79270.87040.053*
C20.28310 (15)0.6234 (2)0.7078 (2)0.0421 (6)
C30.24973 (16)0.5649 (2)0.6166 (2)0.0423 (6)
C40.15000 (16)0.6717 (2)0.67723 (19)0.0405 (6)
C50.07381 (16)0.7354 (2)0.6952 (2)0.0422 (6)
C60.00388 (17)0.7246 (2)0.6248 (2)0.0513 (7)
H60.00390.67100.56580.062*
C70.06578 (18)0.7928 (3)0.6415 (3)0.0618 (8)
H70.11270.78550.59390.074*
C80.06544 (19)0.8721 (3)0.7295 (3)0.0640 (8)
H80.11240.91810.74070.077*
C90.00313 (19)0.8838 (2)0.8003 (2)0.0576 (8)
H90.00240.93710.85940.069*
C100.07411 (17)0.8157 (2)0.7839 (2)0.0455 (7)
C110.20700 (16)0.6564 (2)0.9477 (2)0.0435 (6)
C120.13376 (18)0.5960 (2)0.9621 (2)0.0557 (7)
H120.08780.61080.91440.067*
C130.1277 (2)0.5138 (2)1.0465 (2)0.0653 (8)
H130.07750.47421.05520.078*
C140.1946 (2)0.4892 (2)1.1179 (2)0.0602 (8)
C150.2675 (2)0.5504 (3)1.1031 (2)0.0650 (8)
H150.31340.53551.15080.078*
C160.27413 (18)0.6330 (2)1.0196 (2)0.0557 (7)
H160.32420.67321.01160.067*
C170.1870 (3)0.4005 (3)1.2109 (3)0.0974 (13)
H17A0.16990.43941.27790.146*
H17B0.24010.36311.22490.146*
H17C0.14610.34241.18900.146*
C180.36672 (16)0.6215 (2)0.7620 (2)0.0451 (6)
C190.41102 (18)0.7239 (3)0.7841 (2)0.0558 (7)
H190.38850.79570.76130.067*
C200.48788 (19)0.7208 (3)0.8393 (3)0.0666 (9)
H200.51630.79040.85520.080*
C210.5223 (2)0.6158 (3)0.8708 (3)0.0735 (10)
H210.57420.61370.90830.088*
C220.48048 (19)0.5135 (3)0.8470 (3)0.0669 (9)
H220.50460.44190.86730.080*
C230.40312 (17)0.5155 (3)0.7934 (2)0.0559 (7)
H230.37510.44540.77810.067*
C240.29181 (16)0.4794 (2)0.5439 (2)0.0442 (6)
C250.25755 (18)0.3695 (2)0.5252 (2)0.0576 (8)
H250.20680.35040.55630.069*
C260.2981 (2)0.2877 (3)0.4605 (3)0.0681 (9)
H260.27550.21310.45010.082*
C270.3716 (2)0.3166 (3)0.4118 (3)0.0672 (9)
H270.39850.26190.36770.081*
C280.40545 (19)0.4259 (3)0.4280 (2)0.0649 (8)
H280.45510.44570.39420.078*
C290.36592 (17)0.5066 (2)0.4945 (2)0.0551 (7)
H290.38970.58040.50610.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0703 (16)0.0421 (13)0.0425 (13)0.0085 (11)0.0006 (12)0.0063 (10)
N20.0491 (13)0.0440 (12)0.0324 (11)0.0006 (10)0.0024 (10)0.0010 (9)
N30.0507 (14)0.0441 (12)0.0340 (12)0.0021 (10)0.0050 (10)0.0018 (10)
C10.0535 (16)0.0445 (15)0.0346 (14)0.0002 (12)0.0033 (12)0.0062 (11)
C20.0477 (15)0.0454 (15)0.0334 (14)0.0028 (12)0.0050 (12)0.0000 (12)
C30.0496 (16)0.0445 (15)0.0329 (14)0.0021 (12)0.0036 (12)0.0033 (11)
C40.0503 (16)0.0407 (14)0.0305 (13)0.0015 (12)0.0033 (12)0.0042 (11)
C50.0512 (16)0.0418 (15)0.0339 (14)0.0035 (12)0.0053 (12)0.0050 (11)
C60.0566 (18)0.0525 (17)0.0451 (16)0.0021 (14)0.0042 (14)0.0006 (13)
C70.0556 (19)0.068 (2)0.062 (2)0.0059 (15)0.0002 (15)0.0038 (16)
C80.063 (2)0.064 (2)0.066 (2)0.0167 (16)0.0109 (17)0.0087 (17)
C90.075 (2)0.0488 (17)0.0493 (17)0.0156 (15)0.0106 (16)0.0018 (13)
C100.0578 (17)0.0447 (16)0.0344 (14)0.0039 (13)0.0066 (13)0.0068 (12)
C110.0543 (17)0.0443 (15)0.0320 (14)0.0011 (13)0.0039 (12)0.0035 (11)
C120.0635 (19)0.0603 (19)0.0433 (16)0.0044 (15)0.0001 (14)0.0024 (14)
C130.086 (2)0.0592 (19)0.0513 (18)0.0121 (16)0.0100 (17)0.0038 (15)
C140.094 (2)0.0461 (17)0.0404 (17)0.0115 (17)0.0076 (17)0.0023 (13)
C150.081 (2)0.067 (2)0.0462 (18)0.0185 (18)0.0051 (16)0.0047 (15)
C160.0615 (19)0.0587 (18)0.0466 (17)0.0031 (14)0.0012 (14)0.0018 (14)
C170.170 (4)0.064 (2)0.060 (2)0.014 (2)0.019 (2)0.0197 (17)
C180.0500 (16)0.0529 (17)0.0327 (14)0.0012 (13)0.0044 (12)0.0007 (12)
C190.0572 (18)0.0603 (19)0.0500 (17)0.0040 (15)0.0028 (14)0.0028 (14)
C200.057 (2)0.081 (2)0.062 (2)0.0118 (17)0.0015 (16)0.0113 (17)
C210.0548 (19)0.104 (3)0.061 (2)0.008 (2)0.0094 (16)0.0104 (19)
C220.064 (2)0.075 (2)0.061 (2)0.0153 (17)0.0085 (16)0.0006 (17)
C230.0582 (19)0.0602 (19)0.0491 (17)0.0064 (15)0.0012 (14)0.0014 (14)
C240.0511 (16)0.0485 (16)0.0329 (14)0.0051 (13)0.0009 (12)0.0003 (12)
C250.0598 (18)0.0563 (18)0.0571 (18)0.0021 (14)0.0085 (15)0.0087 (14)
C260.078 (2)0.0559 (19)0.071 (2)0.0020 (16)0.0070 (19)0.0143 (16)
C270.070 (2)0.072 (2)0.059 (2)0.0176 (18)0.0056 (17)0.0183 (16)
C280.0555 (18)0.082 (2)0.0580 (19)0.0029 (17)0.0165 (15)0.0093 (17)
C290.0583 (19)0.0591 (18)0.0484 (17)0.0034 (14)0.0104 (15)0.0071 (14)
Geometric parameters (Å, º) top
N1—C101.384 (3)C14—C151.374 (4)
N1—C11.445 (3)C14—C171.506 (4)
N1—H1A0.8600C15—C161.375 (4)
N2—C41.362 (3)C15—H150.9300
N2—C21.382 (3)C16—H160.9300
N2—C11.475 (3)C17—H17A0.9600
N3—C41.326 (3)C17—H17B0.9600
N3—C31.384 (3)C17—H17C0.9600
C1—C111.519 (3)C18—C231.387 (3)
C1—H10.9800C18—C191.385 (4)
C2—C31.368 (3)C19—C201.377 (4)
C2—C181.468 (3)C19—H190.9300
C3—C241.478 (3)C20—C211.365 (4)
C4—C51.440 (3)C20—H200.9300
C5—C61.383 (3)C21—C221.368 (4)
C5—C101.396 (3)C21—H210.9300
C6—C71.378 (4)C22—C231.375 (4)
C6—H60.9300C22—H220.9300
C7—C81.382 (4)C23—H230.9300
C7—H70.9300C24—C291.376 (3)
C8—C91.369 (4)C24—C251.381 (4)
C8—H80.9300C25—C261.384 (4)
C9—C101.394 (4)C25—H250.9300
C9—H90.9300C26—C271.366 (4)
C11—C121.374 (4)C26—H260.9300
C11—C161.379 (3)C27—C281.368 (4)
C12—C131.379 (4)C27—H270.9300
C12—H120.9300C28—C291.380 (4)
C13—C141.374 (4)C28—H280.9300
C13—H130.9300C29—H290.9300
C10—N1—C1123.4 (2)C15—C14—C17121.5 (3)
C10—N1—H1A118.3C13—C14—C17120.8 (3)
C1—N1—H1A118.3C14—C15—C16121.6 (3)
C4—N2—C2108.0 (2)C14—C15—H15119.2
C4—N2—C1123.0 (2)C16—C15—H15119.2
C2—N2—C1126.5 (2)C15—C16—C11120.3 (3)
C4—N3—C3104.9 (2)C15—C16—H16119.8
N1—C1—N2107.7 (2)C11—C16—H16119.8
N1—C1—C11114.4 (2)C14—C17—H17A109.5
N2—C1—C11110.40 (19)C14—C17—H17B109.5
N1—C1—H1108.1H17A—C17—H17B109.5
N2—C1—H1108.1C14—C17—H17C109.5
C11—C1—H1108.1H17A—C17—H17C109.5
C3—C2—N2104.7 (2)H17B—C17—H17C109.5
C3—C2—C18132.0 (2)C23—C18—C19118.2 (3)
N2—C2—C18123.2 (2)C23—C18—C2120.0 (2)
C2—C3—N3111.1 (2)C19—C18—C2121.7 (2)
C2—C3—C24127.7 (2)C20—C19—C18120.9 (3)
N3—C3—C24121.2 (2)C20—C19—H19119.5
N3—C4—N2111.3 (2)C18—C19—H19119.5
N3—C4—C5129.0 (2)C21—C20—C19120.0 (3)
N2—C4—C5119.7 (2)C21—C20—H20120.0
C6—C5—C10120.0 (2)C19—C20—H20120.0
C6—C5—C4122.5 (2)C22—C21—C20119.9 (3)
C10—C5—C4117.4 (2)C22—C21—H21120.1
C7—C6—C5120.4 (3)C20—C21—H21120.1
C7—C6—H6119.8C21—C22—C23120.7 (3)
C5—C6—H6119.8C21—C22—H22119.7
C6—C7—C8119.5 (3)C23—C22—H22119.7
C6—C7—H7120.2C22—C23—C18120.2 (3)
C8—C7—H7120.2C22—C23—H23119.9
C9—C8—C7120.9 (3)C18—C23—H23119.9
C9—C8—H8119.5C29—C24—C25118.6 (2)
C7—C8—H8119.5C29—C24—C3121.1 (2)
C8—C9—C10120.0 (3)C25—C24—C3120.3 (2)
C8—C9—H9120.0C24—C25—C26120.6 (3)
C10—C9—H9120.0C24—C25—H25119.7
N1—C10—C5120.2 (2)C26—C25—H25119.7
N1—C10—C9120.6 (2)C27—C26—C25119.9 (3)
C5—C10—C9119.1 (3)C27—C26—H26120.0
C12—C11—C16118.5 (2)C25—C26—H26120.0
C12—C11—C1121.1 (2)C26—C27—C28120.1 (3)
C16—C11—C1120.4 (2)C26—C27—H27119.9
C11—C12—C13120.6 (3)C28—C27—H27119.9
C11—C12—H12119.7C27—C28—C29120.0 (3)
C13—C12—H12119.7C27—C28—H28120.0
C14—C13—C12121.2 (3)C29—C28—H28120.0
C14—C13—H13119.4C24—C29—C28120.8 (3)
C12—C13—H13119.4C24—C29—H29119.6
C15—C14—C13117.7 (3)C28—C29—H29119.6
C10—N1—C1—N231.9 (3)N1—C1—C11—C1247.4 (3)
C10—N1—C1—C1191.3 (3)N2—C1—C11—C1274.2 (3)
C4—N2—C1—N132.5 (3)N1—C1—C11—C16131.4 (3)
C2—N2—C1—N1167.7 (2)N2—C1—C11—C16106.9 (3)
C4—N2—C1—C1193.1 (3)C16—C11—C12—C130.1 (4)
C2—N2—C1—C1166.8 (3)C1—C11—C12—C13179.0 (2)
C4—N2—C2—C30.7 (3)C11—C12—C13—C140.5 (4)
C1—N2—C2—C3163.1 (2)C12—C13—C14—C150.7 (4)
C4—N2—C2—C18179.2 (2)C12—C13—C14—C17179.1 (3)
C1—N2—C2—C1816.9 (4)C13—C14—C15—C160.4 (4)
N2—C2—C3—N30.3 (3)C17—C14—C15—C16178.8 (3)
C18—C2—C3—N3179.7 (2)C14—C15—C16—C110.2 (4)
N2—C2—C3—C24179.8 (2)C12—C11—C16—C150.4 (4)
C18—C2—C3—C240.3 (5)C1—C11—C16—C15179.3 (2)
C4—N3—C3—C20.3 (3)C3—C2—C18—C2352.0 (4)
C4—N3—C3—C24179.7 (2)N2—C2—C18—C23127.9 (3)
C3—N3—C4—N20.8 (3)C3—C2—C18—C19128.5 (3)
C3—N3—C4—C5177.5 (2)N2—C2—C18—C1951.6 (4)
C2—N2—C4—N31.0 (3)C23—C18—C19—C202.3 (4)
C1—N2—C4—N3164.1 (2)C2—C18—C19—C20177.2 (2)
C2—N2—C4—C5178.0 (2)C18—C19—C20—C211.5 (4)
C1—N2—C4—C518.9 (3)C19—C20—C21—C220.2 (5)
N3—C4—C5—C60.9 (4)C20—C21—C22—C231.2 (5)
N2—C4—C5—C6175.5 (2)C21—C22—C23—C180.4 (5)
N3—C4—C5—C10177.0 (2)C19—C18—C23—C221.3 (4)
N2—C4—C5—C100.5 (3)C2—C18—C23—C22178.2 (3)
C10—C5—C6—C70.0 (4)C2—C3—C24—C2953.1 (4)
C4—C5—C6—C7176.0 (2)N3—C3—C24—C29127.0 (3)
C5—C6—C7—C80.1 (4)C2—C3—C24—C25126.2 (3)
C6—C7—C8—C90.1 (4)N3—C3—C24—C2553.7 (3)
C7—C8—C9—C100.4 (4)C29—C24—C25—C261.7 (4)
C1—N1—C10—C517.9 (4)C3—C24—C25—C26177.7 (3)
C1—N1—C10—C9165.5 (2)C24—C25—C26—C271.9 (4)
C6—C5—C10—N1176.3 (2)C25—C26—C27—C280.7 (5)
C4—C5—C10—N10.2 (3)C26—C27—C28—C290.7 (5)
C6—C5—C10—C90.4 (4)C25—C24—C29—C280.2 (4)
C4—C5—C10—C9176.5 (2)C3—C24—C29—C28179.1 (2)
C8—C9—C10—N1176.1 (2)C27—C28—C29—C240.9 (4)
C8—C9—C10—C50.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.463.058 (3)127
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H23N3
Mr413.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.006 (4), 11.382 (3), 11.906 (3)
β (°) 91.810 (4)
V3)2167.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.44 × 0.42 × 0.33
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
11276, 3819, 2071
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.146, 0.95
No. of reflections3819
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.463.058 (3)126.9
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge finanical support from the Jiangsu Institute of Nuclear Medicine.

References

First citationBillimora, A. D. & Cava, M. P. (1994). J. Org. Chem. 59, 6777–6782.  Google Scholar
First citationBlackman, A., Hambley, T. W., Picker, R., Taylor, W. C. & Thirasana, N. (1987). Tetrahedron Lett. 28, 5561–5564.  CrossRef CAS Web of Science Google Scholar
First citationBrana, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martin, Y., Redondo, C., Schlick, E. & Walker, N. (1994). Anti-Cancer Drugs Des. 9, 527–538.  CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHelissey, P., Cros, S. & Giorgi-Renault, S. (1994). Anti-Cancer Drugs Des. 9, 51–57.  CAS Google Scholar
First citationIbrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. & Green, B. (1988). Eur. J. Med. Chem. 23, 183–188.  CrossRef CAS Web of Science Google Scholar
First citationLorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546–1555.  CrossRef CAS Web of Science Google Scholar
First citationMcMurry, J. E. (1983). Acc. Chem. Res. 16, 405–411.  CrossRef CAS Web of Science Google Scholar
First citationRiou, J. F., Helissey, P., Grondard, L. & Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699–706.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. & Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963–2964.  CrossRef CAS Web of Science Google Scholar
First citationShi, D. Q., Rong, L. C., Wang, J. X., Zhung, Q. Y., Wang, X. S. & Hu, H. W. (2003). Tetrahedron Lett. 44, 3199–3201.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds