organic compounds
9-Phenyl-10H-acridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 19H14N+·CF3SO3−, the cations are linked to each other by very weak C—H⋯π interactions, while the cations and anions are connected by N—H⋯O, C—H⋯O and S—O⋯π interactions. The acridine ring system and the phenyl ring are oriented at an angle of 80.1 (1)° with respect to each other. The mean planes of adjacent acridine units are either parallel or inclined at an angle of 35.6 (1)°. The trifluoromethanesulfonate anions are disordered over two positions; the site occupancy factors are 0.591 (8) and 0.409 (8).
of the title compound, CRelated literature
For general background to ); Wróblewska et al. (2004); Zomer & Jacquemijns (2001). For related structures, see: Huta et al. (2002); Magnussen et al. (2007); Stowell et al. (1991); Toma et al. (1994); Trzybiński et al. (2010); Zadykowicz et al. (2009a,b). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Tsuge et al. (1965); Zadykowicz et al. (2009b). For the treatment of the disorder, see: Müller et al. (2006).
see: Sato (1996Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810040900/vm2046sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810040900/vm2046Isup2.hkl
9-Phenylacridine was synthesized by heating a mixture of N-phenylaniline with an equimolar amount of benzoic acid, both dispersed in molten zinc chloride (493 K, 26 h) (Tsuge et al., 1965). The crude product was purified by gravitational
(SiO2, n-hexane-ethyl acetate, 5:1 v/v). 9-Phenyl-10H-acridinium trifluoromethanesulfonate was obtained by dissolving 9-phenylacridine and methyl trifluoromethanesulfonate (fivefold molar excess) in anhydrous dichloromethane and leaving the mixture for 3 h (Ar atmosphere, room temperature) (Zadykowicz et al., 2009b). The crude salt was dissolved in a small amount of ethanol, filtered, and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable for X-ray analysis were grown from absolute ethanol solution (m.p. 429–431 K).The H atom at N10 was refined freely with Uiso(H) = 1.2Ueq(N10). Other H atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The trifluoromethanesulfonate anions were found to be disordered. The structure was resolved on the assumption that the C25–S21 bond is a common one and that the SO3 and CF3 groups occupy two positions – A and B. The occupancy ratio was initially determined by isotropic
of the disordered site and the structure was refined freely during the subsequent anisotropic of A. The disordered SO3 and CF3 groups were refined assuming two ideal triangles for A and B, respectively, with a restrained standard deviation of 0.001 Å for the O···O and F···F distances (SADI instruction in SHELXL97) (Müller et al., 2006).Acridinium cations containing various substituents at position 9 and alkyl-substituted at the endocyclic N atom undergo oxidation in alkaline media, resulting in electronically excited N-alkyl-9-acridinones. Light emission by these species is the basis of chemiluminesce (Zomer & Jacquemijns, 2001; Wróblewska et al., 2004) which is influenced principally by the substituent at position 9. In the search for derivatives with enhanced
we investigated compounds in which C9 is substituted by substituents other than phenoxycarbonyl, which we have already investigated extensively (Huta et al., 2002; Zadykowicz et al., 2009a,b; Trzybiński et al., 2010).The compound whose
is reported here – 9-phenyl-10H-acridinium trifluoromethanesulfonate – was obtained by the reaction of 9-phenylacridine with methyl trifluoromethanesulfonate, which usually leads to the quaternarization of the endocyclic N atom (Sato, 1996). Since protonation at the endocyclic N atom took place, we presume that traces of water caused the conversion of methyl trifluoromethanesulfonate to trifluoromethanesulfonic acid and methanol, and the reaction of the former entity with 9-phenylacridine. The cations of the title compound have a protonated endocyclic N atom, which enable their reaction with oxidants. It is worth mentioning that salts containing protonated 9-phenylacridines exhibit interesting chromoisomeric features and potential chemiluminogenic ability (Toma et al., 1994).In the cation of the title compound (Fig. 1), bond lengths and angles are similar to the ones found in 9-phenyl-10H-acridinium chloride (Stowell et al., 1991) and sulfate (Toma et al., 1994), and are typical of other acridine-based derivatives (Trzybiński et al., 2010). With respective average deviations from planarity of 0.0404 (3) Å and 0.0015 (3) Å, the acridine and benzene rings are oriented at 80.0 (1)° (65 (3)° in 9-phenyl-10H-acridinium chloride (Stowell et al., 1991) and 62.5 (1)° or 62.6 (1)° in 9-phenyl-10H-acridinium sulfate (Toma et al., 1994)). The mean planes of adjacent acridine moieties are either parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 35.6 (1)°. The trifluoromethanesulfonate anions are disordered over two positions with site occupancy factors of 0.591 (8) and 0.409 (8) [similar disorder was found in pentaaquaoxovanadium(IV)bis(trifluoromethanesulfonate) (Magnussen et al., 2007)].
In the π interactions (Table 1, Fig. 2) and cations and anions by N–H···O, C–H···O (Table 1, Figs. 1 and 2), C–F···π and S–O···π (Table 2, Fig. 2) interactions. N–H···O (Aakeröy et al., 1992) and C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and S–O···π (Dorn et al., 2005) interactions. The is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between the ions.
cations are linked by C–H···For general background to
see: Sato (1996); Wróblewska et al. (2004); Zomer & Jacquemijns (2001). For related structures, see: Huta et al. (2002); Magnussen et al. (2007); Stowell et al. (1991); Toma et al. (1994); Trzybiński et al. (2010); Zadykowicz et al. (2009a,b). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Tsuge et al. (1965); Zadykowicz et al. (2009b). For the treatment of the disorder, see: Müller et al. (2006).Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. The N–H···O and C–H···O interactions are represented by dashed lines. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg3 denote the ring centroids. | |
Fig. 2. The arrangement of the ions in the crystal structure. The N–H···O, C–H···O and C–H···π interactions are represented by dashed lines, the C–F···π and S–O···π contacts by dotted lines. H atoms not involved in interactions have been omitted. Cg1, Cg2 and Cg3 denote the ring centroids. [Symmetry codes: (i) –x + 1, –y + 2, –z + 1; (ii) –x + 3/2, y – 1/2, –z + 1/2; (iii) –x + 1, –y + 1, –z + 1; (iv) –x + 2, –y + 1, –z + 1.] |
C19H14N+·CF3SO3− | F(000) = 832 |
Mr = 405.39 | Dx = 1.448 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7503 reflections |
a = 9.7064 (5) Å | θ = 3.0–29.2° |
b = 8.9220 (3) Å | µ = 0.22 mm−1 |
c = 21.8665 (9) Å | T = 295 K |
β = 100.902 (4)° | Plate, yellow |
V = 1859.47 (14) Å3 | 0.40 × 0.15 × 0.04 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3296 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 1565 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −10→10 |
Tmin = 0.895, Tmax = 1.000 | l = −26→26 |
35783 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.184 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.098P)2] where P = (Fo2 + 2Fc2)/3 |
3296 reflections | (Δ/σ)max = 0.001 |
281 parameters | Δρmax = 0.31 e Å−3 |
18 restraints | Δρmin = −0.30 e Å−3 |
C19H14N+·CF3SO3− | V = 1859.47 (14) Å3 |
Mr = 405.39 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.7064 (5) Å | µ = 0.22 mm−1 |
b = 8.9220 (3) Å | T = 295 K |
c = 21.8665 (9) Å | 0.40 × 0.15 × 0.04 mm |
β = 100.902 (4)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3296 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1565 reflections with I > 2σ(I) |
Tmin = 0.895, Tmax = 1.000 | Rint = 0.066 |
35783 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 18 restraints |
wR(F2) = 0.184 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.31 e Å−3 |
3296 reflections | Δρmin = −0.30 e Å−3 |
281 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.4643 (5) | 0.6284 (4) | 0.27061 (19) | 0.0756 (12) | |
H1 | 0.4534 | 0.5817 | 0.2320 | 0.091* | |
C2 | 0.4201 (5) | 0.7706 (4) | 0.2742 (2) | 0.0851 (13) | |
H2 | 0.3797 | 0.8207 | 0.2379 | 0.102* | |
C3 | 0.4339 (5) | 0.8442 (5) | 0.3312 (3) | 0.0909 (14) | |
H3 | 0.4027 | 0.9425 | 0.3325 | 0.109* | |
C4 | 0.4925 (5) | 0.7740 (4) | 0.3849 (2) | 0.0791 (12) | |
H4 | 0.5011 | 0.8233 | 0.4229 | 0.095* | |
C5 | 0.6975 (5) | 0.3417 (5) | 0.4947 (2) | 0.0798 (12) | |
H5 | 0.7091 | 0.3970 | 0.5314 | 0.096* | |
C6 | 0.7339 (5) | 0.1953 (6) | 0.4955 (2) | 0.0906 (14) | |
H6 | 0.7685 | 0.1494 | 0.5335 | 0.109* | |
C7 | 0.7211 (5) | 0.1098 (5) | 0.4403 (2) | 0.0840 (13) | |
H7 | 0.7474 | 0.0094 | 0.4426 | 0.101* | |
C8 | 0.6709 (4) | 0.1728 (4) | 0.3841 (2) | 0.0713 (11) | |
H8 | 0.6639 | 0.1162 | 0.3479 | 0.086* | |
C9 | 0.5736 (4) | 0.3985 (4) | 0.32456 (16) | 0.0580 (10) | |
N10 | 0.6000 (4) | 0.5519 (4) | 0.43513 (16) | 0.0716 (10) | |
H10 | 0.611 (5) | 0.600 (4) | 0.4680 (19) | 0.086* | |
C11 | 0.5279 (4) | 0.5477 (4) | 0.32528 (17) | 0.0615 (10) | |
C12 | 0.5403 (4) | 0.6246 (4) | 0.38231 (18) | 0.0661 (11) | |
C13 | 0.6286 (4) | 0.3275 (4) | 0.38061 (18) | 0.0608 (10) | |
C14 | 0.6417 (4) | 0.4080 (4) | 0.43728 (18) | 0.0660 (11) | |
C15 | 0.5655 (4) | 0.3198 (4) | 0.26420 (17) | 0.0625 (10) | |
C16 | 0.6630 (6) | 0.3472 (5) | 0.2280 (2) | 0.0960 (15) | |
H16 | 0.7368 | 0.4127 | 0.2420 | 0.115* | |
C17 | 0.6528 (7) | 0.2784 (6) | 0.1707 (3) | 0.1125 (18) | |
H17 | 0.7200 | 0.2972 | 0.1465 | 0.135* | |
C18 | 0.5456 (8) | 0.1840 (6) | 0.1498 (2) | 0.1074 (18) | |
H18 | 0.5393 | 0.1384 | 0.1111 | 0.129* | |
C19 | 0.4483 (7) | 0.1554 (5) | 0.1842 (2) | 0.1045 (17) | |
H19 | 0.3748 | 0.0901 | 0.1696 | 0.125* | |
C20 | 0.4578 (5) | 0.2241 (4) | 0.24210 (19) | 0.0828 (13) | |
H20 | 0.3900 | 0.2045 | 0.2660 | 0.099* | |
S21 | 0.73545 (11) | 0.75830 (11) | 0.58719 (4) | 0.0664 (4) | |
O22A | 0.6636 (9) | 0.8243 (11) | 0.5314 (3) | 0.218 (6) | 0.591 (8) |
O22B | 0.6445 (7) | 0.7598 (6) | 0.5283 (3) | 0.0458 (19)* | 0.409 (8) |
O23A | 0.7106 (11) | 0.6045 (7) | 0.5921 (4) | 0.218 (6) | 0.591 (8) |
O23B | 0.7280 (9) | 0.6199 (7) | 0.6195 (2) | 0.052 (2)* | 0.409 (8) |
O24A | 0.7300 (9) | 0.8420 (9) | 0.6409 (3) | 0.136 (3) | 0.591 (8) |
O24B | 0.7450 (11) | 0.8840 (7) | 0.6215 (3) | 0.074 (2)* | 0.409 (8) |
C25 | 0.9128 (6) | 0.7584 (6) | 0.5725 (3) | 0.0964 (15) | |
F26A | 0.9168 (11) | 0.6857 (11) | 0.5215 (3) | 0.298 (9) | 0.591 (8) |
F27A | 0.9485 (9) | 0.8946 (5) | 0.5642 (4) | 0.200 (5) | 0.591 (8) |
F28A | 1.0032 (6) | 0.7006 (8) | 0.6159 (3) | 0.126 (3) | 0.591 (8) |
F26B | 0.9370 (13) | 0.6408 (7) | 0.5392 (4) | 0.102 (3)* | 0.409 (8) |
F27B | 0.940 (2) | 0.8798 (10) | 0.5386 (3) | 0.134 (4)* | 0.409 (8) |
F28B | 1.0068 (14) | 0.7612 (8) | 0.6237 (4) | 0.108 (4)* | 0.409 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.089 (3) | 0.070 (2) | 0.066 (3) | 0.001 (2) | 0.010 (2) | 0.001 (2) |
C2 | 0.099 (3) | 0.069 (3) | 0.083 (3) | 0.015 (2) | 0.007 (3) | 0.002 (2) |
C3 | 0.098 (4) | 0.071 (3) | 0.105 (4) | 0.009 (2) | 0.022 (3) | 0.003 (3) |
C4 | 0.088 (3) | 0.069 (3) | 0.084 (3) | −0.008 (2) | 0.023 (3) | −0.024 (2) |
C5 | 0.073 (3) | 0.098 (3) | 0.061 (3) | −0.005 (2) | −0.004 (2) | −0.004 (2) |
C6 | 0.076 (3) | 0.116 (4) | 0.071 (3) | −0.003 (3) | −0.008 (2) | 0.017 (3) |
C7 | 0.080 (3) | 0.078 (3) | 0.088 (3) | −0.002 (2) | 0.002 (3) | 0.012 (3) |
C8 | 0.067 (3) | 0.069 (2) | 0.074 (3) | 0.001 (2) | 0.003 (2) | 0.004 (2) |
C9 | 0.056 (2) | 0.061 (2) | 0.056 (2) | −0.0061 (17) | 0.0074 (19) | 0.0001 (18) |
N10 | 0.071 (2) | 0.078 (2) | 0.063 (2) | −0.0116 (17) | 0.0054 (19) | −0.0177 (18) |
C11 | 0.061 (2) | 0.060 (2) | 0.064 (2) | −0.0055 (17) | 0.0114 (19) | −0.0064 (19) |
C12 | 0.069 (3) | 0.068 (2) | 0.059 (3) | −0.0110 (19) | 0.007 (2) | −0.006 (2) |
C13 | 0.053 (2) | 0.067 (2) | 0.060 (3) | −0.0068 (17) | 0.0047 (19) | −0.001 (2) |
C14 | 0.057 (3) | 0.074 (3) | 0.063 (3) | −0.0089 (19) | 0.002 (2) | −0.001 (2) |
C15 | 0.073 (3) | 0.057 (2) | 0.057 (2) | −0.0023 (19) | 0.011 (2) | −0.0020 (18) |
C16 | 0.100 (4) | 0.106 (3) | 0.088 (3) | −0.018 (3) | 0.034 (3) | −0.020 (3) |
C17 | 0.136 (5) | 0.112 (4) | 0.105 (4) | −0.001 (4) | 0.064 (4) | −0.018 (3) |
C18 | 0.166 (6) | 0.089 (3) | 0.072 (3) | 0.014 (4) | 0.034 (4) | −0.010 (3) |
C19 | 0.140 (5) | 0.092 (3) | 0.072 (3) | −0.029 (3) | −0.004 (3) | −0.015 (3) |
C20 | 0.098 (3) | 0.088 (3) | 0.063 (3) | −0.021 (2) | 0.015 (2) | −0.007 (2) |
S21 | 0.0669 (7) | 0.0723 (7) | 0.0562 (6) | −0.0034 (5) | 0.0017 (5) | −0.0060 (5) |
O22A | 0.114 (6) | 0.346 (13) | 0.158 (7) | −0.095 (8) | −0.068 (5) | 0.157 (8) |
O23A | 0.170 (9) | 0.106 (5) | 0.417 (17) | −0.067 (5) | 0.158 (11) | −0.110 (8) |
O24A | 0.105 (5) | 0.222 (8) | 0.079 (5) | −0.008 (6) | 0.011 (4) | −0.081 (5) |
C25 | 0.089 (4) | 0.111 (4) | 0.089 (4) | −0.023 (3) | 0.016 (3) | −0.006 (3) |
F26A | 0.155 (9) | 0.60 (3) | 0.167 (8) | −0.020 (12) | 0.108 (8) | −0.114 (11) |
F27A | 0.068 (4) | 0.171 (6) | 0.355 (12) | −0.011 (4) | 0.028 (7) | 0.181 (8) |
F28A | 0.056 (3) | 0.101 (4) | 0.209 (7) | 0.025 (3) | −0.002 (3) | 0.055 (4) |
C1—C2 | 1.347 (5) | C13—C14 | 1.417 (5) |
C1—C11 | 1.431 (5) | C15—C20 | 1.365 (5) |
C1—H1 | 0.9300 | C15—C16 | 1.367 (6) |
C2—C3 | 1.393 (6) | C16—C17 | 1.381 (6) |
C2—H2 | 0.9300 | C16—H16 | 0.9300 |
C3—C4 | 1.358 (6) | C17—C18 | 1.349 (8) |
C3—H3 | 0.9300 | C17—H17 | 0.9300 |
C4—C12 | 1.415 (5) | C18—C19 | 1.339 (7) |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—C6 | 1.353 (6) | C19—C20 | 1.394 (6) |
C5—C14 | 1.401 (5) | C19—H19 | 0.9300 |
C5—H5 | 0.9300 | C20—H20 | 0.9300 |
C6—C7 | 1.412 (6) | S21—O24B | 1.342 (6) |
C6—H6 | 0.9300 | S21—O23A | 1.401 (7) |
C7—C8 | 1.356 (5) | S21—O24A | 1.401 (5) |
C7—H7 | 0.9300 | S21—O22A | 1.413 (6) |
C8—C13 | 1.438 (5) | S21—O22B | 1.417 (6) |
C8—H8 | 0.9300 | S21—O23B | 1.431 (6) |
C9—C13 | 1.393 (5) | S21—C25 | 1.810 (5) |
C9—C11 | 1.404 (5) | C25—F28A | 1.274 (7) |
C9—C15 | 1.484 (5) | C25—F27A | 1.286 (7) |
N10—C14 | 1.344 (5) | C25—F26A | 1.296 (8) |
N10—C12 | 1.356 (5) | C25—F28B | 1.305 (10) |
N10—H10 | 0.83 (4) | C25—F26B | 1.322 (10) |
C11—C12 | 1.409 (5) | C25—F27B | 1.366 (11) |
C2—C1—C11 | 121.1 (4) | C19—C18—C17 | 120.6 (5) |
C2—C1—H1 | 119.4 | C19—C18—H18 | 119.7 |
C11—C1—H1 | 119.4 | C17—C18—H18 | 119.7 |
C1—C2—C3 | 121.2 (4) | C18—C19—C20 | 119.6 (5) |
C1—C2—H2 | 119.4 | C18—C19—H19 | 120.2 |
C3—C2—H2 | 119.4 | C20—C19—H19 | 120.2 |
C4—C3—C2 | 120.7 (4) | C15—C20—C19 | 120.7 (5) |
C4—C3—H3 | 119.7 | C15—C20—H20 | 119.6 |
C2—C3—H3 | 119.7 | C19—C20—H20 | 119.6 |
C3—C4—C12 | 119.1 (4) | O24B—S21—O23A | 140.3 (5) |
C3—C4—H4 | 120.5 | O24B—S21—O24A | 25.3 (4) |
C12—C4—H4 | 120.5 | O23A—S21—O24A | 115.0 (3) |
C6—C5—C14 | 118.3 (4) | O24B—S21—O22A | 96.0 (5) |
C6—C5—H5 | 120.9 | O23A—S21—O22A | 114.2 (2) |
C14—C5—H5 | 120.9 | O24A—S21—O22A | 114.2 (4) |
C5—C6—C7 | 122.1 (4) | O24B—S21—O22B | 117.7 (4) |
C5—C6—H6 | 119.0 | O23A—S21—O22B | 89.6 (4) |
C7—C6—H6 | 119.0 | O24A—S21—O22B | 129.9 (4) |
C8—C7—C6 | 120.6 (4) | O22A—S21—O22B | 24.7 (4) |
C8—C7—H7 | 119.7 | O24B—S21—O23B | 116.8 (2) |
C6—C7—H7 | 119.7 | O23A—S21—O23B | 24.6 (4) |
C7—C8—C13 | 119.7 (4) | O24A—S21—O23B | 91.9 (4) |
C7—C8—H8 | 120.1 | O22A—S21—O23B | 136.2 (4) |
C13—C8—H8 | 120.1 | O22B—S21—O23B | 112.0 (2) |
C13—C9—C11 | 119.4 (3) | O24B—S21—C25 | 97.5 (5) |
C13—C9—C15 | 121.0 (3) | O23A—S21—C25 | 101.4 (5) |
C11—C9—C15 | 119.6 (3) | O24A—S21—C25 | 109.7 (4) |
C14—N10—C12 | 124.4 (3) | O22A—S21—C25 | 100.2 (4) |
C14—N10—H10 | 118 (3) | O22B—S21—C25 | 106.7 (3) |
C12—N10—H10 | 117 (3) | O23B—S21—C25 | 103.1 (4) |
C9—C11—C12 | 119.8 (4) | F28A—C25—F27A | 108.7 (5) |
C9—C11—C1 | 123.7 (3) | F28A—C25—F26A | 108.1 (5) |
C12—C11—C1 | 116.5 (3) | F27A—C25—F26A | 107.4 (5) |
N10—C12—C11 | 118.2 (4) | F28A—C25—F28B | 25.3 (4) |
N10—C12—C4 | 120.4 (4) | F27A—C25—F28B | 86.5 (6) |
C11—C12—C4 | 121.4 (4) | F26A—C25—F28B | 128.2 (8) |
C9—C13—C14 | 119.7 (3) | F28A—C25—F26B | 85.4 (5) |
C9—C13—C8 | 122.7 (4) | F27A—C25—F26B | 126.3 (8) |
C14—C13—C8 | 117.5 (4) | F26A—C25—F26B | 25.0 (4) |
N10—C14—C5 | 119.8 (4) | F28B—C25—F26B | 108.6 (6) |
N10—C14—C13 | 118.4 (3) | F28A—C25—F27B | 123.3 (9) |
C5—C14—C13 | 121.7 (4) | F27A—C25—F27B | 24.4 (4) |
C20—C15—C16 | 118.3 (4) | F26A—C25—F27B | 83.7 (5) |
C20—C15—C9 | 121.3 (4) | F28B—C25—F27B | 105.9 (7) |
C16—C15—C9 | 120.3 (4) | F26B—C25—F27B | 105.0 (6) |
C15—C16—C17 | 120.5 (5) | F28A—C25—S21 | 114.3 (5) |
C15—C16—H16 | 119.8 | F27A—C25—S21 | 108.4 (5) |
C17—C16—H16 | 119.8 | F26A—C25—S21 | 109.7 (6) |
C18—C17—C16 | 120.2 (5) | F28B—C25—S21 | 112.4 (7) |
C18—C17—H17 | 119.9 | F26B—C25—S21 | 111.8 (6) |
C16—C17—H17 | 119.9 | F27B—C25—S21 | 112.6 (9) |
C11—C1—C2—C3 | −0.3 (7) | C16—C17—C18—C19 | −0.2 (9) |
C1—C2—C3—C4 | −0.1 (7) | C17—C18—C19—C20 | 0.1 (8) |
C2—C3—C4—C12 | 0.3 (7) | C16—C15—C20—C19 | 0.4 (7) |
C14—C5—C6—C7 | 1.8 (7) | C9—C15—C20—C19 | 177.4 (4) |
C5—C6—C7—C8 | −0.1 (7) | C18—C19—C20—C15 | −0.2 (8) |
C6—C7—C8—C13 | −0.8 (7) | O24B—S21—C25—F28A | 83.8 (5) |
C13—C9—C11—C12 | 1.2 (5) | O23A—S21—C25—F28A | −61.2 (5) |
C15—C9—C11—C12 | −177.6 (3) | O24A—S21—C25—F28A | 60.8 (6) |
C13—C9—C11—C1 | −177.2 (4) | O22A—S21—C25—F28A | −178.7 (5) |
C15—C9—C11—C1 | 4.0 (6) | O22B—S21—C25—F28A | −154.2 (5) |
C2—C1—C11—C9 | 178.8 (4) | O23B—S21—C25—F28A | −36.0 (5) |
C2—C1—C11—C12 | 0.4 (6) | O24B—S21—C25—F27A | −37.7 (6) |
C14—N10—C12—C11 | −3.7 (6) | O23A—S21—C25—F27A | 177.4 (5) |
C14—N10—C12—C4 | 176.5 (4) | O24A—S21—C25—F27A | −60.6 (6) |
C9—C11—C12—N10 | 1.6 (5) | O22A—S21—C25—F27A | 59.9 (6) |
C1—C11—C12—N10 | −180.0 (4) | O22B—S21—C25—F27A | 84.3 (5) |
C9—C11—C12—C4 | −178.6 (4) | O23B—S21—C25—F27A | −157.5 (5) |
C1—C11—C12—C4 | −0.1 (6) | O24B—S21—C25—F26A | −154.7 (6) |
C3—C4—C12—N10 | 179.6 (4) | O23A—S21—C25—F26A | 60.4 (6) |
C3—C4—C12—C11 | −0.2 (6) | O24A—S21—C25—F26A | −177.6 (6) |
C11—C9—C13—C14 | −2.0 (5) | O22A—S21—C25—F26A | −57.1 (6) |
C15—C9—C13—C14 | 176.7 (3) | O22B—S21—C25—F26A | −32.7 (6) |
C11—C9—C13—C8 | 176.7 (4) | O23B—S21—C25—F26A | 85.5 (6) |
C15—C9—C13—C8 | −4.5 (6) | O24B—S21—C25—F28B | 56.2 (5) |
C7—C8—C13—C9 | −178.7 (4) | O23A—S21—C25—F28B | −88.7 (6) |
C7—C8—C13—C14 | 0.0 (6) | O24A—S21—C25—F28B | 33.3 (6) |
C12—N10—C14—C5 | −177.6 (4) | O22A—S21—C25—F28B | 153.7 (6) |
C12—N10—C14—C13 | 2.8 (6) | O22B—S21—C25—F28B | 178.2 (5) |
C6—C5—C14—N10 | 177.8 (4) | O23B—S21—C25—F28B | −63.6 (5) |
C6—C5—C14—C13 | −2.7 (6) | O24B—S21—C25—F26B | 178.7 (5) |
C9—C13—C14—N10 | 0.1 (5) | O23A—S21—C25—F26B | 33.7 (6) |
C8—C13—C14—N10 | −178.7 (4) | O24A—S21—C25—F26B | 155.8 (5) |
C9—C13—C14—C5 | −179.5 (4) | O22A—S21—C25—F26B | −83.8 (6) |
C8—C13—C14—C5 | 1.8 (5) | O22B—S21—C25—F26B | −59.3 (5) |
C13—C9—C15—C20 | 82.2 (5) | O23B—S21—C25—F26B | 58.9 (5) |
C11—C9—C15—C20 | −99.1 (5) | O24B—S21—C25—F27B | −63.4 (6) |
C13—C9—C15—C16 | −100.9 (5) | O23A—S21—C25—F27B | 151.7 (5) |
C11—C9—C15—C16 | 77.9 (5) | O24A—S21—C25—F27B | −86.3 (6) |
C20—C15—C16—C17 | −0.6 (7) | O22A—S21—C25—F27B | 34.1 (6) |
C9—C15—C16—C17 | −177.6 (4) | O22B—S21—C25—F27B | 58.6 (5) |
C15—C16—C17—C18 | 0.5 (8) | O23B—S21—C25—F27B | 176.8 (5) |
Cg2 is the centroid of the C1–C4/C11/C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O24Ai | 0.93 | 2.44 | 3.333 (9) | 160 |
C4—H4···O22A | 0.93 | 2.59 | 3.348 (8) | 139 |
C5—H5···O23A | 0.93 | 2.28 | 3.154 (9) | 157 |
N10—H10···O22A | 0.83 (4) | 2.43 (4) | 3.198 (9) | 154 (3) |
C17—H17···Cg2ii | 0.93 | 2.99 | 3.632 (7) | 127 |
C20—H20···O24Aiii | 0.93 | 2.56 | 3.461 (9) | 162 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C19H14N+·CF3SO3− |
Mr | 405.39 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 9.7064 (5), 8.9220 (3), 21.8665 (9) |
β (°) | 100.902 (4) |
V (Å3) | 1859.47 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.40 × 0.15 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.895, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35783, 3296, 1565 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.184, 1.03 |
No. of reflections | 3296 |
No. of parameters | 281 |
No. of restraints | 18 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.30 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg2 is the centroid of the C1–C4/C11/C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O24Ai | 0.93 | 2.44 | 3.333 (9) | 160 |
C4—H4···O22A | 0.93 | 2.59 | 3.348 (8) | 139 |
C5—H5···O23A | 0.93 | 2.28 | 3.154 (9) | 157 |
N10—H10···O22A | 0.83 (4) | 2.43 (4) | 3.198 (9) | 154 (3) |
C17—H17···Cg2ii | 0.93 | 2.99 | 3.632 (7) | 127 |
C20—H20···O24Aiii | 0.93 | 2.56 | 3.461 (9) | 162 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1. |
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively. |
X | I | J | I···J | X···J | X–I···J |
C25 | F26A | Cg3iv | 3.855 (11) | 3.987 (6) | 86.3 (5) |
C25 | F28A | Cg3iv | 3.501 (6) | 3.987 (6) | 103.1 (4) |
S21 | O22A | Cg3iii | 3.617 (9) | 3.990 (2) | 94.7 (4) |
S21 | O23A | Cg1iii | 3.125 (11) | 3.923 (2) | 114.7 (5) |
C25 | F26B | Cg3iv | 3.743 (13) | 3.987 (6) | 90.8 (6) |
C25 | F28B | Cg3iii | 3.545 (13) | 3.987 (6) | 100.2 (6) |
S21 | O22B | Cg3iii | 3.387 (7) | 3.990 (2) | 104.7 (3) |
S21 | O23B | Cg1iii | 3.159 (9) | 3.923 (2) | 111.8 (4) |
Symmetry codes: (iii) –x + 1, –y + 1, –z + 1; (iv) –x + 2, –y + 1, –z + 1. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant DS/ 8820–4-0087–9).
References
Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65. Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Huta, O. M., Patsaj, I. O., Konitz, A., Meszko, J. & Błażejowski, J. (2002). Acta Cryst. C58, o295–o297. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Magnussen, M., Brock-Nannestad, T. & Bendix, J. (2007). Acta Cryst. C63, m51–m53. Web of Science CSD CrossRef IUCr Journals Google Scholar
Müller, P., Herbst-Imer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement: A Crystallographer's Guide to SHELXL, edited by P. Müller, pp. 57–91. Oxford, New York: Oxford University Press. Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stowell, J. G., Toma, P. H. & Byrn, S. R. (1991). Acta Cryst. C47, 1637–1640. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Toma, P. H., Kelley, M. P., Borchardt, T. B., Byrn, S. R. & Kahr, B. (1994). Chem. Mater. 6, 1317–1324. CSD CrossRef CAS Web of Science Google Scholar
Trzybiński, D., Zadykowicz, B., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1548–o1549. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tsuge, O., Nishinohara, M. & Sadano, K. (1965). Bull. Chem. Soc. Jpn, 38, 2037–2041. CrossRef CAS Web of Science Google Scholar
Wróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O., Rak, J. & Błażejowski, J. (2004). J. Org. Chem. 69, 1607–1614. Web of Science CrossRef PubMed CAS Google Scholar
Zadykowicz, B., Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009b). Acta Cryst. E65, o768–o769. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zadykowicz, B., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009a). Acta Cryst. E65, o566–o567. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acridinium cations containing various substituents at position 9 and alkyl-substituted at the endocyclic N atom undergo oxidation in alkaline media, resulting in electronically excited N-alkyl-9-acridinones. Light emission by these species is the basis of chemiluminesce (Zomer & Jacquemijns, 2001; Wróblewska et al., 2004) which is influenced principally by the substituent at position 9. In the search for derivatives with enhanced chemiluminescence we investigated compounds in which C9 is substituted by substituents other than phenoxycarbonyl, which we have already investigated extensively (Huta et al., 2002; Zadykowicz et al., 2009a,b; Trzybiński et al., 2010).
The compound whose crystal structure is reported here – 9-phenyl-10H-acridinium trifluoromethanesulfonate – was obtained by the reaction of 9-phenylacridine with methyl trifluoromethanesulfonate, which usually leads to the quaternarization of the endocyclic N atom (Sato, 1996). Since protonation at the endocyclic N atom took place, we presume that traces of water caused the conversion of methyl trifluoromethanesulfonate to trifluoromethanesulfonic acid and methanol, and the reaction of the former entity with 9-phenylacridine. The cations of the title compound have a protonated endocyclic N atom, which enable their reaction with oxidants. It is worth mentioning that salts containing protonated 9-phenylacridines exhibit interesting chromoisomeric features and potential chemiluminogenic ability (Toma et al., 1994).
In the cation of the title compound (Fig. 1), bond lengths and angles are similar to the ones found in 9-phenyl-10H-acridinium chloride (Stowell et al., 1991) and sulfate (Toma et al., 1994), and are typical of other acridine-based derivatives (Trzybiński et al., 2010). With respective average deviations from planarity of 0.0404 (3) Å and 0.0015 (3) Å, the acridine and benzene rings are oriented at 80.0 (1)° (65 (3)° in 9-phenyl-10H-acridinium chloride (Stowell et al., 1991) and 62.5 (1)° or 62.6 (1)° in 9-phenyl-10H-acridinium sulfate (Toma et al., 1994)). The mean planes of adjacent acridine moieties are either parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 35.6 (1)°. The trifluoromethanesulfonate anions are disordered over two positions with site occupancy factors of 0.591 (8) and 0.409 (8) [similar disorder was found in pentaaquaoxovanadium(IV)bis(trifluoromethanesulfonate) (Magnussen et al., 2007)].
In the crystal structure, cations are linked by C–H···π interactions (Table 1, Fig. 2) and cations and anions by N–H···O, C–H···O (Table 1, Figs. 1 and 2), C–F···π and S–O···π (Table 2, Fig. 2) interactions. N–H···O (Aakeröy et al., 1992) and C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and S–O···π (Dorn et al., 2005) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between the ions.