organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Phenyl-10H-acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 17 September 2010; accepted 12 October 2010; online 20 October 2010)

In the crystal structure of the title compound, C19H14N+·CF3SO3, the cations are linked to each other by very weak C—H⋯π inter­actions, while the cations and anions are connected by N—H⋯O, C—H⋯O and S—O⋯π inter­actions. The acridine ring system and the phenyl ring are oriented at an angle of 80.1 (1)° with respect to each other. The mean planes of adjacent acridine units are either parallel or inclined at an angle of 35.6 (1)°. The trifluoro­methane­sulfonate anions are disordered over two positions; the site occupancy factors are 0.591 (8) and 0.409 (8).

Related literature

For general background to chemiluminescence, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Wróblewska et al. (2004[Wróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O., Rak, J. & Błażejowski, J. (2004). J. Org. Chem. 69, 1607-1614.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Huta et al. (2002[Huta, O. M., Patsaj, I. O., Konitz, A., Meszko, J. & Błażejowski, J. (2002). Acta Cryst. C58, o295-o297.]); Magnussen et al. (2007[Magnussen, M., Brock-Nannestad, T. & Bendix, J. (2007). Acta Cryst. C63, m51-m53.]); Stowell et al. (1991[Stowell, J. G., Toma, P. H. & Byrn, S. R. (1991). Acta Cryst. C47, 1637-1640.]); Toma et al. (1994[Toma, P. H., Kelley, M. P., Borchardt, T. B., Byrn, S. R. & Kahr, B. (1994). Chem. Mater. 6, 1317-1324.]); Trzybiński et al. (2010[Trzybiński, D., Zadykowicz, B., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1548-o1549.]); Zadykowicz et al. (2009a[Zadykowicz, B., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009a). Acta Cryst. E65, o566-o567.],b[Zadykowicz, B., Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009b). Acta Cryst. E65, o768-o769.]). For inter­molecular inter­actions, see: Aakeröy et al. (1992[Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Tsuge et al. (1965[Tsuge, O., Nishinohara, M. & Sadano, K. (1965). Bull. Chem. Soc. Jpn, 38, 2037-2041.]); Zadykowicz et al. (2009b[Zadykowicz, B., Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009b). Acta Cryst. E65, o768-o769.]). For the treatment of the disorder, see: Müller et al. (2006[Müller, P., Herbst-Imer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement: A Crystallographer's Guide to SHELXL, edited by P. Müller, pp. 57-91. Oxford, New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N+·CF3SO3

  • Mr = 405.39

  • Monoclinic, P 21 /n

  • a = 9.7064 (5) Å

  • b = 8.9220 (3) Å

  • c = 21.8665 (9) Å

  • β = 100.902 (4)°

  • V = 1859.47 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.40 × 0.15 × 0.04 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.895, Tmax = 1.000

  • 35783 measured reflections

  • 3296 independent reflections

  • 1565 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.184

  • S = 1.03

  • 3296 reflections

  • 281 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C4/C11/C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O24Ai 0.93 2.44 3.333 (9) 160
C4—H4⋯O22A 0.93 2.59 3.348 (8) 139
C5—H5⋯O23A 0.93 2.28 3.154 (9) 157
N10—H10⋯O22A 0.83 (4) 2.43 (4) 3.198 (9) 154 (3)
C17—H17⋯Cg2ii 0.93 2.99 3.632 (7) 127
C20—H20⋯O24Aiii 0.93 2.56 3.461 (9) 162
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Table 2
S–O⋯π inter­actions (Å, °)

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

X I J IJ XJ XIJ
S21 O23A Cg1iii 3.125 (11) 3.923 (2) 114.7 (5)
S21 O22B Cg3iii 3.387 (7) 3.990 (2) 104.7 (3)
S21 O23B Cg1iii 3.159 (9) 3.923 (2) 111.8 (4)
Symmetry code: (iii) -x+1, -y+1, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acridinium cations containing various substituents at position 9 and alkyl-substituted at the endocyclic N atom undergo oxidation in alkaline media, resulting in electronically excited N-alkyl-9-acridinones. Light emission by these species is the basis of chemiluminesce (Zomer & Jacquemijns, 2001; Wróblewska et al., 2004) which is influenced principally by the substituent at position 9. In the search for derivatives with enhanced chemiluminescence we investigated compounds in which C9 is substituted by substituents other than phenoxycarbonyl, which we have already investigated extensively (Huta et al., 2002; Zadykowicz et al., 2009a,b; Trzybiński et al., 2010).

The compound whose crystal structure is reported here – 9-phenyl-10H-acridinium trifluoromethanesulfonate – was obtained by the reaction of 9-phenylacridine with methyl trifluoromethanesulfonate, which usually leads to the quaternarization of the endocyclic N atom (Sato, 1996). Since protonation at the endocyclic N atom took place, we presume that traces of water caused the conversion of methyl trifluoromethanesulfonate to trifluoromethanesulfonic acid and methanol, and the reaction of the former entity with 9-phenylacridine. The cations of the title compound have a protonated endocyclic N atom, which enable their reaction with oxidants. It is worth mentioning that salts containing protonated 9-phenylacridines exhibit interesting chromoisomeric features and potential chemiluminogenic ability (Toma et al., 1994).

In the cation of the title compound (Fig. 1), bond lengths and angles are similar to the ones found in 9-phenyl-10H-acridinium chloride (Stowell et al., 1991) and sulfate (Toma et al., 1994), and are typical of other acridine-based derivatives (Trzybiński et al., 2010). With respective average deviations from planarity of 0.0404 (3) Å and 0.0015 (3) Å, the acridine and benzene rings are oriented at 80.0 (1)° (65 (3)° in 9-phenyl-10H-acridinium chloride (Stowell et al., 1991) and 62.5 (1)° or 62.6 (1)° in 9-phenyl-10H-acridinium sulfate (Toma et al., 1994)). The mean planes of adjacent acridine moieties are either parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 35.6 (1)°. The trifluoromethanesulfonate anions are disordered over two positions with site occupancy factors of 0.591 (8) and 0.409 (8) [similar disorder was found in pentaaquaoxovanadium(IV)bis(trifluoromethanesulfonate) (Magnussen et al., 2007)].

In the crystal structure, cations are linked by C–H···π interactions (Table 1, Fig. 2) and cations and anions by N–H···O, C–H···O (Table 1, Figs. 1 and 2), C–F···π and S–O···π (Table 2, Fig. 2) interactions. N–H···O (Aakeröy et al., 1992) and C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and S–O···π (Dorn et al., 2005) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between the ions.

Related literature top

For general background to chemiluminescence, see: Sato (1996); Wróblewska et al. (2004); Zomer & Jacquemijns (2001). For related structures, see: Huta et al. (2002); Magnussen et al. (2007); Stowell et al. (1991); Toma et al. (1994); Trzybiński et al. (2010); Zadykowicz et al. (2009a,b). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Tsuge et al. (1965); Zadykowicz et al. (2009b). For the treatment of the disorder, see: Müller et al. (2006).

Experimental top

9-Phenylacridine was synthesized by heating a mixture of N-phenylaniline with an equimolar amount of benzoic acid, both dispersed in molten zinc chloride (493 K, 26 h) (Tsuge et al., 1965). The crude product was purified by gravitational chromatography (SiO2, n-hexane-ethyl acetate, 5:1 v/v). 9-Phenyl-10H-acridinium trifluoromethanesulfonate was obtained by dissolving 9-phenylacridine and methyl trifluoromethanesulfonate (fivefold molar excess) in anhydrous dichloromethane and leaving the mixture for 3 h (Ar atmosphere, room temperature) (Zadykowicz et al., 2009b). The crude salt was dissolved in a small amount of ethanol, filtered, and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable for X-ray analysis were grown from absolute ethanol solution (m.p. 429–431 K).

Refinement top

The H atom at N10 was refined freely with Uiso(H) = 1.2Ueq(N10). Other H atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The trifluoromethanesulfonate anions were found to be disordered. The structure was resolved on the assumption that the C25–S21 bond is a common one and that the SO3 and CF3 groups occupy two positions – A and B. The occupancy ratio was initially determined by isotropic refinement of the disordered site and the structure was refined freely during the subsequent anisotropic refinement of A. The disordered SO3 and CF3 groups were refined assuming two ideal triangles for A and B, respectively, with a restrained standard deviation of 0.001 Å for the O···O and F···F distances (SADI instruction in SHELXL97) (Müller et al., 2006).

Structure description top

Acridinium cations containing various substituents at position 9 and alkyl-substituted at the endocyclic N atom undergo oxidation in alkaline media, resulting in electronically excited N-alkyl-9-acridinones. Light emission by these species is the basis of chemiluminesce (Zomer & Jacquemijns, 2001; Wróblewska et al., 2004) which is influenced principally by the substituent at position 9. In the search for derivatives with enhanced chemiluminescence we investigated compounds in which C9 is substituted by substituents other than phenoxycarbonyl, which we have already investigated extensively (Huta et al., 2002; Zadykowicz et al., 2009a,b; Trzybiński et al., 2010).

The compound whose crystal structure is reported here – 9-phenyl-10H-acridinium trifluoromethanesulfonate – was obtained by the reaction of 9-phenylacridine with methyl trifluoromethanesulfonate, which usually leads to the quaternarization of the endocyclic N atom (Sato, 1996). Since protonation at the endocyclic N atom took place, we presume that traces of water caused the conversion of methyl trifluoromethanesulfonate to trifluoromethanesulfonic acid and methanol, and the reaction of the former entity with 9-phenylacridine. The cations of the title compound have a protonated endocyclic N atom, which enable their reaction with oxidants. It is worth mentioning that salts containing protonated 9-phenylacridines exhibit interesting chromoisomeric features and potential chemiluminogenic ability (Toma et al., 1994).

In the cation of the title compound (Fig. 1), bond lengths and angles are similar to the ones found in 9-phenyl-10H-acridinium chloride (Stowell et al., 1991) and sulfate (Toma et al., 1994), and are typical of other acridine-based derivatives (Trzybiński et al., 2010). With respective average deviations from planarity of 0.0404 (3) Å and 0.0015 (3) Å, the acridine and benzene rings are oriented at 80.0 (1)° (65 (3)° in 9-phenyl-10H-acridinium chloride (Stowell et al., 1991) and 62.5 (1)° or 62.6 (1)° in 9-phenyl-10H-acridinium sulfate (Toma et al., 1994)). The mean planes of adjacent acridine moieties are either parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 35.6 (1)°. The trifluoromethanesulfonate anions are disordered over two positions with site occupancy factors of 0.591 (8) and 0.409 (8) [similar disorder was found in pentaaquaoxovanadium(IV)bis(trifluoromethanesulfonate) (Magnussen et al., 2007)].

In the crystal structure, cations are linked by C–H···π interactions (Table 1, Fig. 2) and cations and anions by N–H···O, C–H···O (Table 1, Figs. 1 and 2), C–F···π and S–O···π (Table 2, Fig. 2) interactions. N–H···O (Aakeröy et al., 1992) and C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and S–O···π (Dorn et al., 2005) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between the ions.

For general background to chemiluminescence, see: Sato (1996); Wróblewska et al. (2004); Zomer & Jacquemijns (2001). For related structures, see: Huta et al. (2002); Magnussen et al. (2007); Stowell et al. (1991); Toma et al. (1994); Trzybiński et al. (2010); Zadykowicz et al. (2009a,b). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Tsuge et al. (1965); Zadykowicz et al. (2009b). For the treatment of the disorder, see: Müller et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. The N–H···O and C–H···O interactions are represented by dashed lines. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg3 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The N–H···O, C–H···O and C–H···π interactions are represented by dashed lines, the C–F···π and S–O···π contacts by dotted lines. H atoms not involved in interactions have been omitted. Cg1, Cg2 and Cg3 denote the ring centroids. [Symmetry codes: (i) –x + 1, –y + 2, –z + 1; (ii) –x + 3/2, y – 1/2, –z + 1/2; (iii) –x + 1, –y + 1, –z + 1; (iv) –x + 2, –y + 1, –z + 1.]
9-Phenyl-10H-acridinium trifluoromethanesulfonate top
Crystal data top
C19H14N+·CF3SO3F(000) = 832
Mr = 405.39Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7503 reflections
a = 9.7064 (5) Åθ = 3.0–29.2°
b = 8.9220 (3) ŵ = 0.22 mm1
c = 21.8665 (9) ÅT = 295 K
β = 100.902 (4)°Plate, yellow
V = 1859.47 (14) Å30.40 × 0.15 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3296 independent reflections
Radiation source: Enhanced (Mo) X-ray Source1565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1010
Tmin = 0.895, Tmax = 1.000l = 2626
35783 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.098P)2]
where P = (Fo2 + 2Fc2)/3
3296 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.31 e Å3
18 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H14N+·CF3SO3V = 1859.47 (14) Å3
Mr = 405.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7064 (5) ŵ = 0.22 mm1
b = 8.9220 (3) ÅT = 295 K
c = 21.8665 (9) Å0.40 × 0.15 × 0.04 mm
β = 100.902 (4)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3296 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1565 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 1.000Rint = 0.066
35783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05918 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
3296 reflectionsΔρmin = 0.30 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4643 (5)0.6284 (4)0.27061 (19)0.0756 (12)
H10.45340.58170.23200.091*
C20.4201 (5)0.7706 (4)0.2742 (2)0.0851 (13)
H20.37970.82070.23790.102*
C30.4339 (5)0.8442 (5)0.3312 (3)0.0909 (14)
H30.40270.94250.33250.109*
C40.4925 (5)0.7740 (4)0.3849 (2)0.0791 (12)
H40.50110.82330.42290.095*
C50.6975 (5)0.3417 (5)0.4947 (2)0.0798 (12)
H50.70910.39700.53140.096*
C60.7339 (5)0.1953 (6)0.4955 (2)0.0906 (14)
H60.76850.14940.53350.109*
C70.7211 (5)0.1098 (5)0.4403 (2)0.0840 (13)
H70.74740.00940.44260.101*
C80.6709 (4)0.1728 (4)0.3841 (2)0.0713 (11)
H80.66390.11620.34790.086*
C90.5736 (4)0.3985 (4)0.32456 (16)0.0580 (10)
N100.6000 (4)0.5519 (4)0.43513 (16)0.0716 (10)
H100.611 (5)0.600 (4)0.4680 (19)0.086*
C110.5279 (4)0.5477 (4)0.32528 (17)0.0615 (10)
C120.5403 (4)0.6246 (4)0.38231 (18)0.0661 (11)
C130.6286 (4)0.3275 (4)0.38061 (18)0.0608 (10)
C140.6417 (4)0.4080 (4)0.43728 (18)0.0660 (11)
C150.5655 (4)0.3198 (4)0.26420 (17)0.0625 (10)
C160.6630 (6)0.3472 (5)0.2280 (2)0.0960 (15)
H160.73680.41270.24200.115*
C170.6528 (7)0.2784 (6)0.1707 (3)0.1125 (18)
H170.72000.29720.14650.135*
C180.5456 (8)0.1840 (6)0.1498 (2)0.1074 (18)
H180.53930.13840.11110.129*
C190.4483 (7)0.1554 (5)0.1842 (2)0.1045 (17)
H190.37480.09010.16960.125*
C200.4578 (5)0.2241 (4)0.24210 (19)0.0828 (13)
H200.39000.20450.26600.099*
S210.73545 (11)0.75830 (11)0.58719 (4)0.0664 (4)
O22A0.6636 (9)0.8243 (11)0.5314 (3)0.218 (6)0.591 (8)
O22B0.6445 (7)0.7598 (6)0.5283 (3)0.0458 (19)*0.409 (8)
O23A0.7106 (11)0.6045 (7)0.5921 (4)0.218 (6)0.591 (8)
O23B0.7280 (9)0.6199 (7)0.6195 (2)0.052 (2)*0.409 (8)
O24A0.7300 (9)0.8420 (9)0.6409 (3)0.136 (3)0.591 (8)
O24B0.7450 (11)0.8840 (7)0.6215 (3)0.074 (2)*0.409 (8)
C250.9128 (6)0.7584 (6)0.5725 (3)0.0964 (15)
F26A0.9168 (11)0.6857 (11)0.5215 (3)0.298 (9)0.591 (8)
F27A0.9485 (9)0.8946 (5)0.5642 (4)0.200 (5)0.591 (8)
F28A1.0032 (6)0.7006 (8)0.6159 (3)0.126 (3)0.591 (8)
F26B0.9370 (13)0.6408 (7)0.5392 (4)0.102 (3)*0.409 (8)
F27B0.940 (2)0.8798 (10)0.5386 (3)0.134 (4)*0.409 (8)
F28B1.0068 (14)0.7612 (8)0.6237 (4)0.108 (4)*0.409 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.089 (3)0.070 (2)0.066 (3)0.001 (2)0.010 (2)0.001 (2)
C20.099 (3)0.069 (3)0.083 (3)0.015 (2)0.007 (3)0.002 (2)
C30.098 (4)0.071 (3)0.105 (4)0.009 (2)0.022 (3)0.003 (3)
C40.088 (3)0.069 (3)0.084 (3)0.008 (2)0.023 (3)0.024 (2)
C50.073 (3)0.098 (3)0.061 (3)0.005 (2)0.004 (2)0.004 (2)
C60.076 (3)0.116 (4)0.071 (3)0.003 (3)0.008 (2)0.017 (3)
C70.080 (3)0.078 (3)0.088 (3)0.002 (2)0.002 (3)0.012 (3)
C80.067 (3)0.069 (2)0.074 (3)0.001 (2)0.003 (2)0.004 (2)
C90.056 (2)0.061 (2)0.056 (2)0.0061 (17)0.0074 (19)0.0001 (18)
N100.071 (2)0.078 (2)0.063 (2)0.0116 (17)0.0054 (19)0.0177 (18)
C110.061 (2)0.060 (2)0.064 (2)0.0055 (17)0.0114 (19)0.0064 (19)
C120.069 (3)0.068 (2)0.059 (3)0.0110 (19)0.007 (2)0.006 (2)
C130.053 (2)0.067 (2)0.060 (3)0.0068 (17)0.0047 (19)0.001 (2)
C140.057 (3)0.074 (3)0.063 (3)0.0089 (19)0.002 (2)0.001 (2)
C150.073 (3)0.057 (2)0.057 (2)0.0023 (19)0.011 (2)0.0020 (18)
C160.100 (4)0.106 (3)0.088 (3)0.018 (3)0.034 (3)0.020 (3)
C170.136 (5)0.112 (4)0.105 (4)0.001 (4)0.064 (4)0.018 (3)
C180.166 (6)0.089 (3)0.072 (3)0.014 (4)0.034 (4)0.010 (3)
C190.140 (5)0.092 (3)0.072 (3)0.029 (3)0.004 (3)0.015 (3)
C200.098 (3)0.088 (3)0.063 (3)0.021 (2)0.015 (2)0.007 (2)
S210.0669 (7)0.0723 (7)0.0562 (6)0.0034 (5)0.0017 (5)0.0060 (5)
O22A0.114 (6)0.346 (13)0.158 (7)0.095 (8)0.068 (5)0.157 (8)
O23A0.170 (9)0.106 (5)0.417 (17)0.067 (5)0.158 (11)0.110 (8)
O24A0.105 (5)0.222 (8)0.079 (5)0.008 (6)0.011 (4)0.081 (5)
C250.089 (4)0.111 (4)0.089 (4)0.023 (3)0.016 (3)0.006 (3)
F26A0.155 (9)0.60 (3)0.167 (8)0.020 (12)0.108 (8)0.114 (11)
F27A0.068 (4)0.171 (6)0.355 (12)0.011 (4)0.028 (7)0.181 (8)
F28A0.056 (3)0.101 (4)0.209 (7)0.025 (3)0.002 (3)0.055 (4)
Geometric parameters (Å, º) top
C1—C21.347 (5)C13—C141.417 (5)
C1—C111.431 (5)C15—C201.365 (5)
C1—H10.9300C15—C161.367 (6)
C2—C31.393 (6)C16—C171.381 (6)
C2—H20.9300C16—H160.9300
C3—C41.358 (6)C17—C181.349 (8)
C3—H30.9300C17—H170.9300
C4—C121.415 (5)C18—C191.339 (7)
C4—H40.9300C18—H180.9300
C5—C61.353 (6)C19—C201.394 (6)
C5—C141.401 (5)C19—H190.9300
C5—H50.9300C20—H200.9300
C6—C71.412 (6)S21—O24B1.342 (6)
C6—H60.9300S21—O23A1.401 (7)
C7—C81.356 (5)S21—O24A1.401 (5)
C7—H70.9300S21—O22A1.413 (6)
C8—C131.438 (5)S21—O22B1.417 (6)
C8—H80.9300S21—O23B1.431 (6)
C9—C131.393 (5)S21—C251.810 (5)
C9—C111.404 (5)C25—F28A1.274 (7)
C9—C151.484 (5)C25—F27A1.286 (7)
N10—C141.344 (5)C25—F26A1.296 (8)
N10—C121.356 (5)C25—F28B1.305 (10)
N10—H100.83 (4)C25—F26B1.322 (10)
C11—C121.409 (5)C25—F27B1.366 (11)
C2—C1—C11121.1 (4)C19—C18—C17120.6 (5)
C2—C1—H1119.4C19—C18—H18119.7
C11—C1—H1119.4C17—C18—H18119.7
C1—C2—C3121.2 (4)C18—C19—C20119.6 (5)
C1—C2—H2119.4C18—C19—H19120.2
C3—C2—H2119.4C20—C19—H19120.2
C4—C3—C2120.7 (4)C15—C20—C19120.7 (5)
C4—C3—H3119.7C15—C20—H20119.6
C2—C3—H3119.7C19—C20—H20119.6
C3—C4—C12119.1 (4)O24B—S21—O23A140.3 (5)
C3—C4—H4120.5O24B—S21—O24A25.3 (4)
C12—C4—H4120.5O23A—S21—O24A115.0 (3)
C6—C5—C14118.3 (4)O24B—S21—O22A96.0 (5)
C6—C5—H5120.9O23A—S21—O22A114.2 (2)
C14—C5—H5120.9O24A—S21—O22A114.2 (4)
C5—C6—C7122.1 (4)O24B—S21—O22B117.7 (4)
C5—C6—H6119.0O23A—S21—O22B89.6 (4)
C7—C6—H6119.0O24A—S21—O22B129.9 (4)
C8—C7—C6120.6 (4)O22A—S21—O22B24.7 (4)
C8—C7—H7119.7O24B—S21—O23B116.8 (2)
C6—C7—H7119.7O23A—S21—O23B24.6 (4)
C7—C8—C13119.7 (4)O24A—S21—O23B91.9 (4)
C7—C8—H8120.1O22A—S21—O23B136.2 (4)
C13—C8—H8120.1O22B—S21—O23B112.0 (2)
C13—C9—C11119.4 (3)O24B—S21—C2597.5 (5)
C13—C9—C15121.0 (3)O23A—S21—C25101.4 (5)
C11—C9—C15119.6 (3)O24A—S21—C25109.7 (4)
C14—N10—C12124.4 (3)O22A—S21—C25100.2 (4)
C14—N10—H10118 (3)O22B—S21—C25106.7 (3)
C12—N10—H10117 (3)O23B—S21—C25103.1 (4)
C9—C11—C12119.8 (4)F28A—C25—F27A108.7 (5)
C9—C11—C1123.7 (3)F28A—C25—F26A108.1 (5)
C12—C11—C1116.5 (3)F27A—C25—F26A107.4 (5)
N10—C12—C11118.2 (4)F28A—C25—F28B25.3 (4)
N10—C12—C4120.4 (4)F27A—C25—F28B86.5 (6)
C11—C12—C4121.4 (4)F26A—C25—F28B128.2 (8)
C9—C13—C14119.7 (3)F28A—C25—F26B85.4 (5)
C9—C13—C8122.7 (4)F27A—C25—F26B126.3 (8)
C14—C13—C8117.5 (4)F26A—C25—F26B25.0 (4)
N10—C14—C5119.8 (4)F28B—C25—F26B108.6 (6)
N10—C14—C13118.4 (3)F28A—C25—F27B123.3 (9)
C5—C14—C13121.7 (4)F27A—C25—F27B24.4 (4)
C20—C15—C16118.3 (4)F26A—C25—F27B83.7 (5)
C20—C15—C9121.3 (4)F28B—C25—F27B105.9 (7)
C16—C15—C9120.3 (4)F26B—C25—F27B105.0 (6)
C15—C16—C17120.5 (5)F28A—C25—S21114.3 (5)
C15—C16—H16119.8F27A—C25—S21108.4 (5)
C17—C16—H16119.8F26A—C25—S21109.7 (6)
C18—C17—C16120.2 (5)F28B—C25—S21112.4 (7)
C18—C17—H17119.9F26B—C25—S21111.8 (6)
C16—C17—H17119.9F27B—C25—S21112.6 (9)
C11—C1—C2—C30.3 (7)C16—C17—C18—C190.2 (9)
C1—C2—C3—C40.1 (7)C17—C18—C19—C200.1 (8)
C2—C3—C4—C120.3 (7)C16—C15—C20—C190.4 (7)
C14—C5—C6—C71.8 (7)C9—C15—C20—C19177.4 (4)
C5—C6—C7—C80.1 (7)C18—C19—C20—C150.2 (8)
C6—C7—C8—C130.8 (7)O24B—S21—C25—F28A83.8 (5)
C13—C9—C11—C121.2 (5)O23A—S21—C25—F28A61.2 (5)
C15—C9—C11—C12177.6 (3)O24A—S21—C25—F28A60.8 (6)
C13—C9—C11—C1177.2 (4)O22A—S21—C25—F28A178.7 (5)
C15—C9—C11—C14.0 (6)O22B—S21—C25—F28A154.2 (5)
C2—C1—C11—C9178.8 (4)O23B—S21—C25—F28A36.0 (5)
C2—C1—C11—C120.4 (6)O24B—S21—C25—F27A37.7 (6)
C14—N10—C12—C113.7 (6)O23A—S21—C25—F27A177.4 (5)
C14—N10—C12—C4176.5 (4)O24A—S21—C25—F27A60.6 (6)
C9—C11—C12—N101.6 (5)O22A—S21—C25—F27A59.9 (6)
C1—C11—C12—N10180.0 (4)O22B—S21—C25—F27A84.3 (5)
C9—C11—C12—C4178.6 (4)O23B—S21—C25—F27A157.5 (5)
C1—C11—C12—C40.1 (6)O24B—S21—C25—F26A154.7 (6)
C3—C4—C12—N10179.6 (4)O23A—S21—C25—F26A60.4 (6)
C3—C4—C12—C110.2 (6)O24A—S21—C25—F26A177.6 (6)
C11—C9—C13—C142.0 (5)O22A—S21—C25—F26A57.1 (6)
C15—C9—C13—C14176.7 (3)O22B—S21—C25—F26A32.7 (6)
C11—C9—C13—C8176.7 (4)O23B—S21—C25—F26A85.5 (6)
C15—C9—C13—C84.5 (6)O24B—S21—C25—F28B56.2 (5)
C7—C8—C13—C9178.7 (4)O23A—S21—C25—F28B88.7 (6)
C7—C8—C13—C140.0 (6)O24A—S21—C25—F28B33.3 (6)
C12—N10—C14—C5177.6 (4)O22A—S21—C25—F28B153.7 (6)
C12—N10—C14—C132.8 (6)O22B—S21—C25—F28B178.2 (5)
C6—C5—C14—N10177.8 (4)O23B—S21—C25—F28B63.6 (5)
C6—C5—C14—C132.7 (6)O24B—S21—C25—F26B178.7 (5)
C9—C13—C14—N100.1 (5)O23A—S21—C25—F26B33.7 (6)
C8—C13—C14—N10178.7 (4)O24A—S21—C25—F26B155.8 (5)
C9—C13—C14—C5179.5 (4)O22A—S21—C25—F26B83.8 (6)
C8—C13—C14—C51.8 (5)O22B—S21—C25—F26B59.3 (5)
C13—C9—C15—C2082.2 (5)O23B—S21—C25—F26B58.9 (5)
C11—C9—C15—C2099.1 (5)O24B—S21—C25—F27B63.4 (6)
C13—C9—C15—C16100.9 (5)O23A—S21—C25—F27B151.7 (5)
C11—C9—C15—C1677.9 (5)O24A—S21—C25—F27B86.3 (6)
C20—C15—C16—C170.6 (7)O22A—S21—C25—F27B34.1 (6)
C9—C15—C16—C17177.6 (4)O22B—S21—C25—F27B58.6 (5)
C15—C16—C17—C180.5 (8)O23B—S21—C25—F27B176.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4/C11/C12 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O24Ai0.932.443.333 (9)160
C4—H4···O22A0.932.593.348 (8)139
C5—H5···O23A0.932.283.154 (9)157
N10—H10···O22A0.83 (4)2.43 (4)3.198 (9)154 (3)
C17—H17···Cg2ii0.932.993.632 (7)127
C20—H20···O24Aiii0.932.563.461 (9)162
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H14N+·CF3SO3
Mr405.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.7064 (5), 8.9220 (3), 21.8665 (9)
β (°) 100.902 (4)
V3)1859.47 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.15 × 0.04
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.895, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
35783, 3296, 1565
Rint0.066
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.184, 1.03
No. of reflections3296
No. of parameters281
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4/C11/C12 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O24Ai0.932.443.333 (9)160
C4—H4···O22A0.932.593.348 (8)139
C5—H5···O23A0.932.283.154 (9)157
N10—H10···O22A0.83 (4)2.43 (4)3.198 (9)154 (3)
C17—H17···Cg2ii0.932.993.632 (7)127
C20—H20···O24Aiii0.932.563.461 (9)162
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.
C–F···π and S–O···π interactions (Å, °). top
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.
XIJI···JX···JXI···J
C25F26ACg3iv3.855 (11)3.987 (6)86.3 (5)
C25F28ACg3iv3.501 (6)3.987 (6)103.1 (4)
S21O22ACg3iii3.617 (9)3.990 (2)94.7 (4)
S21O23ACg1iii3.125 (11)3.923 (2)114.7 (5)
C25F26BCg3iv3.743 (13)3.987 (6)90.8 (6)
C25F28BCg3iii3.545 (13)3.987 (6)100.2 (6)
S21O22BCg3iii3.387 (7)3.990 (2)104.7 (3)
S21O23BCg1iii3.159 (9)3.923 (2)111.8 (4)
Symmetry codes: (iii) –x + 1, –y + 1, –z + 1; (iv) –x + 2, –y + 1, –z + 1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/ 8820–4-0087–9).

References

First citationAakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.  Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuta, O. M., Patsaj, I. O., Konitz, A., Meszko, J. & Błażejowski, J. (2002). Acta Cryst. C58, o295–o297.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMagnussen, M., Brock-Nannestad, T. & Bendix, J. (2007). Acta Cryst. C63, m51–m53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMüller, P., Herbst-Imer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement: A Crystallographer's Guide to SHELXL, edited by P. Müller, pp. 57–91. Oxford, New York: Oxford University Press.  Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStowell, J. G., Toma, P. H. & Byrn, S. R. (1991). Acta Cryst. C47, 1637–1640.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationToma, P. H., Kelley, M. P., Borchardt, T. B., Byrn, S. R. & Kahr, B. (1994). Chem. Mater. 6, 1317–1324.  CSD CrossRef CAS Web of Science Google Scholar
First citationTrzybiński, D., Zadykowicz, B., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1548–o1549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsuge, O., Nishinohara, M. & Sadano, K. (1965). Bull. Chem. Soc. Jpn, 38, 2037–2041.  CrossRef CAS Web of Science Google Scholar
First citationWróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O., Rak, J. & Błażejowski, J. (2004). J. Org. Chem. 69, 1607–1614.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZadykowicz, B., Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009b). Acta Cryst. E65, o768–o769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZadykowicz, B., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009a). Acta Cryst. E65, o566–o567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds