organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E)-6-Meth­­oxy-3,4-di­hydro­naphthalen-1(2H)-one O-(p-tolyl­sulfon­yl)oxime

aKey Laboratory of Organism Functional Factors of the Changbai Moutain, Yanbian University, Ministry of Education, Yanji 133000, People's Republic of China, bInstitute of Chemical Technology of Yanbian University, Yanji 133000, People's Republic of China, and cDepartment of Chemistry, College of Science, Yanbian Universiy, Longjing, 133400, People's Republic of China
*Correspondence e-mail: fypiao4989@yahoo.com.cn

(Received 21 September 2010; accepted 6 October 2010; online 9 October 2010)

In the title compound, C18H19NO4S, the two benzene rings form a dihedral angle of 68.37 (11)°. One of the C atoms of the fused ring bonded to the N atom displays positional disorder with site-occupation factors of 0.763 (7) and 0.237 (7) and the ring has an envelope conformation with the disordered C atoms located on opposite sides of the plane formed by the other atoms. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules to form a two-dimensional supra­molecular network. The crystal structure is further stablized by weak inter­molecular C—H⋯π inter­actions.

Related literature

The title compound has been used in our study (Byoung et al. 2000[Byoung, S. L., Soyoung, C., In, Y. L., Lee, B. S., Choong, E. S. & Dae, Y. C. (2000). Bull. Korean Chem. Soc. 21, 860-866.]) of the effect of the reaction conditions on the Beckmanm rearrangement of 6-meth­oxy-3,4-dihydro­naphthalen-1(2H)-one oxime (Xiao et al., 2007[Xiao, L. F., Xia, C. G. & Chen, J. (2007). Tetrahedron Lett. 48, 7218-7221.]). For details of the synthesis, see Byoung et al. (2000[Byoung, S. L., Soyoung, C., In, Y. L., Lee, B. S., Choong, E. S. & Dae, Y. C. (2000). Bull. Korean Chem. Soc. 21, 860-866.]). For a related structure, see Jin et al. (2010[Jin, D.-C., Piao, F.-Y. & Han, R.-B. (2010). Acta Cryst. E66, o2504.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO4S

  • Mr = 345.41

  • Monoclinic, P 21 /c

  • a = 13.478 (5) Å

  • b = 9.255 (5) Å

  • c = 17.707 (8) Å

  • β = 128.22 (3)°

  • V = 1735.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 290 K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.980

  • 16447 measured reflections

  • 3939 independent reflections

  • 3052 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.135

  • S = 1.01

  • 3939 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.57 3.293 (3) 135
C10—H10B⋯O2ii 0.97 2.48 3.237 (5) 135
C15—H15⋯O1iii 0.93 2.68 3.430 (3) 139
C9—H9BCg1iv 0.97 2.85 3.750 (3) 156
Symmetry codes: (i) -x+3, -y+2, -z+2; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+2, -y+2, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2002[Molecular Structure Corporation & Rigaku (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Generally, 1,3,4,5-tetrahydro-7-methoxy-2H-1- benzazepin-2-one is obtained as major product from the Beckmanm rearrangement (BR) of 6-methoxy-3,4-dihydronaphthalen-1(2H)-one oxime (Xiao et al., 2007). Recently, we have found that the product distribution of this BR greatly varied with reaction time and termperature (Byoung et al. 2000). We report here the crystal structure of the title comound, which was used in our attempts to study the effect of the reaction conditions on the ratio of the two isomers of product.

In the title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Jin et al., 2010). The disordered C10 and C10' atoms with site occupation factors of 0.76 and 0.24, respectively, lie at different sides of the plane defined by C8, C9, C11, C12 and C13. In the crystal, weak C—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network. In additon, a C—H···π interaction between H9B and a neigboring benzene ring ocurs (H9B···Cg1i = 2.846 (5) Å, Cg1 is the centroid of ring C12-C17, symmetry code i : 2 - x, 2 - y, 2 - z). The crystal structure is further stablized by Van der Waals' forces.

Related literature top

The title compound has been used in our study (Byoung et al. 2000) of the effect of the reaction conditions on the Beckmanm rearrangement of 6-methoxy-3,4-dihydronaphthalen-1(2H)-one oxime (Xiao et al., 2007). For details of the synthesis, see Byoung et al. (2000). For a related structure, see Jin et al. (2010).

Experimental top

The title compound was prepared according to literature (Byoung et al. 2000) and single crystals suitable for X-ray diffraction were obtained from a solution of ethyl acetate by slow evaporation at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with distances C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H-atoms and Uiso(H) = 1.5 (methyl) and 1.2 (the rest) Ueq(C).

Structure description top

Generally, 1,3,4,5-tetrahydro-7-methoxy-2H-1- benzazepin-2-one is obtained as major product from the Beckmanm rearrangement (BR) of 6-methoxy-3,4-dihydronaphthalen-1(2H)-one oxime (Xiao et al., 2007). Recently, we have found that the product distribution of this BR greatly varied with reaction time and termperature (Byoung et al. 2000). We report here the crystal structure of the title comound, which was used in our attempts to study the effect of the reaction conditions on the ratio of the two isomers of product.

In the title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Jin et al., 2010). The disordered C10 and C10' atoms with site occupation factors of 0.76 and 0.24, respectively, lie at different sides of the plane defined by C8, C9, C11, C12 and C13. In the crystal, weak C—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network. In additon, a C—H···π interaction between H9B and a neigboring benzene ring ocurs (H9B···Cg1i = 2.846 (5) Å, Cg1 is the centroid of ring C12-C17, symmetry code i : 2 - x, 2 - y, 2 - z). The crystal structure is further stablized by Van der Waals' forces.

The title compound has been used in our study (Byoung et al. 2000) of the effect of the reaction conditions on the Beckmanm rearrangement of 6-methoxy-3,4-dihydronaphthalen-1(2H)-one oxime (Xiao et al., 2007). For details of the synthesis, see Byoung et al. (2000). For a related structure, see Jin et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
(1E)-6-Methoxy-3,4-dihydronaphthalen-1(2H)-one O-(p-tolylsulfonyl)oxime top
Crystal data top
C18H19NO4SF(000) = 728
Mr = 345.41Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11474 reflections
a = 13.478 (5) Åθ = 3.1–27.5°
b = 9.255 (5) ŵ = 0.21 mm1
c = 17.707 (8) ÅT = 290 K
β = 128.22 (3)°Block, colorless
V = 1735.3 (16) Å30.12 × 0.11 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3939 independent reflections
Radiation source: fine-focus sealed tube3052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.976, Tmax = 0.980k = 1111
16447 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.4858P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3939 reflectionsΔρmax = 0.44 e Å3
230 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (4)
Crystal data top
C18H19NO4SV = 1735.3 (16) Å3
Mr = 345.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.478 (5) ŵ = 0.21 mm1
b = 9.255 (5) ÅT = 290 K
c = 17.707 (8) Å0.12 × 0.11 × 0.10 mm
β = 128.22 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3939 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3052 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.029
16447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
3939 reflectionsΔρmin = 0.34 e Å3
230 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.21154 (4)1.01704 (6)0.84699 (3)0.05339 (18)
O11.32298 (13)1.09992 (16)0.88664 (11)0.0688 (4)
O21.11691 (15)1.01052 (18)0.74596 (10)0.0720 (4)
O31.15381 (12)1.09228 (14)0.89346 (9)0.0557 (3)
O40.53547 (14)0.81979 (17)0.77887 (12)0.0738 (4)
N11.03738 (14)1.01680 (16)0.85957 (11)0.0510 (4)
C11.3561 (3)0.4210 (3)1.0232 (2)0.0928 (8)
H1A1.32600.34800.97500.139*
H1B1.31910.40671.05470.139*
H1C1.44640.41481.06960.139*
C21.31973 (19)0.5680 (2)0.97663 (15)0.0600 (5)
C31.19864 (19)0.5964 (2)0.89321 (15)0.0624 (5)
H31.13950.52220.86420.075*
C41.16441 (17)0.7318 (2)0.85263 (13)0.0562 (5)
H41.08270.74890.79710.067*
C51.25256 (15)0.8425 (2)0.89508 (12)0.0475 (4)
C61.37496 (16)0.8166 (2)0.97757 (13)0.0534 (4)
H61.43450.89051.00580.064*
C71.40688 (18)0.6800 (2)1.01695 (14)0.0613 (5)
H71.48890.66251.07190.074*
C80.97831 (16)1.08889 (18)0.88218 (11)0.0450 (4)
C91.0207 (2)1.2307 (2)0.93435 (15)0.0603 (5)
H9A1.05871.28860.91260.072*
H9B1.08421.21361.00270.072*
C100.9081 (4)1.3146 (3)0.9165 (3)0.0698 (12)0.763 (7)
H10A0.94031.39830.95840.084*0.763 (7)
H10B0.85361.34880.85060.084*0.763 (7)
C110.8345 (3)1.2276 (3)0.9335 (2)0.0809 (7)
H11A0.76151.28260.91550.097*
H11B0.88511.20631.00170.097*
C120.79064 (18)1.08776 (19)0.87810 (13)0.0529 (4)
C10'0.9604 (8)1.2634 (9)0.9825 (7)0.053 (3)0.237 (7)
H10C1.00921.21411.04410.064*0.237 (7)
H10D0.96881.36620.99580.064*0.237 (7)
C130.86031 (17)1.02224 (18)0.85398 (12)0.0454 (4)
C140.81694 (19)0.8901 (2)0.80425 (15)0.0574 (5)
H140.86190.84550.78680.069*
C150.70982 (19)0.8259 (2)0.78110 (14)0.0593 (5)
H150.68340.73770.74910.071*
C160.64081 (18)0.8922 (2)0.80522 (14)0.0549 (5)
C170.6813 (2)1.0222 (2)0.85367 (16)0.0616 (5)
H170.63521.06640.87020.074*
C180.4673 (3)0.8776 (3)0.8090 (2)0.0938 (8)
H18A0.43010.96820.77730.141*
H18B0.52380.89230.87730.141*
H18C0.40200.81120.79280.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0438 (3)0.0658 (3)0.0536 (3)0.0040 (2)0.0316 (2)0.0018 (2)
O10.0533 (8)0.0715 (9)0.0878 (10)0.0104 (7)0.0468 (8)0.0057 (7)
O20.0609 (9)0.0995 (12)0.0511 (8)0.0048 (8)0.0324 (7)0.0083 (7)
O30.0463 (7)0.0579 (8)0.0656 (8)0.0083 (6)0.0360 (6)0.0078 (6)
O40.0601 (9)0.0825 (10)0.0925 (11)0.0191 (8)0.0540 (8)0.0229 (8)
N10.0445 (8)0.0534 (8)0.0581 (9)0.0071 (6)0.0333 (7)0.0044 (7)
C10.0898 (18)0.0653 (15)0.120 (2)0.0104 (13)0.0630 (17)0.0081 (14)
C20.0582 (11)0.0550 (11)0.0729 (12)0.0001 (9)0.0437 (10)0.0079 (9)
C30.0536 (11)0.0591 (12)0.0713 (12)0.0154 (9)0.0371 (10)0.0208 (9)
C40.0404 (9)0.0651 (12)0.0523 (10)0.0100 (8)0.0234 (8)0.0147 (8)
C50.0384 (8)0.0581 (10)0.0473 (9)0.0061 (7)0.0271 (7)0.0084 (7)
C60.0372 (9)0.0621 (11)0.0547 (10)0.0100 (8)0.0253 (8)0.0095 (8)
C70.0413 (10)0.0717 (13)0.0605 (11)0.0022 (9)0.0263 (9)0.0019 (9)
C80.0485 (9)0.0461 (9)0.0425 (8)0.0004 (7)0.0292 (7)0.0029 (7)
C90.0692 (12)0.0513 (10)0.0713 (12)0.0148 (9)0.0490 (11)0.0123 (9)
C100.093 (2)0.0427 (15)0.097 (3)0.0078 (15)0.070 (2)0.0106 (16)
C110.0880 (17)0.0619 (13)0.1167 (19)0.0127 (12)0.0753 (16)0.0318 (13)
C120.0575 (11)0.0479 (10)0.0607 (10)0.0007 (8)0.0404 (9)0.0056 (8)
C10'0.059 (5)0.041 (4)0.055 (5)0.001 (3)0.033 (4)0.005 (4)
C130.0498 (9)0.0462 (9)0.0452 (8)0.0020 (7)0.0318 (8)0.0022 (7)
C140.0605 (11)0.0594 (11)0.0698 (12)0.0097 (9)0.0490 (10)0.0185 (9)
C150.0619 (12)0.0582 (11)0.0661 (11)0.0140 (9)0.0438 (10)0.0210 (9)
C160.0505 (10)0.0610 (11)0.0583 (10)0.0078 (8)0.0362 (9)0.0062 (8)
C170.0608 (12)0.0628 (12)0.0780 (13)0.0003 (9)0.0513 (11)0.0110 (10)
C180.0728 (16)0.0988 (19)0.140 (2)0.0144 (14)0.0808 (18)0.0213 (17)
Geometric parameters (Å, º) top
S1—O21.4169 (17)C9—C101.553 (4)
S1—O11.4257 (15)C9—H9A0.9700
S1—O31.5997 (14)C9—H9B0.9700
S1—C51.748 (2)C10—C111.446 (4)
O3—N11.465 (2)C10—H10A0.9700
O4—C161.365 (2)C10—H10B0.9700
O4—C181.422 (3)C10—H10D1.2028
N1—C81.278 (2)C11—C121.507 (3)
C1—C21.507 (3)C11—H11A0.9700
C1—H1A0.9600C11—H11B0.9700
C1—H1B0.9600C12—C131.388 (2)
C1—H1C0.9600C12—C171.393 (3)
C2—C71.388 (3)C10'—H10C0.9700
C2—C31.390 (3)C10'—H10D0.9700
C3—C41.374 (3)C13—C141.406 (3)
C3—H30.9300C14—C151.368 (3)
C4—C51.387 (3)C14—H140.9300
C4—H40.9300C15—C161.384 (3)
C5—C61.390 (3)C15—H150.9300
C6—C71.378 (3)C16—C171.379 (3)
C6—H60.9300C17—H170.9300
C7—H70.9300C18—H18A0.9600
C8—C131.475 (2)C18—H18B0.9600
C8—C91.499 (3)C18—H18C0.9600
O2—S1—O1119.72 (10)C11—C10—C9112.9 (3)
O2—S1—O3108.89 (9)C11—C10—H10A109.0
O1—S1—O3102.24 (9)C9—C10—H10A109.0
O2—S1—C5110.00 (9)C11—C10—H10B109.0
O1—S1—C5109.74 (9)C9—C10—H10B109.0
O3—S1—C5105.04 (8)H10A—C10—H10B107.8
N1—O3—S1108.69 (10)C11—C10—H10D92.1
C16—O4—C18117.66 (18)C9—C10—H10D95.1
C8—N1—O3109.86 (14)H10A—C10—H10D29.6
C2—C1—H1A109.5H10B—C10—H10D137.4
C2—C1—H1B109.5C10—C11—C12112.7 (2)
H1A—C1—H1B109.5C10—C11—H11A109.1
C2—C1—H1C109.5C12—C11—H11A109.1
H1A—C1—H1C109.5C10—C11—H11B109.1
H1B—C1—H1C109.5C12—C11—H11B109.1
C7—C2—C3117.94 (19)H11A—C11—H11B107.8
C7—C2—C1120.5 (2)C13—C12—C17120.08 (17)
C3—C2—C1121.5 (2)C13—C12—C11120.54 (18)
C4—C3—C2121.47 (18)C17—C12—C11119.35 (18)
C4—C3—H3119.3H10C—C10'—H10D107.1
C2—C3—H3119.3C12—C13—C14118.31 (17)
C3—C4—C5119.52 (18)C12—C13—C8120.39 (16)
C3—C4—H4120.2C14—C13—C8121.28 (16)
C5—C4—H4120.2C15—C14—C13121.21 (17)
C4—C5—C6120.27 (18)C15—C14—H14119.4
C4—C5—S1120.82 (14)C13—C14—H14119.4
C6—C5—S1118.91 (14)C14—C15—C16120.07 (18)
C7—C6—C5119.09 (17)C14—C15—H15120.0
C7—C6—H6120.5C16—C15—H15120.0
C5—C6—H6120.5O4—C16—C17124.63 (18)
C6—C7—C2121.69 (18)O4—C16—C15115.63 (17)
C6—C7—H7119.2C17—C16—C15119.73 (18)
C2—C7—H7119.2C16—C17—C12120.59 (18)
N1—C8—C13115.19 (16)C16—C17—H17119.7
N1—C8—C9125.19 (17)C12—C17—H17119.7
C13—C8—C9119.62 (15)O4—C18—H18A109.5
C8—C9—C10111.14 (19)O4—C18—H18B109.5
C8—C9—H9A109.4H18A—C18—H18B109.5
C10—C9—H9A109.4O4—C18—H18C109.5
C8—C9—H9B109.4H18A—C18—H18C109.5
C10—C9—H9B109.4H18B—C18—H18C109.5
H9A—C9—H9B108.0
O2—S1—O3—N152.91 (14)C8—C9—C10—C1150.4 (4)
O1—S1—O3—N1179.47 (11)C9—C10—C11—C1253.4 (4)
C5—S1—O3—N164.88 (12)C10—C11—C12—C1328.5 (4)
S1—O3—N1—C8169.09 (12)C10—C11—C12—C17153.5 (3)
C7—C2—C3—C41.6 (3)C17—C12—C13—C140.5 (3)
C1—C2—C3—C4177.8 (2)C11—C12—C13—C14178.5 (2)
C2—C3—C4—C50.6 (3)C17—C12—C13—C8178.15 (17)
C3—C4—C5—C60.6 (3)C11—C12—C13—C80.1 (3)
C3—C4—C5—S1178.62 (15)N1—C8—C13—C12177.43 (16)
O2—S1—C5—C431.08 (18)C9—C8—C13—C122.0 (3)
O1—S1—C5—C4164.80 (15)N1—C8—C13—C141.1 (3)
O3—S1—C5—C485.95 (16)C9—C8—C13—C14179.43 (18)
O2—S1—C5—C6149.71 (15)C12—C13—C14—C150.9 (3)
O1—S1—C5—C616.00 (17)C8—C13—C14—C15177.70 (18)
O3—S1—C5—C693.26 (16)C13—C14—C15—C161.1 (3)
C4—C5—C6—C70.7 (3)C18—O4—C16—C174.3 (3)
S1—C5—C6—C7178.53 (15)C18—O4—C16—C15174.9 (2)
C5—C6—C7—C20.4 (3)C14—C15—C16—O4179.88 (18)
C3—C2—C7—C61.5 (3)C14—C15—C16—C170.8 (3)
C1—C2—C7—C6177.9 (2)O4—C16—C17—C12179.6 (2)
O3—N1—C8—C13178.59 (13)C15—C16—C17—C120.4 (3)
O3—N1—C8—C90.8 (2)C13—C12—C17—C160.2 (3)
N1—C8—C9—C10158.5 (2)C11—C12—C17—C16178.3 (2)
C13—C8—C9—C1022.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.573.293 (3)135
C10—H10B···O2ii0.972.483.237 (5)135
C15—H15···O1iii0.932.683.430 (3)139
C9—H9B···Cg1iv0.972.853.750 (3)156
Symmetry codes: (i) x+3, y+2, z+2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC18H19NO4S
Mr345.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)13.478 (5), 9.255 (5), 17.707 (8)
β (°) 128.22 (3)
V3)1735.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.976, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
16447, 3939, 3052
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.135, 1.01
No. of reflections3939
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Molecular Structure Corporation & Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.573.293 (3)134.6
C10—H10B···O2ii0.972.483.237 (5)134.5
C15—H15···O1iii0.932.683.430 (3)138.8
C9—H9B···Cg1iv0.972.853.750 (3)156
Symmetry codes: (i) x+3, y+2, z+2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+2, z+2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010) and the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001).

References

First citationByoung, S. L., Soyoung, C., In, Y. L., Lee, B. S., Choong, E. S. & Dae, Y. C. (2000). Bull. Korean Chem. Soc. 21, 860–866.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJin, D.-C., Piao, F.-Y. & Han, R.-B. (2010). Acta Cryst. E66, o2504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation & Rigaku (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, L. F., Xia, C. G. & Chen, J. (2007). Tetrahedron Lett. 48, 7218–7221.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds