organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Bromo­phen­yl)(3,6-dimeth­­oxy-2-naphth­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 30 September 2010; accepted 7 October 2010; online 13 October 2010)

In the title compound, C19H15BrO3, the dihedral angle between the naphthalene ring system and the benzene ring is 62.51 (8)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 47.07 (6)° with the naphthalene ring system and 24.20 (10)° with the benzene ring. A weak inter­molecular C—H⋯O hydrogen bond exists between the H atom of one meth­oxy group and the O atom of the other meth­oxy group in an adjacent mol­ecule. The crystal packing is additionally stabilized by two types of weak inter­molecular inter­actions involving the Br atom, C—H⋯Br and Br⋯O [3.2802 (14) Å].

Related literature

For electrophilic aromatic substitution of naphthalene deriv­atives affording peri-aroylated compounds regioselectively, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Nakaema et al. (2008[Nakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.]); Watanabe et al. (2010a[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403.],b[Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o712.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15BrO3

  • Mr = 371.22

  • Monoclinic, P 21 /c

  • a = 7.88917 (14) Å

  • b = 21.0182 (4) Å

  • c = 10.06272 (18) Å

  • β = 105.971 (1)°

  • V = 1604.16 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.60 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.161, Tmax = 0.533

  • 29541 measured reflections

  • 2934 independent reflections

  • 2767 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.12

  • 2934 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O1i 0.96 2.53 3.477 (2) 170
C5—H5⋯Brii 0.93 2.98 3.8441 (18) 155
Symmetry codes: (i) x+1, y, z+1; (ii) -x, -y, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), and 1-aroyl-2,7-dimethoxynaphthalene, i. e., 1-benzoyl-2,7-dimethoxynaphthalene (Kato et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly bonded in a perpendicular manner but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. 1-Aroyl homologues also revealed essentially the same non-coplanar structure as observed for 1,8-diaroylated naphthalenes.

Furthermore, we also reported the crystal structure analysis of the corresponding β-isomers of 3-aroyl-2,7-dimethoxynaphthalenes such as 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema et al., 2008) and (3,6-dimethoxy-2-naphthyl)(4-fluorophenyl)methanone (Watanabe et al., 2010b). In these 3-aroylated naphthalenes, which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the aroyl groups are shown connected to the naphthalene rings in a moderately twisted fashion. As part of our ongoing study on these homologous molecules, the synthesis and crystal structure of the title compound, a 3-monoaroylnaphthalene bearing a bromo group, is discussed in this article. The title compound was prepared by a direct condensation reaction of 2,7-dimethoxynaphthalene with 4-bromobenzoic acid.

The molecular structure of the title molecule is displayed in Fig. 1. The 4-bromophenyl group is bonded twistedly away from the attached naphthalene ring. The dihedral angle between the best planes of the bromophenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 62.51 (8)°. The bridging carbonyl plane (O3—C6—C11—C12) makes a relatively large dihedral angle of 47.07 (9)° with the naphthalene ring (C1—C10) [C5—C6—C11—O3 torsion angle = 46.0 (2)°], whereas it makes a rather small angle of 24.20 (10)° with 4-bromophenyl ring (C12—C17) [O3—C11—C12—C17 torsion angle = 24.1 (3)°].

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. Moreover, there is a C—H···O hydrogen bond between a hydrogen of the 2-methoxy group, which is situated adjacent to the bromophenyl group, and the ethereal oxygen atom of the 7-methoxy group in the neighboring molecule (Table 1, Fig. 2).

The crystal packing is additionally stabilized by two types of weak intermolecular interactions with the bromine atom: Br1···O3i = 3.2802 (14) Å, and Br1···H5ii = 2.98 Å [symmetry operations: (i) x, y, z + 1, (ii) -x, -y, -z] (Fig. 3) .

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives affording peri-aroylated compounds regioselectively, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kato et al. (2010); Muto et al. (2010); Nakaema et al. (2008); Watanabe et al. (2010a,b).

Experimental top

The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (1.88 g, 10 mmol) and 4-bromobenzoic acid (2.02 g, 10 mmol) with phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH [1/10 w/w]; 10 mL). After the reaction mixture was stirred at 353 K for 8 hours, the mixture was poured into ice-cooled water and extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 3.07 g, 83%). The crude product was purified by flush silica gel chromatography (CHCl3). Colorless platelet single crystals suitable for X-ray diffraction were obtained by crystallization from ethanol and chloroform.

Spectroscopic Data:

1H NMR (300 MHz, CDCl3) δ 3.81 (3H, s), 3.93 (3H, s), 7.03 (1H, dd, 9.0 Hz), 7.09 (1H, d, J = 2.4 Hz), 7.12 (1H, s), 7.56 (2H, d, J = 8.4 Hz), 7.67-7.71 (3H, m), 7.78 (1H, s).

13C NMR (75 MHz, CDCl3) δ 55.32, 55.49, 105.01, 105.42, 117.16, 123.18, 127.32, 127.92, 130.05, 130.25, 131.30, 131.46, 136.96, 137.28, 155.64, 159.45, 194.94.

IR (KBr): 1626, 1585, 1501, 1134 cm-1.

HRMS (m/z): [M + H]+ calcd for C19H16BrO3, 371.0283; found, 371.0298.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.93 (aromatic) and 0.96 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), and 1-aroyl-2,7-dimethoxynaphthalene, i. e., 1-benzoyl-2,7-dimethoxynaphthalene (Kato et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly bonded in a perpendicular manner but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. 1-Aroyl homologues also revealed essentially the same non-coplanar structure as observed for 1,8-diaroylated naphthalenes.

Furthermore, we also reported the crystal structure analysis of the corresponding β-isomers of 3-aroyl-2,7-dimethoxynaphthalenes such as 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema et al., 2008) and (3,6-dimethoxy-2-naphthyl)(4-fluorophenyl)methanone (Watanabe et al., 2010b). In these 3-aroylated naphthalenes, which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the aroyl groups are shown connected to the naphthalene rings in a moderately twisted fashion. As part of our ongoing study on these homologous molecules, the synthesis and crystal structure of the title compound, a 3-monoaroylnaphthalene bearing a bromo group, is discussed in this article. The title compound was prepared by a direct condensation reaction of 2,7-dimethoxynaphthalene with 4-bromobenzoic acid.

The molecular structure of the title molecule is displayed in Fig. 1. The 4-bromophenyl group is bonded twistedly away from the attached naphthalene ring. The dihedral angle between the best planes of the bromophenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 62.51 (8)°. The bridging carbonyl plane (O3—C6—C11—C12) makes a relatively large dihedral angle of 47.07 (9)° with the naphthalene ring (C1—C10) [C5—C6—C11—O3 torsion angle = 46.0 (2)°], whereas it makes a rather small angle of 24.20 (10)° with 4-bromophenyl ring (C12—C17) [O3—C11—C12—C17 torsion angle = 24.1 (3)°].

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. Moreover, there is a C—H···O hydrogen bond between a hydrogen of the 2-methoxy group, which is situated adjacent to the bromophenyl group, and the ethereal oxygen atom of the 7-methoxy group in the neighboring molecule (Table 1, Fig. 2).

The crystal packing is additionally stabilized by two types of weak intermolecular interactions with the bromine atom: Br1···O3i = 3.2802 (14) Å, and Br1···H5ii = 2.98 Å [symmetry operations: (i) x, y, z + 1, (ii) -x, -y, -z] (Fig. 3) .

For electrophilic aromatic substitution of naphthalene derivatives affording peri-aroylated compounds regioselectively, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kato et al. (2010); Muto et al. (2010); Nakaema et al. (2008); Watanabe et al. (2010a,b).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids at 50% probability for non-H atoms.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) [symmetry code: (i) x+1, y, z+1].
[Figure 3] Fig. 3. Two types of intermolecular weak interactions with bromine atom Br1 (dotted lines).
(4-Bromophenyl)(3,6-dimethoxy-2-naphthyl)methanone top
Crystal data top
C19H15BrO3F(000) = 752
Mr = 371.22Dx = 1.537 Mg m3
Monoclinic, P21/cMelting point = 416.9–419.5 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 7.88917 (14) ÅCell parameters from 26572 reflections
b = 21.0182 (4) Åθ = 4.2–68.3°
c = 10.06272 (18) ŵ = 3.60 mm1
β = 105.971 (1)°T = 193 K
V = 1604.16 (5) Å3Platelet, colorless
Z = 40.60 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2934 independent reflections
Radiation source: rotating anode2767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10.00 pixels mm-1θmax = 68.3°, θmin = 4.2°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2525
Tmin = 0.161, Tmax = 0.533l = 1212
29541 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.6344P]
where P = (Fo2 + 2Fc2)/3
2934 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
C19H15BrO3V = 1604.16 (5) Å3
Mr = 371.22Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.88917 (14) ŵ = 3.60 mm1
b = 21.0182 (4) ÅT = 193 K
c = 10.06272 (18) Å0.60 × 0.40 × 0.20 mm
β = 105.971 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2934 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2767 reflections with I > 2σ(I)
Tmin = 0.161, Tmax = 0.533Rint = 0.044
29541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.12Δρmax = 0.43 e Å3
2934 reflectionsΔρmin = 1.03 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24719 (3)0.056869 (10)0.494126 (19)0.03961 (11)
O10.46425 (17)0.28009 (7)0.69867 (14)0.0406 (3)
O20.20106 (17)0.19970 (6)0.05734 (13)0.0342 (3)
O30.24997 (19)0.03129 (7)0.18371 (14)0.0405 (3)
C10.3611 (2)0.24042 (10)0.6033 (2)0.0324 (4)
C20.3738 (3)0.17558 (10)0.6441 (2)0.0384 (4)
H20.44850.16360.72920.046*
C30.2762 (3)0.13090 (10)0.5582 (2)0.0375 (4)
H30.28530.08850.58540.045*
C40.1608 (2)0.14784 (9)0.4282 (2)0.0302 (4)
C50.0537 (2)0.10319 (9)0.33881 (19)0.0303 (4)
H50.06160.06050.36430.036*
C60.0620 (2)0.12056 (9)0.21526 (18)0.0284 (4)
C70.0759 (2)0.18618 (9)0.17702 (18)0.0279 (4)
C80.0283 (2)0.23056 (9)0.26096 (19)0.0284 (4)
H80.01980.27300.23400.034*
C90.1488 (2)0.21296 (9)0.38808 (19)0.0278 (4)
C100.2524 (2)0.25890 (10)0.47798 (19)0.0303 (4)
H100.24660.30150.45200.036*
C110.1740 (2)0.06982 (9)0.1299 (2)0.0308 (4)
C120.1884 (2)0.06594 (8)0.02077 (19)0.0291 (4)
C130.0583 (2)0.09052 (9)0.0753 (2)0.0349 (4)
H130.04010.11000.01690.042*
C140.0731 (3)0.08652 (9)0.2154 (2)0.0363 (4)
H140.01550.10240.25090.044*
C150.2217 (3)0.05857 (8)0.3014 (2)0.0312 (4)
C160.3515 (3)0.03239 (10)0.2499 (2)0.0370 (4)
H160.44930.01270.30870.044*
C170.3339 (3)0.03590 (10)0.1099 (2)0.0358 (4)
H170.42000.01800.07430.043*
C180.4465 (3)0.34656 (10)0.6723 (2)0.0454 (5)
H18A0.52870.36920.74510.055*
H18B0.32860.35960.66830.055*
H18C0.47040.35580.58570.055*
C190.2347 (2)0.26549 (10)0.0224 (2)0.0348 (4)
H19A0.32940.26890.06090.042*
H19B0.13050.28470.00860.042*
H19C0.26670.28690.09620.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05907 (18)0.03269 (17)0.02418 (16)0.00179 (8)0.00659 (11)0.00036 (7)
O10.0367 (7)0.0454 (8)0.0321 (7)0.0022 (6)0.0032 (6)0.0083 (6)
O20.0389 (7)0.0309 (7)0.0260 (7)0.0006 (5)0.0024 (5)0.0014 (5)
O30.0488 (8)0.0407 (8)0.0321 (7)0.0134 (6)0.0113 (6)0.0007 (6)
C10.0269 (8)0.0411 (11)0.0274 (9)0.0000 (7)0.0044 (7)0.0071 (8)
C20.0370 (9)0.0451 (12)0.0269 (10)0.0061 (8)0.0017 (8)0.0000 (8)
C30.0399 (10)0.0365 (11)0.0309 (11)0.0069 (8)0.0011 (8)0.0009 (9)
C40.0301 (8)0.0321 (10)0.0278 (9)0.0050 (7)0.0071 (7)0.0003 (7)
C50.0353 (9)0.0280 (9)0.0272 (9)0.0032 (7)0.0077 (7)0.0001 (7)
C60.0310 (8)0.0298 (9)0.0248 (9)0.0001 (7)0.0083 (7)0.0030 (7)
C70.0287 (8)0.0325 (9)0.0216 (8)0.0019 (7)0.0055 (6)0.0005 (7)
C80.0308 (8)0.0271 (9)0.0263 (9)0.0003 (7)0.0066 (7)0.0001 (7)
C90.0261 (8)0.0320 (10)0.0260 (9)0.0010 (7)0.0083 (7)0.0028 (7)
C100.0298 (9)0.0326 (10)0.0282 (9)0.0004 (7)0.0074 (7)0.0036 (7)
C110.0324 (9)0.0292 (9)0.0292 (10)0.0004 (7)0.0060 (7)0.0010 (8)
C120.0331 (9)0.0248 (9)0.0282 (10)0.0013 (7)0.0063 (7)0.0023 (7)
C130.0339 (9)0.0383 (10)0.0311 (10)0.0102 (8)0.0067 (8)0.0084 (8)
C140.0404 (10)0.0361 (10)0.0337 (10)0.0087 (8)0.0123 (8)0.0054 (8)
C150.0427 (10)0.0243 (9)0.0246 (9)0.0018 (7)0.0059 (8)0.0015 (7)
C160.0371 (9)0.0375 (11)0.0313 (10)0.0092 (8)0.0006 (8)0.0032 (8)
C170.0358 (9)0.0372 (11)0.0335 (10)0.0107 (8)0.0081 (8)0.0030 (9)
C180.0429 (11)0.0452 (12)0.0415 (12)0.0071 (9)0.0004 (9)0.0127 (10)
C190.0362 (9)0.0335 (11)0.0304 (9)0.0010 (7)0.0019 (8)0.0052 (8)
Geometric parameters (Å, º) top
Br1—C151.8942 (19)C8—H80.9300
O1—C11.359 (2)C9—C101.418 (3)
O1—C181.422 (3)C10—H100.9300
O2—C71.361 (2)C11—C121.491 (3)
O2—C191.433 (2)C12—C131.390 (3)
O3—C111.219 (2)C12—C171.398 (3)
C1—C101.372 (3)C13—C141.384 (3)
C1—C21.419 (3)C13—H130.9300
C2—C31.362 (3)C14—C151.383 (3)
C2—H20.9300C14—H140.9300
C3—C41.419 (3)C15—C161.383 (3)
C3—H30.9300C16—C171.379 (3)
C4—C51.409 (3)C16—H160.9300
C4—C91.423 (3)C17—H170.9300
C5—C61.374 (3)C18—H18A0.9600
C5—H50.9300C18—H18B0.9600
C6—C71.428 (3)C18—H18C0.9600
C6—C111.496 (3)C19—H19A0.9600
C7—C81.370 (3)C19—H19B0.9600
C8—C91.417 (2)C19—H19C0.9600
C1—O1—C18117.51 (15)O3—C11—C6120.23 (18)
C7—O2—C19117.30 (14)C12—C11—C6119.37 (16)
O1—C1—C10125.22 (19)C13—C12—C17118.65 (18)
O1—C1—C2113.82 (17)C13—C12—C11121.55 (16)
C10—C1—C2120.96 (17)C17—C12—C11119.78 (17)
C3—C2—C1119.73 (18)C14—C13—C12121.02 (17)
C3—C2—H2120.1C14—C13—H13119.5
C1—C2—H2120.1C12—C13—H13119.5
C2—C3—C4121.30 (19)C15—C14—C13118.84 (18)
C2—C3—H3119.4C15—C14—H14120.6
C4—C3—H3119.4C13—C14—H14120.6
C5—C4—C3122.78 (18)C14—C15—C16121.49 (18)
C5—C4—C9118.58 (16)C14—C15—Br1118.80 (15)
C3—C4—C9118.61 (17)C16—C15—Br1119.71 (14)
C6—C5—C4122.20 (17)C17—C16—C15119.00 (17)
C6—C5—H5118.9C17—C16—H16120.5
C4—C5—H5118.9C15—C16—H16120.5
C5—C6—C7118.89 (16)C16—C17—C12120.94 (18)
C5—C6—C11118.06 (17)C16—C17—H17119.5
C7—C6—C11122.98 (16)C12—C17—H17119.5
O2—C7—C8124.72 (16)O1—C18—H18A109.5
O2—C7—C6115.05 (15)O1—C18—H18B109.5
C8—C7—C6120.19 (16)H18A—C18—H18B109.5
C7—C8—C9121.22 (17)O1—C18—H18C109.5
C7—C8—H8119.4H18A—C18—H18C109.5
C9—C8—H8119.4H18B—C18—H18C109.5
C8—C9—C10121.58 (18)O2—C19—H19A109.5
C8—C9—C4118.88 (16)O2—C19—H19B109.5
C10—C9—C4119.50 (17)H19A—C19—H19B109.5
C1—C10—C9119.90 (19)O2—C19—H19C109.5
C1—C10—H10120.1H19A—C19—H19C109.5
C9—C10—H10120.1H19B—C19—H19C109.5
O3—C11—C12120.38 (17)
C18—O1—C1—C106.0 (3)C3—C4—C9—C100.4 (3)
C18—O1—C1—C2173.88 (17)O1—C1—C10—C9178.98 (17)
O1—C1—C2—C3179.56 (18)C2—C1—C10—C90.9 (3)
C10—C1—C2—C30.3 (3)C8—C9—C10—C1176.76 (17)
C1—C2—C3—C40.2 (3)C4—C9—C10—C10.9 (2)
C2—C3—C4—C5177.87 (19)C5—C6—C11—O346.0 (3)
C2—C3—C4—C90.2 (3)C7—C6—C11—O3131.1 (2)
C3—C4—C5—C6177.68 (18)C5—C6—C11—C12132.63 (18)
C9—C4—C5—C60.3 (3)C7—C6—C11—C1250.3 (2)
C4—C5—C6—C70.9 (3)O3—C11—C12—C13154.64 (19)
C4—C5—C6—C11178.08 (17)C6—C11—C12—C1324.0 (3)
C19—O2—C7—C84.8 (2)O3—C11—C12—C1724.1 (3)
C19—O2—C7—C6172.93 (15)C6—C11—C12—C17157.30 (19)
C5—C6—C7—O2176.14 (16)C17—C12—C13—C141.1 (3)
C11—C6—C7—O20.9 (2)C11—C12—C13—C14179.87 (18)
C5—C6—C7—C81.7 (3)C12—C13—C14—C151.2 (3)
C11—C6—C7—C8178.79 (16)C13—C14—C15—C162.7 (3)
O2—C7—C8—C9176.31 (16)C13—C14—C15—Br1176.93 (15)
C6—C7—C8—C91.4 (3)C14—C15—C16—C171.8 (3)
C7—C8—C9—C10177.62 (16)Br1—C15—C16—C17177.86 (15)
C7—C8—C9—C40.1 (3)C15—C16—C17—C120.7 (3)
C5—C4—C9—C80.8 (3)C13—C12—C17—C162.1 (3)
C3—C4—C9—C8177.36 (17)C11—C12—C17—C16179.15 (19)
C5—C4—C9—C10178.52 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O1i0.962.533.477 (2)170
C5—H5···Brii0.932.983.8441 (18)155
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC19H15BrO3
Mr371.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)7.88917 (14), 21.0182 (4), 10.06272 (18)
β (°) 105.971 (1)
V3)1604.16 (5)
Z4
Radiation typeCu Kα
µ (mm1)3.60
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.161, 0.533
No. of measured, independent and
observed [I > 2σ(I)] reflections
29541, 2934, 2767
Rint0.044
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.12
No. of reflections2934
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 1.03

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O1i0.962.533.477 (2)170
C5—H5···Brii0.932.983.8441 (18)155
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Sasagawa Scientific Research Grant from the Japan Science Society.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds