metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tricarbon­yl[η5-2-(methyl­di­phenyl­phosphanium­yl)-1,3,4-tri­phenylcyclo­penta­dienyl]molybdenum(0)

aState Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People's Republic of China
*Correspondence e-mail: ninggl@dlut.edu.cn

(Received 6 September 2010; accepted 5 October 2010; online 13 October 2010)

The title compound, [Mo(C36H29P)(CO)3], contains an Mo0 atom with a typical piano-stool coordination defined by the phospho­nium cyclo­penta­dienylide ligand η5-1-(methyl­diphenyl­phosphanium­yl)-2,3,5-triphenyl-2,4-cyclo­penta­dien-1-yl and by three carbonyl groups. The distance between the Mo0 atom and the cyclo­penta­dienyl ring is 2.0616 (13) Å.

Related literature

For background to phospho­nium cyclo­penta­dienylides, see: Ramirez & Levy (1956[Ramirez, F. & Levy, S. (1956). J. Org. Chem. 21, 488-489.]); Brownie et al. (2007[Brownie, J. H., Schmider, H. & Baird, M. C. (2007). Organometallics, 26, 1433-1443.]). For P—C and P=C bond lengths, see: Weast (1984[Weast, R. C. (1984). CRC Handbook of Chemistry & Physics, 65th ed. Boca Raton, Florida, USA: CRC Press.]) and Bart (1969[Bart, J. C. (1969). J. Chem. Soc. B, pp. 350-365.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Mo(C36H29P)(CO)3]

  • Mr = 672.53

  • Orthorhombic, P n a 21

  • a = 21.609 (7) Å

  • b = 10.440 (3) Å

  • c = 14.522 (5) Å

  • V = 3276.3 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Góttingen, Germany.]) Tmin = 0.909, Tmax = 0.931

  • 18060 measured reflections

  • 7157 independent reflections

  • 6119 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.053

  • S = 1.02

  • 7157 reflections

  • 397 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3271 Friedel pairs

  • Flack parameter: −0.03 (2)

Table 1
Selected bond lengths (Å)

Mo1—C39 1.927 (3)
Mo1—C38 1.937 (3)
Mo1—C37 1.946 (3)
Mo1—C4 2.374 (3)
Mo1—C1 2.379 (2)
Mo1—C5 2.387 (2)
Mo1—C3 2.417 (2)
Mo1—C2 2.419 (2)
P1—C1 1.779 (2)
P1—C24 1.793 (3)
P1—C31 1.799 (3)
P1—C25 1.806 (3)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination complexes of phosphonium cyclopentadienylides have attracted more and more attention in recent years because of their application in catalysis. Although phosphonium cyclopentadienylides were first reported in 1956 by Ramirez & Levy, only few compounds beyond C5H4PPh3 have been reported, probably due to the difficulties in characterizing them (Brownie et al., 2007). It is supposed that the behavior of this class of compounds depends on the substitutions on phosphorus.

The title compound, {Mo[η5-C5HPh3(PPh2CH3)](CO)3}, contains a Mo(0) atom in a typical piano stool coordination. The Mo atom is coordinated by a η5-(1,2,3,4,5-)-1-(methyldiphenylphosphonio)-2,3,5-triphenyl-2,4- cyclopentadien-1-yl ligand and three carbonyl groups. The distance between the Mo atom and the cyclopentadienyl ring is 2.0616 (13) Å. The P—C1 bond length, i.e. the phosphonium cyclopentadienylide bond, is 1.779 (2) Å, which lies between that of a typical P—C single bond (1.870 Å; Weast, 1984) and a PC double bond (1.660 Å; Bart, 1969). This behavioutr consistent with the zwitterionic resonance structure of such phosphonium cyclopentadienylide compounds.

Related literature top

For background to phosphonium cyclopentadienylides, see: Ramirez & Levy (1956); Brownie et al. (2007). For P—C and PC bond lengths, see: Weast (1984) and Bart (1969), respectively.

Experimental top

A solution of 0.49 g of C5HPh3PPh2CH3 and 1.06 g of Mo(CO)3(CH3CN)3 in 20 ml of THF was refluxed under argon for 3 h, during which time the solution developed a black-green color. The reaction mixture was cooled and filtered, and the solid residue was washed with THF. The resulting filtrate was then treated with 200 ml of hexane to precipitate a yellow solid that was collected and washed with hexanes. The solid was dried in vacuo to yield 0.40 g yellow product. X-ray quality crystals were obtained by re-crystallization from CH2Cl2 solution at 243 K by layering with hexane.

Refinement top

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C).

Structure description top

Coordination complexes of phosphonium cyclopentadienylides have attracted more and more attention in recent years because of their application in catalysis. Although phosphonium cyclopentadienylides were first reported in 1956 by Ramirez & Levy, only few compounds beyond C5H4PPh3 have been reported, probably due to the difficulties in characterizing them (Brownie et al., 2007). It is supposed that the behavior of this class of compounds depends on the substitutions on phosphorus.

The title compound, {Mo[η5-C5HPh3(PPh2CH3)](CO)3}, contains a Mo(0) atom in a typical piano stool coordination. The Mo atom is coordinated by a η5-(1,2,3,4,5-)-1-(methyldiphenylphosphonio)-2,3,5-triphenyl-2,4- cyclopentadien-1-yl ligand and three carbonyl groups. The distance between the Mo atom and the cyclopentadienyl ring is 2.0616 (13) Å. The P—C1 bond length, i.e. the phosphonium cyclopentadienylide bond, is 1.779 (2) Å, which lies between that of a typical P—C single bond (1.870 Å; Weast, 1984) and a PC double bond (1.660 Å; Bart, 1969). This behavioutr consistent with the zwitterionic resonance structure of such phosphonium cyclopentadienylide compounds.

For background to phosphonium cyclopentadienylides, see: Ramirez & Levy (1956); Brownie et al. (2007). For P—C and PC bond lengths, see: Weast (1984) and Bart (1969), respectively.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling and displacement ellipsoids ate the 30% probability level.
Tricarbonyl[η5-2-(methyldiphenylphosphaniumyl)-1,3,4- triphenylcyclopentadienyl]molybdenum(0) top
Crystal data top
[Mo(C36H29P)(CO)3]F(000) = 1376
Mr = 672.53Dx = 1.363 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7157 reflections
a = 21.609 (7) Åθ = 2.2–27.5°
b = 10.440 (3) ŵ = 0.49 mm1
c = 14.522 (5) ÅT = 293 K
V = 3276.3 (17) Å3Block, yellow
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7157 independent reflections
Radiation source: fine-focus sealed tube6119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2228
Tmin = 0.909, Tmax = 0.931k = 1213
18060 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0086P)2 + 1.1254P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7157 reflectionsΔρmax = 0.33 e Å3
397 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 3271 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
[Mo(C36H29P)(CO)3]V = 3276.3 (17) Å3
Mr = 672.53Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.609 (7) ŵ = 0.49 mm1
b = 10.440 (3) ÅT = 293 K
c = 14.522 (5) Å0.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7157 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6119 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.931Rint = 0.025
18060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.33 e Å3
S = 1.02Δρmin = 0.23 e Å3
7157 reflectionsAbsolute structure: Flack (1983), 3271 Friedel pairs
397 parametersAbsolute structure parameter: 0.03 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.090219 (7)0.464808 (17)0.09453 (2)0.03469 (5)
P10.03449 (2)0.68125 (5)0.10290 (6)0.03555 (13)
C10.01081 (10)0.5893 (2)0.02477 (16)0.0303 (5)
C20.06846 (10)0.6281 (2)0.01911 (17)0.0331 (5)
C30.09209 (10)0.5205 (2)0.06697 (16)0.0324 (5)
C40.04978 (11)0.4162 (3)0.05343 (19)0.0343 (6)
H4A0.05280.33250.08370.041*
C50.00034 (10)0.4570 (2)0.00062 (16)0.0335 (5)
C60.05804 (11)0.3791 (2)0.01401 (19)0.0387 (6)
C70.05867 (13)0.2687 (3)0.0644 (2)0.0684 (11)
H7A0.02280.24240.09420.082*
C80.11187 (16)0.1949 (3)0.0719 (3)0.0873 (15)
H8A0.11140.12070.10730.105*
C90.16466 (14)0.2303 (3)0.0279 (3)0.0722 (10)
H9A0.20020.18050.03280.087*
C100.16507 (14)0.3391 (3)0.0234 (3)0.0746 (11)
H10A0.20110.36420.05330.089*
C110.11182 (12)0.4135 (3)0.0313 (2)0.0578 (8)
H11A0.11240.48700.06750.069*
C120.09243 (11)0.7620 (2)0.02714 (18)0.0387 (5)
C130.06036 (17)0.8457 (3)0.0838 (3)0.0601 (10)
H13A0.02390.81950.11220.072*
C140.0831 (2)0.9701 (4)0.0982 (4)0.0843 (16)
H14A0.06161.02640.13610.101*
C150.1365 (2)1.0085 (3)0.0566 (3)0.1018 (15)
H15A0.15111.09130.06580.122*
C160.16889 (17)0.9252 (3)0.0012 (3)0.0841 (12)
H16A0.20560.95170.02630.101*
C170.14722 (13)0.8024 (3)0.0138 (2)0.0538 (7)
H17A0.16930.74670.05130.065*
C180.14706 (11)0.5116 (2)0.12831 (17)0.0368 (6)
C190.16267 (12)0.6105 (3)0.18867 (19)0.0490 (7)
H19A0.14020.68650.18770.059*
C200.21134 (14)0.5965 (4)0.2501 (2)0.0636 (9)
H20A0.22120.66320.29000.076*
C210.24515 (14)0.4847 (4)0.2525 (2)0.0711 (10)
H21A0.27770.47560.29380.085*
C220.23048 (14)0.3872 (4)0.1937 (2)0.0689 (10)
H22A0.25330.31180.19530.083*
C230.18213 (12)0.3989 (3)0.1317 (2)0.0514 (7)
H23A0.17290.33160.09210.062*
C240.07093 (13)0.5793 (3)0.1861 (2)0.0509 (7)
H24A0.03990.53230.21920.076*
H24B0.09800.52040.15520.076*
H24C0.09440.63050.22850.076*
C250.09837 (10)0.7619 (2)0.04752 (19)0.0413 (6)
C260.14111 (10)0.8270 (2)0.1020 (4)0.0575 (7)
H26A0.13420.83550.16490.069*
C270.19363 (13)0.8787 (3)0.0632 (3)0.0725 (12)
H27A0.22200.92220.09980.087*
C280.20402 (15)0.8661 (3)0.0288 (3)0.0780 (12)
H28A0.23950.90120.05480.094*
C290.16256 (16)0.8021 (3)0.0834 (3)0.0724 (10)
H29A0.17020.79300.14610.087*
C300.10906 (12)0.7509 (3)0.0450 (2)0.0497 (7)
H30A0.08050.70900.08230.060*
C310.00960 (11)0.7999 (3)0.16427 (19)0.0449 (6)
C320.01231 (13)0.9249 (3)0.1323 (2)0.0603 (9)
H32A0.00900.94870.07940.072*
C330.04738 (18)1.0141 (3)0.1807 (4)0.0928 (14)
H33A0.05111.09750.15910.111*
C340.0765 (2)0.9780 (6)0.2607 (5)0.105 (2)
H34A0.09881.03870.29370.126*
C350.0734 (2)0.8571 (6)0.2923 (3)0.0901 (16)
H35A0.09410.83510.34620.108*
C360.03997 (14)0.7659 (4)0.2455 (2)0.0643 (9)
H36A0.03760.68250.26780.077*
C370.14583 (13)0.5571 (3)0.1764 (2)0.0522 (7)
C380.15035 (11)0.3277 (3)0.1025 (3)0.0553 (7)
C390.05614 (15)0.3925 (3)0.2056 (2)0.0515 (8)
O10.17930 (11)0.6087 (3)0.22580 (17)0.0856 (8)
O20.18565 (10)0.2438 (2)0.1075 (2)0.0902 (8)
O30.03489 (12)0.3497 (3)0.27201 (17)0.0861 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02964 (8)0.04116 (9)0.03328 (9)0.00048 (8)0.00279 (14)0.00333 (15)
P10.0293 (3)0.0414 (3)0.0359 (4)0.0018 (2)0.0032 (4)0.0008 (4)
C10.0277 (11)0.0318 (12)0.0314 (12)0.0002 (10)0.0014 (9)0.0033 (10)
C20.0268 (11)0.0365 (13)0.0359 (14)0.0023 (10)0.0028 (10)0.0038 (11)
C30.0282 (11)0.0359 (12)0.0333 (13)0.0000 (10)0.0031 (10)0.0001 (10)
C40.0317 (13)0.0326 (13)0.0386 (16)0.0016 (11)0.0025 (12)0.0007 (12)
C50.0293 (12)0.0367 (13)0.0345 (13)0.0037 (10)0.0031 (10)0.0045 (11)
C60.0311 (13)0.0401 (15)0.0450 (16)0.0078 (11)0.0014 (11)0.0014 (12)
C70.0484 (16)0.0592 (18)0.098 (3)0.0166 (14)0.0147 (16)0.0272 (17)
C80.079 (2)0.068 (2)0.115 (4)0.0338 (17)0.006 (2)0.034 (2)
C90.0416 (17)0.071 (2)0.104 (3)0.0245 (17)0.0137 (18)0.011 (2)
C100.0396 (17)0.066 (2)0.118 (3)0.0076 (16)0.0168 (19)0.011 (2)
C110.0389 (15)0.0506 (17)0.084 (2)0.0098 (13)0.0140 (15)0.0076 (16)
C120.0381 (13)0.0364 (13)0.0417 (14)0.0046 (11)0.0054 (11)0.0000 (11)
C130.055 (2)0.045 (2)0.080 (3)0.0069 (16)0.0088 (18)0.0147 (17)
C140.104 (4)0.049 (2)0.100 (3)0.010 (2)0.021 (3)0.026 (2)
C150.124 (4)0.051 (2)0.131 (4)0.042 (2)0.024 (3)0.024 (2)
C160.085 (3)0.072 (2)0.095 (3)0.044 (2)0.016 (2)0.007 (2)
C170.0505 (17)0.0516 (17)0.0592 (19)0.0163 (14)0.0073 (14)0.0016 (14)
C180.0267 (12)0.0508 (16)0.0329 (13)0.0070 (11)0.0016 (10)0.0045 (11)
C190.0421 (15)0.0614 (18)0.0435 (16)0.0076 (13)0.0013 (12)0.0002 (14)
C200.0468 (18)0.100 (3)0.0445 (18)0.0223 (18)0.0086 (14)0.0053 (17)
C210.0384 (16)0.127 (3)0.048 (2)0.004 (2)0.0114 (14)0.015 (2)
C220.0472 (17)0.099 (3)0.061 (2)0.0221 (18)0.0001 (16)0.024 (2)
C230.0430 (15)0.0658 (19)0.0453 (17)0.0073 (14)0.0008 (13)0.0081 (14)
C240.0478 (16)0.0606 (18)0.0441 (17)0.0030 (13)0.0158 (13)0.0102 (13)
C250.0262 (12)0.0432 (14)0.0547 (16)0.0006 (11)0.0001 (11)0.0043 (12)
C260.0393 (13)0.0641 (16)0.0690 (19)0.0075 (11)0.008 (2)0.003 (2)
C270.0371 (15)0.068 (2)0.113 (4)0.0129 (14)0.0129 (17)0.012 (2)
C280.0386 (18)0.084 (3)0.112 (3)0.0055 (16)0.014 (2)0.037 (2)
C290.061 (2)0.086 (3)0.071 (2)0.0064 (19)0.0200 (18)0.030 (2)
C300.0414 (15)0.0576 (18)0.0501 (18)0.0016 (13)0.0027 (13)0.0150 (14)
C310.0347 (14)0.0532 (17)0.0468 (17)0.0057 (12)0.0015 (12)0.0120 (13)
C320.0475 (17)0.0502 (17)0.083 (3)0.0036 (13)0.0095 (14)0.0140 (15)
C330.074 (2)0.053 (2)0.152 (4)0.0051 (18)0.024 (3)0.031 (2)
C340.074 (3)0.095 (4)0.147 (5)0.002 (3)0.039 (3)0.061 (4)
C350.084 (3)0.105 (4)0.081 (3)0.017 (3)0.031 (2)0.041 (3)
C360.064 (2)0.074 (2)0.055 (2)0.0133 (17)0.0113 (17)0.0166 (17)
C370.0429 (16)0.069 (2)0.0449 (18)0.0062 (14)0.0046 (13)0.0003 (15)
C380.0469 (13)0.0680 (16)0.0511 (17)0.0091 (12)0.0078 (19)0.003 (2)
C390.0493 (18)0.064 (2)0.0411 (19)0.0000 (16)0.0066 (15)0.0123 (16)
O10.0682 (15)0.121 (2)0.0677 (17)0.0273 (15)0.0203 (13)0.0190 (15)
O20.0739 (13)0.0914 (15)0.105 (2)0.0428 (12)0.016 (2)0.007 (2)
O30.0861 (17)0.118 (2)0.0547 (15)0.0116 (16)0.0013 (13)0.0379 (15)
Geometric parameters (Å, º) top
Mo1—C391.927 (3)C16—H16A0.9300
Mo1—C381.937 (3)C17—H17A0.9300
Mo1—C371.946 (3)C18—C191.396 (4)
Mo1—C42.374 (3)C18—C231.400 (4)
Mo1—C12.379 (2)C19—C201.387 (4)
Mo1—C52.387 (2)C19—H19A0.9300
Mo1—C32.417 (2)C20—C211.378 (5)
Mo1—C22.419 (2)C20—H20A0.9300
P1—C11.779 (2)C21—C221.366 (5)
P1—C241.793 (3)C21—H21A0.9300
P1—C311.799 (3)C22—C231.384 (4)
P1—C251.806 (3)C22—H22A0.9300
C1—C51.446 (3)C23—H23A0.9300
C1—C21.457 (3)C24—H24A0.9600
C2—C31.417 (3)C24—H24B0.9600
C2—C121.495 (3)C24—H24C0.9600
C3—C41.435 (3)C25—C301.369 (4)
C3—C181.488 (3)C25—C261.393 (4)
C4—C51.404 (3)C26—C271.378 (4)
C4—H4A0.9800C26—H26A0.9300
C5—C61.501 (3)C27—C281.361 (5)
C6—C71.365 (4)C27—H27A0.9300
C6—C111.383 (4)C28—C291.371 (5)
C7—C81.388 (4)C28—H28A0.9300
C7—H7A0.9300C29—C301.390 (4)
C8—C91.359 (5)C29—H29A0.9300
C8—H8A0.9300C30—H30A0.9300
C9—C101.358 (5)C31—C321.386 (4)
C9—H9A0.9300C31—C361.396 (4)
C10—C111.393 (4)C32—C331.391 (4)
C10—H10A0.9300C32—H32A0.9300
C11—H11A0.9300C33—C341.372 (7)
C12—C131.386 (4)C33—H33A0.9300
C12—C171.390 (3)C34—C351.345 (8)
C13—C141.404 (5)C34—H34A0.9300
C13—H13A0.9300C35—C361.375 (5)
C14—C151.363 (6)C35—H35A0.9300
C14—H14A0.9300C36—H36A0.9300
C15—C161.377 (5)C37—O11.152 (3)
C15—H15A0.9300C38—O21.164 (3)
C16—C171.382 (4)C39—O31.158 (4)
C39—Mo1—C3885.26 (16)C13—C12—C17119.2 (3)
C39—Mo1—C3785.32 (13)C13—C12—C2117.5 (2)
C38—Mo1—C3785.14 (13)C17—C12—C2123.1 (2)
C39—Mo1—C4122.21 (11)C12—C13—C14119.8 (4)
C38—Mo1—C498.21 (14)C12—C13—H13A120.1
C37—Mo1—C4152.39 (11)C14—C13—H13A120.1
C39—Mo1—C1107.14 (11)C15—C14—C13120.2 (4)
C38—Mo1—C1155.93 (14)C15—C14—H14A119.9
C37—Mo1—C1115.78 (11)C13—C14—H14A119.9
C4—Mo1—C157.73 (8)C14—C15—C16120.2 (3)
C39—Mo1—C598.71 (11)C14—C15—H15A119.9
C38—Mo1—C5123.97 (12)C16—C15—H15A119.9
C37—Mo1—C5150.75 (11)C15—C16—C17120.4 (3)
C4—Mo1—C534.29 (8)C15—C16—H16A119.8
C1—Mo1—C535.32 (8)C17—C16—H16A119.8
C39—Mo1—C3155.91 (11)C16—C17—C12120.2 (3)
C38—Mo1—C3102.95 (14)C16—C17—H17A119.9
C37—Mo1—C3117.62 (11)C12—C17—H17A119.9
C4—Mo1—C334.85 (8)C19—C18—C23117.9 (2)
C1—Mo1—C357.82 (8)C19—C18—C3121.5 (2)
C5—Mo1—C357.82 (8)C23—C18—C3120.4 (2)
C39—Mo1—C2140.60 (11)C20—C19—C18120.6 (3)
C38—Mo1—C2133.79 (14)C20—C19—H19A119.7
C37—Mo1—C2100.83 (11)C18—C19—H19A119.7
C4—Mo1—C257.44 (9)C21—C20—C19120.5 (3)
C1—Mo1—C235.33 (7)C21—C20—H20A119.8
C5—Mo1—C258.33 (8)C19—C20—H20A119.8
C3—Mo1—C234.08 (8)C22—C21—C20119.5 (3)
C1—P1—C24110.56 (12)C22—C21—H21A120.2
C1—P1—C31113.33 (11)C20—C21—H21A120.2
C24—P1—C31107.91 (15)C21—C22—C23121.1 (3)
C1—P1—C25112.83 (13)C21—C22—H22A119.5
C24—P1—C25103.97 (12)C23—C22—H22A119.5
C31—P1—C25107.71 (12)C22—C23—C18120.4 (3)
C5—C1—C2107.6 (2)C22—C23—H23A119.8
C5—C1—P1125.34 (17)C18—C23—H23A119.8
C2—C1—P1126.82 (18)P1—C24—H24A109.5
C5—C1—Mo172.61 (12)P1—C24—H24B109.5
C2—C1—Mo173.82 (13)H24A—C24—H24B109.5
P1—C1—Mo1114.83 (12)P1—C24—H24C109.5
C3—C2—C1107.6 (2)H24A—C24—H24C109.5
C3—C2—C12125.3 (2)H24B—C24—H24C109.5
C1—C2—C12126.2 (2)C30—C25—C26119.2 (3)
C3—C2—Mo172.86 (13)C30—C25—P1121.8 (2)
C1—C2—Mo170.84 (13)C26—C25—P1118.7 (3)
C12—C2—Mo1130.15 (16)C27—C26—C25120.3 (4)
C2—C3—C4107.8 (2)C27—C26—H26A119.9
C2—C3—C18129.1 (2)C25—C26—H26A119.9
C4—C3—C18122.9 (2)C28—C27—C26120.0 (4)
C2—C3—Mo173.06 (14)C28—C27—H27A120.0
C4—C3—Mo170.97 (14)C26—C27—H27A120.0
C18—C3—Mo1125.42 (16)C27—C28—C29120.5 (3)
C5—C4—C3109.8 (2)C27—C28—H28A119.8
C5—C4—Mo173.33 (15)C29—C28—H28A119.8
C3—C4—Mo174.18 (14)C28—C29—C30120.0 (3)
C5—C4—H4A124.9C28—C29—H29A120.0
C3—C4—H4A124.9C30—C29—H29A120.0
Mo1—C4—H4A124.9C25—C30—C29120.1 (3)
C4—C5—C1107.3 (2)C25—C30—H30A120.0
C4—C5—C6123.3 (2)C29—C30—H30A120.0
C1—C5—C6128.7 (2)C32—C31—C36120.1 (3)
C4—C5—Mo172.38 (14)C32—C31—P1120.3 (2)
C1—C5—Mo172.07 (12)C36—C31—P1119.5 (2)
C6—C5—Mo1128.72 (16)C31—C32—C33119.0 (3)
C7—C6—C11117.8 (2)C31—C32—H32A120.5
C7—C6—C5122.4 (2)C33—C32—H32A120.5
C11—C6—C5119.7 (2)C34—C33—C32119.6 (4)
C6—C7—C8121.2 (3)C34—C33—H33A120.2
C6—C7—H7A119.4C32—C33—H33A120.2
C8—C7—H7A119.4C35—C34—C33121.6 (4)
C9—C8—C7120.5 (3)C35—C34—H34A119.2
C9—C8—H8A119.8C33—C34—H34A119.2
C7—C8—H8A119.8C34—C35—C36120.5 (5)
C10—C9—C8119.4 (3)C34—C35—H35A119.8
C10—C9—H9A120.3C36—C35—H35A119.8
C8—C9—H9A120.3C35—C36—C31119.2 (4)
C9—C10—C11120.4 (3)C35—C36—H36A120.4
C9—C10—H10A119.8C31—C36—H36A120.4
C11—C10—H10A119.8O1—C37—Mo1178.2 (3)
C6—C11—C10120.7 (3)O2—C38—Mo1178.8 (3)
C6—C11—H11A119.7O3—C39—Mo1179.1 (3)
C10—C11—H11A119.7

Experimental details

Crystal data
Chemical formula[Mo(C36H29P)(CO)3]
Mr672.53
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)21.609 (7), 10.440 (3), 14.522 (5)
V3)3276.3 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.909, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
18060, 7157, 6119
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.053, 1.02
No. of reflections7157
No. of parameters397
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23
Absolute structureFlack (1983), 3271 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mo1—C391.927 (3)Mo1—C32.417 (2)
Mo1—C381.937 (3)Mo1—C22.419 (2)
Mo1—C371.946 (3)P1—C11.779 (2)
Mo1—C42.374 (3)P1—C241.793 (3)
Mo1—C12.379 (2)P1—C311.799 (3)
Mo1—C52.387 (2)P1—C251.806 (3)
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20772014 and 51003009) and the Specialized Research Fund for the Doctoral Program of Higher Education (200801411121).

References

First citationBart, J. C. (1969). J. Chem. Soc. B, pp. 350-365.  Google Scholar
First citationBrownie, J. H., Schmider, H. & Baird, M. C. (2007). Organometallics, 26, 1433–1443.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRamirez, F. & Levy, S. (1956). J. Org. Chem. 21, 488–489.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Góttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeast, R. C. (1984). CRC Handbook of Chemistry & Physics, 65th ed. Boca Raton, Florida, USA: CRC Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds