metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline-κ2N,N′)cadmium(II)]-μ-oxalato-κ4O1,O2:O1′,O2′]

aChemistry Department, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: ganlh@tongji.edu.cn

(Received 25 September 2010; accepted 8 October 2010; online 23 October 2010)

In the title complex, [Cd(C2O4)(C12H8N2)]n, the CdII atom has a distorted octa­hedral coordination, defined by four O atoms from two symmetry-related oxalate ligands and by two N atoms from a bidentate 1,10-phenanthroline ligand. Each oxalate ligand bridges two CdII atoms, generating a zigzag chain structure propagating along [100]. The packing of the structure is consolidated by non-classical C—H⋯O hydrogen-bonding inter­actions.

Related literature

For general background to the rational design and synthesis of metal-organic polymers, see: Kondrashev et al. (1985[Kondrashev, Y. D., Bogdanov, V. S., Golubev, S. N. & Pron, G. F. (1985). Zh. Strukt. Khim. 26, 90-93.]); Orioli et al. (2002[Orioli, P., Bruni, B., Vaira, M. D., Messori, L. & Piccioli, F. (2002). Inorg. Chem. 41, 4312-4314.]); Athar et al. (2008[Athar, M., Li, G. H., Shi, Z., Chen, Y. & Feng, S. H. (2008). Solid State Sci. 10, 1853-1859.]); Lv et al. (2010[Lv, Y. K., Zhan, C. H., Jiang, Z. G. & Feng, Y. L. (2010). Inorg. Chem. Commun. 13, 440-444.]). Wu et al. (2003[Wu, C. D., Lu, C. Z., Lu, S. F., Zhuang, H. H. & Huang, J. S. (2003). Dalton Trans. pp. 3192-3198.]). For related structures, see: Cao et al. (2009[Cao, X. Y., Yao, Y. G., Qin, Y. Y., Lin, Q. P., Li, Z. J., Cheng, J. K. & Hur, N. H. (2009). CrystEngComm, 11, 1815-1818.]); Jeanneau et al. (2001[Jeanneau, E., Audebrand, N. & Louër, D. (2001). Acta Cryst. C57, 1012-1013.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2O4)(C12H8N2)]

  • Mr = 380.62

  • Orthorhombic, P n a 21

  • a = 9.7199 (2) Å

  • b = 10.3338 (2) Å

  • c = 13.1638 (2) Å

  • V = 1322.22 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 296 K

  • 0.29 × 0.14 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göettingen, Germany.]) Tmin = 0.76, Tmax = 0.85

  • 11056 measured reflections

  • 2892 independent reflections

  • 2386 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.00

  • 2892 reflections

  • 191 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1310 Friedel pairs

  • Flack parameter: 0.33 (4)

Table 1
Selected bond lengths (Å)

Cd1—O1 2.258 (3)
Cd1—O4i 2.269 (3)
Cd1—O2 2.271 (3)
Cd1—O3i 2.294 (3)
Cd1—N2 2.307 (3)
Cd1—N1 2.338 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2ii 0.93 2.38 3.106 (6) 134
C7—H7A⋯O1iii 0.93 2.57 3.289 (6) 134
C11—H11A⋯O3iv 0.93 2.42 3.302 (7) 159
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Rational design and synthesis of metal-organic polymers is of current interest in the field of supramolecular chemistry and crystal engineering (Athar et al., 2008; Lv et al., 2010; Wu et al., 2003). Among the anions involved in the formation of such solids, the oxalate anion, which possesses four donor O atoms, plays an important role. Indeed, it can act either as a monodentate or a bidentate chelating ligand and can thus bridge two or more metal atoms in a variety of arrangements, as recently shown with a number of compounds (Kondrashev et al., 1985; Jeanneau et al., 2001; Cao et al., 2009; Orioli et al., 2002). We report here on the synthesis and structure of the title compound, [Cd(C2O4)(C12H8N2)].

As shown in Fig. 1, the central Cd(II) atom is six-coordinated by four O atoms from two symmetry-related oxalate ligands and two N atoms from a bidendate 1,10-phenanthroline ligand (Table 1), forming a distorted octahedral geometry. Each oxalate ligand bridges two cadmium(II) atoms generating a zigzag chain structure propagating along [100]. Furthermore, there are non-classical C—H···O hydrogen bonds present (Table 2). Together with van der Waals forces they interconnect the zigzag chains and construct a supramolecular network (Fig. 2).

Related literature top

For general background to the rational design and synthesis of metal-organic polymers, see: Kondrashev et al. (1985); Orioli et al. (2002); Athar et al. (2008); Lv et al. (2010). Wu et al. (2003). For related structures, see: Cao et al. (2009); Jeanneau et al. (2001).

Experimental top

The synthesis of the title complex (I) was carried out by hydrothermal reaction. A mixture of Cd(NO3)2.4H2O (1.0 mmol), K2C2O4 (1.0 mmol), 1,10-phenanthroline (1.0 mmol) in 20 ml water was placed in a Teflon-lined stainless steel autoclave and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. The resulting colorless crystals suitable for X-ray analysis were obtained in about 36% yield.

Refinement top

The H atoms bonded to C atoms were positioned geometrically [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. The crystal measured was an inversion twin with a 2:1 ratio for the twin domains.

Structure description top

Rational design and synthesis of metal-organic polymers is of current interest in the field of supramolecular chemistry and crystal engineering (Athar et al., 2008; Lv et al., 2010; Wu et al., 2003). Among the anions involved in the formation of such solids, the oxalate anion, which possesses four donor O atoms, plays an important role. Indeed, it can act either as a monodentate or a bidentate chelating ligand and can thus bridge two or more metal atoms in a variety of arrangements, as recently shown with a number of compounds (Kondrashev et al., 1985; Jeanneau et al., 2001; Cao et al., 2009; Orioli et al., 2002). We report here on the synthesis and structure of the title compound, [Cd(C2O4)(C12H8N2)].

As shown in Fig. 1, the central Cd(II) atom is six-coordinated by four O atoms from two symmetry-related oxalate ligands and two N atoms from a bidendate 1,10-phenanthroline ligand (Table 1), forming a distorted octahedral geometry. Each oxalate ligand bridges two cadmium(II) atoms generating a zigzag chain structure propagating along [100]. Furthermore, there are non-classical C—H···O hydrogen bonds present (Table 2). Together with van der Waals forces they interconnect the zigzag chains and construct a supramolecular network (Fig. 2).

For general background to the rational design and synthesis of metal-organic polymers, see: Kondrashev et al. (1985); Orioli et al. (2002); Athar et al. (2008); Lv et al. (2010). Wu et al. (2003). For related structures, see: Cao et al. (2009); Jeanneau et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit and some symmetry-related atoms of the title complex. Displacement ellipsoids are plotted at the 30% probability level and H atoms are not labeled. [Symmetry codes: (i) x-0.5, -y-0.5, z; (ii) x+0.5, -y-0.5, z.]
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down [010]; all H atoms were omitted for clarity.
catena-Poly[[(1,10-phenanthroline-κ2N,N')cadmium(II)]- µ-oxalato-κ4O1,O2:O1',O2'] top
Crystal data top
[Cd(C2O4)(C12H8N2)]F(000) = 744
Mr = 380.62Dx = 1.912 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2979 reflections
a = 9.7199 (2) Åθ = 2.5–27.4°
b = 10.3338 (2) ŵ = 1.67 mm1
c = 13.1638 (2) ÅT = 296 K
V = 1322.22 (4) Å3Block, colourless
Z = 40.29 × 0.14 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2892 independent reflections
Radiation source: fine-focus sealed tube2386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.76, Tmax = 0.85k = 1313
11056 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2892 reflectionsΔρmax = 0.37 e Å3
191 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 1310 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.33 (4)
Crystal data top
[Cd(C2O4)(C12H8N2)]V = 1322.22 (4) Å3
Mr = 380.62Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.7199 (2) ŵ = 1.67 mm1
b = 10.3338 (2) ÅT = 296 K
c = 13.1638 (2) Å0.29 × 0.14 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2892 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2386 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.85Rint = 0.034
11056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.37 e Å3
S = 1.00Δρmin = 0.27 e Å3
2892 reflectionsAbsolute structure: Flack (1983), 1310 Friedel pairs
191 parametersAbsolute structure parameter: 0.33 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.38159 (2)0.09300 (2)0.33607 (7)0.04611 (10)
O10.5669 (3)0.1452 (3)0.2410 (2)0.0499 (7)
O20.5193 (3)0.2166 (3)0.4361 (2)0.0579 (8)
O30.7580 (3)0.2606 (3)0.2421 (2)0.0558 (8)
O40.6953 (3)0.3510 (3)0.4301 (2)0.0475 (7)
N10.4604 (4)0.1011 (3)0.4063 (3)0.0488 (9)
N20.2834 (4)0.0751 (3)0.2463 (3)0.0480 (8)
C10.6195 (3)0.2664 (4)0.3923 (4)0.0395 (11)
C20.6499 (5)0.2203 (4)0.2815 (4)0.0413 (11)
C30.1925 (5)0.0621 (5)0.1726 (3)0.0591 (12)
H3A0.16610.02100.15390.071*
C40.1343 (5)0.1662 (7)0.1214 (4)0.0689 (15)
H4A0.06950.15320.07040.083*
C50.1737 (6)0.2856 (6)0.1474 (4)0.0677 (15)
H5A0.13750.35630.11280.081*
C60.2686 (4)0.3061 (4)0.2260 (4)0.0537 (11)
C70.3150 (6)0.4299 (5)0.2568 (5)0.0691 (14)
H7A0.28270.50280.22310.083*
C80.4037 (5)0.4444 (4)0.3329 (9)0.0735 (13)
H8A0.43150.52730.35120.088*
C90.4585 (5)0.3335 (4)0.3883 (4)0.0566 (11)
C100.5520 (6)0.3424 (6)0.4680 (4)0.0738 (15)
H10A0.58410.42310.48860.089*
C110.5964 (6)0.2351 (7)0.5155 (5)0.0736 (18)
H11A0.65840.24080.56910.088*
C120.5478 (6)0.1150 (5)0.4831 (4)0.0666 (14)
H12A0.57800.04120.51690.080*
C130.4163 (4)0.2091 (4)0.3576 (3)0.0436 (11)
C140.3214 (4)0.1959 (4)0.2760 (3)0.0424 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04105 (14)0.04202 (14)0.05528 (16)0.00004 (11)0.0025 (2)0.0066 (2)
O10.0474 (16)0.0561 (17)0.0462 (17)0.0046 (15)0.0020 (14)0.0163 (16)
O20.0529 (18)0.070 (2)0.0505 (17)0.0190 (16)0.0150 (16)0.0229 (17)
O30.0573 (19)0.0592 (17)0.0508 (17)0.0164 (15)0.0141 (15)0.0105 (15)
O40.0469 (15)0.0471 (15)0.0484 (16)0.0047 (13)0.0033 (13)0.0097 (14)
N10.0444 (19)0.056 (2)0.0457 (19)0.0024 (16)0.0074 (15)0.0050 (18)
N20.0466 (19)0.051 (2)0.0460 (19)0.0014 (15)0.0064 (16)0.0079 (17)
C10.042 (3)0.038 (2)0.039 (2)0.0019 (18)0.0002 (18)0.001 (2)
C20.044 (2)0.032 (2)0.049 (3)0.0045 (19)0.006 (2)0.006 (2)
C30.057 (3)0.069 (3)0.051 (3)0.002 (2)0.011 (2)0.006 (2)
C40.063 (3)0.089 (4)0.054 (3)0.001 (3)0.013 (2)0.018 (3)
C50.061 (3)0.074 (4)0.068 (4)0.020 (3)0.002 (3)0.031 (3)
C60.047 (2)0.050 (2)0.064 (3)0.0105 (19)0.013 (2)0.015 (2)
C70.070 (3)0.049 (3)0.088 (4)0.013 (2)0.009 (3)0.010 (3)
C80.082 (3)0.0364 (19)0.102 (4)0.0012 (19)0.031 (5)0.002 (5)
C90.051 (3)0.049 (3)0.070 (3)0.013 (2)0.013 (2)0.010 (2)
C100.074 (4)0.074 (4)0.074 (4)0.020 (3)0.012 (3)0.015 (3)
C110.072 (4)0.100 (5)0.049 (3)0.026 (3)0.011 (3)0.008 (3)
C120.066 (3)0.074 (3)0.060 (3)0.014 (3)0.018 (3)0.012 (3)
C130.0400 (18)0.045 (2)0.046 (3)0.0005 (15)0.0091 (18)0.004 (2)
C140.043 (2)0.041 (2)0.043 (2)0.0026 (17)0.0074 (18)0.0054 (18)
Geometric parameters (Å, º) top
Cd1—O12.258 (3)C4—C51.336 (9)
Cd1—O4i2.269 (3)C4—H4A0.9300
Cd1—O22.271 (3)C5—C61.402 (7)
Cd1—O3i2.294 (3)C5—H5A0.9300
Cd1—N22.307 (3)C6—C141.411 (5)
Cd1—N12.338 (3)C6—C71.416 (7)
O1—C21.240 (5)C7—C81.330 (11)
O2—C11.242 (5)C7—H7A0.9300
O3—C21.244 (5)C8—C91.459 (9)
O3—Cd1ii2.294 (3)C8—H8A0.9300
O4—C11.247 (5)C9—C101.392 (7)
O4—Cd1ii2.269 (3)C9—C131.409 (6)
N1—C121.329 (6)C10—C111.344 (9)
N1—C131.356 (5)C10—H10A0.9300
N2—C31.319 (6)C11—C121.394 (8)
N2—C141.359 (5)C11—H11A0.9300
C1—C21.563 (5)C12—H12A0.9300
C3—C41.391 (7)C13—C141.422 (6)
C3—H3A0.9300
O1—Cd1—O4i151.38 (10)C5—C4—C3118.3 (5)
O1—Cd1—O273.54 (9)C5—C4—H4A120.9
O4i—Cd1—O290.60 (10)C3—C4—H4A120.9
O1—Cd1—O3i87.77 (11)C4—C5—C6121.1 (5)
O4i—Cd1—O3i73.03 (10)C4—C5—H5A119.5
O2—Cd1—O3i104.50 (12)C6—C5—H5A119.5
O1—Cd1—N2103.06 (12)C5—C6—C14117.5 (4)
O4i—Cd1—N298.14 (12)C5—C6—C7123.9 (5)
O2—Cd1—N2164.61 (13)C14—C6—C7118.6 (5)
O3i—Cd1—N290.22 (13)C8—C7—C6121.6 (5)
O1—Cd1—N199.37 (13)C8—C7—H7A119.2
O4i—Cd1—N1105.35 (12)C6—C7—H7A119.2
O2—Cd1—N193.45 (13)C7—C8—C9121.7 (5)
O3i—Cd1—N1161.94 (12)C7—C8—H8A119.2
N2—Cd1—N172.07 (12)C9—C8—H8A119.2
C2—O1—Cd1115.5 (3)C10—C9—C13117.9 (5)
C1—O2—Cd1115.2 (3)C10—C9—C8124.3 (5)
C2—O3—Cd1ii116.0 (3)C13—C9—C8117.8 (5)
C1—O4—Cd1ii115.6 (3)C11—C10—C9120.4 (5)
C12—N1—C13118.3 (4)C11—C10—H10A119.8
C12—N1—Cd1127.1 (3)C9—C10—H10A119.8
C13—N1—Cd1114.5 (3)C10—C11—C12119.0 (5)
C3—N2—C14119.1 (4)C10—C11—H11A120.5
C3—N2—Cd1125.3 (3)C12—C11—H11A120.5
C14—N2—Cd1115.6 (3)N1—C12—C11123.0 (5)
O2—C1—O4124.6 (5)N1—C12—H12A118.5
O2—C1—C2117.1 (4)C11—C12—H12A118.5
O4—C1—C2118.3 (4)N1—C13—C9121.5 (4)
O1—C2—O3125.5 (5)N1—C13—C14118.9 (4)
O1—C2—C1117.9 (4)C9—C13—C14119.5 (4)
O3—C2—C1116.6 (4)N2—C14—C6120.5 (4)
N2—C3—C4123.4 (5)N2—C14—C13118.7 (3)
N2—C3—H3A118.3C6—C14—C13120.7 (4)
C4—C3—H3A118.3
O4i—Cd1—O1—C254.2 (5)O2—C1—C2—O3172.9 (5)
O2—Cd1—O1—C24.5 (3)O4—C1—C2—O38.0 (5)
O3i—Cd1—O1—C2101.3 (4)C14—N2—C3—C41.2 (7)
N2—Cd1—O1—C2169.0 (3)Cd1—N2—C3—C4179.0 (4)
N1—Cd1—O1—C295.4 (3)N2—C3—C4—C50.9 (8)
O1—Cd1—O2—C17.7 (3)C3—C4—C5—C61.6 (8)
O4i—Cd1—O2—C1148.1 (3)C4—C5—C6—C140.4 (7)
O3i—Cd1—O2—C175.5 (3)C4—C5—C6—C7179.7 (5)
N2—Cd1—O2—C187.0 (6)C5—C6—C7—C8179.0 (6)
N1—Cd1—O2—C1106.5 (3)C14—C6—C7—C81.8 (8)
O1—Cd1—N1—C1278.2 (4)C6—C7—C8—C90.3 (10)
O4i—Cd1—N1—C1287.2 (4)C7—C8—C9—C10179.6 (6)
O2—Cd1—N1—C124.4 (4)C7—C8—C9—C131.1 (9)
O3i—Cd1—N1—C12169.5 (4)C13—C9—C10—C112.0 (7)
N2—Cd1—N1—C12179.0 (4)C8—C9—C10—C11179.4 (6)
O1—Cd1—N1—C1397.6 (3)C9—C10—C11—C120.4 (9)
O4i—Cd1—N1—C1396.9 (3)C13—N1—C12—C110.3 (8)
O2—Cd1—N1—C13171.5 (3)Cd1—N1—C12—C11175.5 (4)
O3i—Cd1—N1—C1314.6 (6)C10—C11—C12—N10.8 (9)
N2—Cd1—N1—C133.2 (3)C12—N1—C13—C91.5 (6)
O1—Cd1—N2—C388.0 (4)Cd1—N1—C13—C9177.7 (3)
O4i—Cd1—N2—C372.7 (4)C12—N1—C13—C14179.2 (4)
O2—Cd1—N2—C3163.3 (4)Cd1—N1—C13—C144.5 (5)
O3i—Cd1—N2—C30.2 (4)C10—C9—C13—N12.6 (6)
N1—Cd1—N2—C3176.3 (4)C8—C9—C13—N1178.7 (5)
O1—Cd1—N2—C1494.2 (3)C10—C9—C13—C14179.6 (4)
O4i—Cd1—N2—C14105.1 (3)C8—C9—C13—C141.0 (6)
O2—Cd1—N2—C1418.9 (6)C3—N2—C14—C62.5 (6)
O3i—Cd1—N2—C14178.0 (3)Cd1—N2—C14—C6179.5 (3)
N1—Cd1—N2—C141.6 (3)C3—N2—C14—C13178.1 (4)
Cd1—O2—C1—O4169.5 (3)Cd1—N2—C14—C130.1 (5)
Cd1—O2—C1—C29.5 (4)C5—C6—C14—N21.7 (6)
Cd1ii—O4—C1—O2174.2 (3)C7—C6—C14—N2177.6 (4)
Cd1ii—O4—C1—C26.8 (4)C5—C6—C14—C13178.9 (4)
Cd1—O1—C2—O3179.9 (4)C7—C6—C14—C131.8 (6)
Cd1—O1—C2—C11.5 (5)N1—C13—C14—N23.2 (6)
Cd1ii—O3—C2—O1176.9 (4)C9—C13—C14—N2179.0 (4)
Cd1ii—O3—C2—C14.6 (4)N1—C13—C14—C6177.4 (4)
O2—C1—C2—O15.6 (5)C9—C13—C14—C60.4 (6)
O4—C1—C2—O1173.4 (5)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2iii0.932.383.106 (6)134
C7—H7A···O1iv0.932.573.289 (6)134
C11—H11A···O3v0.932.423.302 (7)159
Symmetry codes: (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z; (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2O4)(C12H8N2)]
Mr380.62
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)9.7199 (2), 10.3338 (2), 13.1638 (2)
V3)1322.22 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.29 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.76, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
11056, 2892, 2386
Rint0.034
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.00
No. of reflections2892
No. of parameters191
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.27
Absolute structureFlack (1983), 1310 Friedel pairs
Absolute structure parameter0.33 (4)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.258 (3)Cd1—O3i2.294 (3)
Cd1—O4i2.269 (3)Cd1—N22.307 (3)
Cd1—O22.271 (3)Cd1—N12.338 (3)
Symmetry code: (i) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2ii0.932.383.106 (6)134.3
C7—H7A···O1iii0.932.573.289 (6)134.0
C11—H11A···O3iv0.932.423.302 (7)158.7
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z; (iv) x+3/2, y+1/2, z+1/2.
 

References

First citationAthar, M., Li, G. H., Shi, Z., Chen, Y. & Feng, S. H. (2008). Solid State Sci. 10, 1853–1859.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, X. Y., Yao, Y. G., Qin, Y. Y., Lin, Q. P., Li, Z. J., Cheng, J. K. & Hur, N. H. (2009). CrystEngComm, 11, 1815–1818.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876-881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeanneau, E., Audebrand, N. & Louër, D. (2001). Acta Cryst. C57, 1012–1013.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKondrashev, Y. D., Bogdanov, V. S., Golubev, S. N. & Pron, G. F. (1985). Zh. Strukt. Khim. 26, 90–93.  CAS Google Scholar
First citationLv, Y. K., Zhan, C. H., Jiang, Z. G. & Feng, Y. L. (2010). Inorg. Chem. Commun. 13, 440–444.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrioli, P., Bruni, B., Vaira, M. D., Messori, L. & Piccioli, F. (2002). Inorg. Chem. 41, 4312–4314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göettingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. D., Lu, C. Z., Lu, S. F., Zhuang, H. H. & Huang, J. S. (2003). Dalton Trans. pp. 3192–3198.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds