metal-organic compounds
catena-Poly[[(1,10-phenanthroline-κ2N,N′)cadmium(II)]-μ-oxalato-κ4O1,O2:O1′,O2′]
aChemistry Department, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: ganlh@tongji.edu.cn
In the title complex, [Cd(C2O4)(C12H8N2)]n, the CdII atom has a distorted octahedral coordination, defined by four O atoms from two symmetry-related oxalate ligands and by two N atoms from a bidentate 1,10-phenanthroline ligand. Each oxalate ligand bridges two CdII atoms, generating a zigzag chain structure propagating along [100]. The packing of the structure is consolidated by non-classical C—H⋯O hydrogen-bonding interactions.
Related literature
For general background to the rational design and synthesis of metal-organic polymers, see: Kondrashev et al. (1985); Orioli et al. (2002); Athar et al. (2008); Lv et al. (2010). Wu et al. (2003). For related structures, see: Cao et al. (2009); Jeanneau et al. (2001).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810040341/wm2410sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810040341/wm2410Isup2.hkl
The synthesis of the title complex (I) was carried out by hydrothermal reaction. A mixture of Cd(NO3)2.4H2O (1.0 mmol), K2C2O4 (1.0 mmol), 1,10-phenanthroline (1.0 mmol) in 20 ml water was placed in a Teflon-lined stainless steel autoclave and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. The resulting colorless crystals suitable for X-ray analysis were obtained in about 36% yield.
The H atoms bonded to C atoms were positioned geometrically [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. The crystal measured was an
with a 2:1 ratio for the twin domains.Rational design and synthesis of metal-organic polymers is of current interest in the field of supramolecular chemistry and crystal engineering (Athar et al., 2008; Lv et al., 2010; Wu et al., 2003). Among the anions involved in the formation of such solids, the oxalate anion, which possesses four donor O atoms, plays an important role. Indeed, it can act either as a monodentate or a bidentate chelating ligand and can thus bridge two or more metal atoms in a variety of arrangements, as recently shown with a number of compounds (Kondrashev et al., 1985; Jeanneau et al., 2001; Cao et al., 2009; Orioli et al., 2002). We report here on the synthesis and structure of the title compound, [Cd(C2O4)(C12H8N2)].
As shown in Fig. 1, the central Cd(II) atom is six-coordinated by four O atoms from two symmetry-related oxalate ligands and two N atoms from a bidendate 1,10-phenanthroline ligand (Table 1), forming a distorted octahedral geometry. Each oxalate ligand bridges two cadmium(II) atoms generating a zigzag chain structure propagating along [100]. Furthermore, there are non-classical C—H···O hydrogen bonds present (Table 2). Together with
they interconnect the zigzag chains and construct a supramolecular network (Fig. 2).For general background to the rational design and synthesis of metal-organic polymers, see: Kondrashev et al. (1985); Orioli et al. (2002); Athar et al. (2008); Lv et al. (2010). Wu et al. (2003). For related structures, see: Cao et al. (2009); Jeanneau et al. (2001).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cd(C2O4)(C12H8N2)] | F(000) = 744 |
Mr = 380.62 | Dx = 1.912 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2979 reflections |
a = 9.7199 (2) Å | θ = 2.5–27.4° |
b = 10.3338 (2) Å | µ = 1.67 mm−1 |
c = 13.1638 (2) Å | T = 296 K |
V = 1322.22 (4) Å3 | Block, colourless |
Z = 4 | 0.29 × 0.14 × 0.10 mm |
Bruker APEXII area-detector diffractometer | 2892 independent reflections |
Radiation source: fine-focus sealed tube | 2386 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω scans | θmax = 27.4°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.76, Tmax = 0.85 | k = −13→13 |
11056 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0359P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
2892 reflections | Δρmax = 0.37 e Å−3 |
191 parameters | Δρmin = −0.27 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1310 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.33 (4) |
[Cd(C2O4)(C12H8N2)] | V = 1322.22 (4) Å3 |
Mr = 380.62 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 9.7199 (2) Å | µ = 1.67 mm−1 |
b = 10.3338 (2) Å | T = 296 K |
c = 13.1638 (2) Å | 0.29 × 0.14 × 0.10 mm |
Bruker APEXII area-detector diffractometer | 2892 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2386 reflections with I > 2σ(I) |
Tmin = 0.76, Tmax = 0.85 | Rint = 0.034 |
11056 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.066 | Δρmax = 0.37 e Å−3 |
S = 1.00 | Δρmin = −0.27 e Å−3 |
2892 reflections | Absolute structure: Flack (1983), 1310 Friedel pairs |
191 parameters | Absolute structure parameter: 0.33 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.38159 (2) | −0.09300 (2) | 0.33607 (7) | 0.04611 (10) | |
O1 | 0.5669 (3) | −0.1452 (3) | 0.2410 (2) | 0.0499 (7) | |
O2 | 0.5193 (3) | −0.2166 (3) | 0.4361 (2) | 0.0579 (8) | |
O3 | 0.7580 (3) | −0.2606 (3) | 0.2421 (2) | 0.0558 (8) | |
O4 | 0.6953 (3) | −0.3510 (3) | 0.4301 (2) | 0.0475 (7) | |
N1 | 0.4604 (4) | 0.1011 (3) | 0.4063 (3) | 0.0488 (9) | |
N2 | 0.2834 (4) | 0.0751 (3) | 0.2463 (3) | 0.0480 (8) | |
C1 | 0.6195 (3) | −0.2664 (4) | 0.3923 (4) | 0.0395 (11) | |
C2 | 0.6499 (5) | −0.2203 (4) | 0.2815 (4) | 0.0413 (11) | |
C3 | 0.1925 (5) | 0.0621 (5) | 0.1726 (3) | 0.0591 (12) | |
H3A | 0.1661 | −0.0210 | 0.1539 | 0.071* | |
C4 | 0.1343 (5) | 0.1662 (7) | 0.1214 (4) | 0.0689 (15) | |
H4A | 0.0695 | 0.1532 | 0.0704 | 0.083* | |
C5 | 0.1737 (6) | 0.2856 (6) | 0.1474 (4) | 0.0677 (15) | |
H5A | 0.1375 | 0.3563 | 0.1128 | 0.081* | |
C6 | 0.2686 (4) | 0.3061 (4) | 0.2260 (4) | 0.0537 (11) | |
C7 | 0.3150 (6) | 0.4299 (5) | 0.2568 (5) | 0.0691 (14) | |
H7A | 0.2827 | 0.5028 | 0.2231 | 0.083* | |
C8 | 0.4037 (5) | 0.4444 (4) | 0.3329 (9) | 0.0735 (13) | |
H8A | 0.4315 | 0.5273 | 0.3512 | 0.088* | |
C9 | 0.4585 (5) | 0.3335 (4) | 0.3883 (4) | 0.0566 (11) | |
C10 | 0.5520 (6) | 0.3424 (6) | 0.4680 (4) | 0.0738 (15) | |
H10A | 0.5841 | 0.4231 | 0.4886 | 0.089* | |
C11 | 0.5964 (6) | 0.2351 (7) | 0.5155 (5) | 0.0736 (18) | |
H11A | 0.6584 | 0.2408 | 0.5691 | 0.088* | |
C12 | 0.5478 (6) | 0.1150 (5) | 0.4831 (4) | 0.0666 (14) | |
H12A | 0.5780 | 0.0412 | 0.5169 | 0.080* | |
C13 | 0.4163 (4) | 0.2091 (4) | 0.3576 (3) | 0.0436 (11) | |
C14 | 0.3214 (4) | 0.1959 (4) | 0.2760 (3) | 0.0424 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.04105 (14) | 0.04202 (14) | 0.05528 (16) | 0.00004 (11) | −0.0025 (2) | 0.0066 (2) |
O1 | 0.0474 (16) | 0.0561 (17) | 0.0462 (17) | 0.0046 (15) | 0.0020 (14) | 0.0163 (16) |
O2 | 0.0529 (18) | 0.070 (2) | 0.0505 (17) | 0.0190 (16) | 0.0150 (16) | 0.0229 (17) |
O3 | 0.0573 (19) | 0.0592 (17) | 0.0508 (17) | 0.0164 (15) | 0.0141 (15) | 0.0105 (15) |
O4 | 0.0469 (15) | 0.0471 (15) | 0.0484 (16) | 0.0047 (13) | 0.0033 (13) | 0.0097 (14) |
N1 | 0.0444 (19) | 0.056 (2) | 0.0457 (19) | −0.0024 (16) | −0.0074 (15) | 0.0050 (18) |
N2 | 0.0466 (19) | 0.051 (2) | 0.0460 (19) | 0.0014 (15) | −0.0064 (16) | 0.0079 (17) |
C1 | 0.042 (3) | 0.038 (2) | 0.039 (2) | −0.0019 (18) | −0.0002 (18) | 0.001 (2) |
C2 | 0.044 (2) | 0.032 (2) | 0.049 (3) | −0.0045 (19) | 0.006 (2) | 0.006 (2) |
C3 | 0.057 (3) | 0.069 (3) | 0.051 (3) | −0.002 (2) | −0.011 (2) | 0.006 (2) |
C4 | 0.063 (3) | 0.089 (4) | 0.054 (3) | 0.001 (3) | −0.013 (2) | 0.018 (3) |
C5 | 0.061 (3) | 0.074 (4) | 0.068 (4) | 0.020 (3) | 0.002 (3) | 0.031 (3) |
C6 | 0.047 (2) | 0.050 (2) | 0.064 (3) | 0.0105 (19) | 0.013 (2) | 0.015 (2) |
C7 | 0.070 (3) | 0.049 (3) | 0.088 (4) | 0.013 (2) | 0.009 (3) | 0.010 (3) |
C8 | 0.082 (3) | 0.0364 (19) | 0.102 (4) | −0.0012 (19) | 0.031 (5) | −0.002 (5) |
C9 | 0.051 (3) | 0.049 (3) | 0.070 (3) | −0.013 (2) | 0.013 (2) | −0.010 (2) |
C10 | 0.074 (4) | 0.074 (4) | 0.074 (4) | −0.020 (3) | 0.012 (3) | −0.015 (3) |
C11 | 0.072 (4) | 0.100 (5) | 0.049 (3) | −0.026 (3) | −0.011 (3) | −0.008 (3) |
C12 | 0.066 (3) | 0.074 (3) | 0.060 (3) | −0.014 (3) | −0.018 (3) | 0.012 (3) |
C13 | 0.0400 (18) | 0.045 (2) | 0.046 (3) | −0.0005 (15) | 0.0091 (18) | 0.004 (2) |
C14 | 0.043 (2) | 0.041 (2) | 0.043 (2) | 0.0026 (17) | 0.0074 (18) | 0.0054 (18) |
Cd1—O1 | 2.258 (3) | C4—C5 | 1.336 (9) |
Cd1—O4i | 2.269 (3) | C4—H4A | 0.9300 |
Cd1—O2 | 2.271 (3) | C5—C6 | 1.402 (7) |
Cd1—O3i | 2.294 (3) | C5—H5A | 0.9300 |
Cd1—N2 | 2.307 (3) | C6—C14 | 1.411 (5) |
Cd1—N1 | 2.338 (3) | C6—C7 | 1.416 (7) |
O1—C2 | 1.240 (5) | C7—C8 | 1.330 (11) |
O2—C1 | 1.242 (5) | C7—H7A | 0.9300 |
O3—C2 | 1.244 (5) | C8—C9 | 1.459 (9) |
O3—Cd1ii | 2.294 (3) | C8—H8A | 0.9300 |
O4—C1 | 1.247 (5) | C9—C10 | 1.392 (7) |
O4—Cd1ii | 2.269 (3) | C9—C13 | 1.409 (6) |
N1—C12 | 1.329 (6) | C10—C11 | 1.344 (9) |
N1—C13 | 1.356 (5) | C10—H10A | 0.9300 |
N2—C3 | 1.319 (6) | C11—C12 | 1.394 (8) |
N2—C14 | 1.359 (5) | C11—H11A | 0.9300 |
C1—C2 | 1.563 (5) | C12—H12A | 0.9300 |
C3—C4 | 1.391 (7) | C13—C14 | 1.422 (6) |
C3—H3A | 0.9300 | ||
O1—Cd1—O4i | 151.38 (10) | C5—C4—C3 | 118.3 (5) |
O1—Cd1—O2 | 73.54 (9) | C5—C4—H4A | 120.9 |
O4i—Cd1—O2 | 90.60 (10) | C3—C4—H4A | 120.9 |
O1—Cd1—O3i | 87.77 (11) | C4—C5—C6 | 121.1 (5) |
O4i—Cd1—O3i | 73.03 (10) | C4—C5—H5A | 119.5 |
O2—Cd1—O3i | 104.50 (12) | C6—C5—H5A | 119.5 |
O1—Cd1—N2 | 103.06 (12) | C5—C6—C14 | 117.5 (4) |
O4i—Cd1—N2 | 98.14 (12) | C5—C6—C7 | 123.9 (5) |
O2—Cd1—N2 | 164.61 (13) | C14—C6—C7 | 118.6 (5) |
O3i—Cd1—N2 | 90.22 (13) | C8—C7—C6 | 121.6 (5) |
O1—Cd1—N1 | 99.37 (13) | C8—C7—H7A | 119.2 |
O4i—Cd1—N1 | 105.35 (12) | C6—C7—H7A | 119.2 |
O2—Cd1—N1 | 93.45 (13) | C7—C8—C9 | 121.7 (5) |
O3i—Cd1—N1 | 161.94 (12) | C7—C8—H8A | 119.2 |
N2—Cd1—N1 | 72.07 (12) | C9—C8—H8A | 119.2 |
C2—O1—Cd1 | 115.5 (3) | C10—C9—C13 | 117.9 (5) |
C1—O2—Cd1 | 115.2 (3) | C10—C9—C8 | 124.3 (5) |
C2—O3—Cd1ii | 116.0 (3) | C13—C9—C8 | 117.8 (5) |
C1—O4—Cd1ii | 115.6 (3) | C11—C10—C9 | 120.4 (5) |
C12—N1—C13 | 118.3 (4) | C11—C10—H10A | 119.8 |
C12—N1—Cd1 | 127.1 (3) | C9—C10—H10A | 119.8 |
C13—N1—Cd1 | 114.5 (3) | C10—C11—C12 | 119.0 (5) |
C3—N2—C14 | 119.1 (4) | C10—C11—H11A | 120.5 |
C3—N2—Cd1 | 125.3 (3) | C12—C11—H11A | 120.5 |
C14—N2—Cd1 | 115.6 (3) | N1—C12—C11 | 123.0 (5) |
O2—C1—O4 | 124.6 (5) | N1—C12—H12A | 118.5 |
O2—C1—C2 | 117.1 (4) | C11—C12—H12A | 118.5 |
O4—C1—C2 | 118.3 (4) | N1—C13—C9 | 121.5 (4) |
O1—C2—O3 | 125.5 (5) | N1—C13—C14 | 118.9 (4) |
O1—C2—C1 | 117.9 (4) | C9—C13—C14 | 119.5 (4) |
O3—C2—C1 | 116.6 (4) | N2—C14—C6 | 120.5 (4) |
N2—C3—C4 | 123.4 (5) | N2—C14—C13 | 118.7 (3) |
N2—C3—H3A | 118.3 | C6—C14—C13 | 120.7 (4) |
C4—C3—H3A | 118.3 | ||
O4i—Cd1—O1—C2 | −54.2 (5) | O2—C1—C2—O3 | 172.9 (5) |
O2—Cd1—O1—C2 | 4.5 (3) | O4—C1—C2—O3 | −8.0 (5) |
O3i—Cd1—O1—C2 | −101.3 (4) | C14—N2—C3—C4 | 1.2 (7) |
N2—Cd1—O1—C2 | 169.0 (3) | Cd1—N2—C3—C4 | 179.0 (4) |
N1—Cd1—O1—C2 | 95.4 (3) | N2—C3—C4—C5 | 0.9 (8) |
O1—Cd1—O2—C1 | −7.7 (3) | C3—C4—C5—C6 | −1.6 (8) |
O4i—Cd1—O2—C1 | 148.1 (3) | C4—C5—C6—C14 | 0.4 (7) |
O3i—Cd1—O2—C1 | 75.5 (3) | C4—C5—C6—C7 | 179.7 (5) |
N2—Cd1—O2—C1 | −87.0 (6) | C5—C6—C7—C8 | 179.0 (6) |
N1—Cd1—O2—C1 | −106.5 (3) | C14—C6—C7—C8 | −1.8 (8) |
O1—Cd1—N1—C12 | −78.2 (4) | C6—C7—C8—C9 | 0.3 (10) |
O4i—Cd1—N1—C12 | 87.2 (4) | C7—C8—C9—C10 | 179.6 (6) |
O2—Cd1—N1—C12 | −4.4 (4) | C7—C8—C9—C13 | 1.1 (9) |
O3i—Cd1—N1—C12 | 169.5 (4) | C13—C9—C10—C11 | −2.0 (7) |
N2—Cd1—N1—C12 | −179.0 (4) | C8—C9—C10—C11 | 179.4 (6) |
O1—Cd1—N1—C13 | 97.6 (3) | C9—C10—C11—C12 | 0.4 (9) |
O4i—Cd1—N1—C13 | −96.9 (3) | C13—N1—C12—C11 | −0.3 (8) |
O2—Cd1—N1—C13 | 171.5 (3) | Cd1—N1—C12—C11 | 175.5 (4) |
O3i—Cd1—N1—C13 | −14.6 (6) | C10—C11—C12—N1 | 0.8 (9) |
N2—Cd1—N1—C13 | −3.2 (3) | C12—N1—C13—C9 | −1.5 (6) |
O1—Cd1—N2—C3 | 88.0 (4) | Cd1—N1—C13—C9 | −177.7 (3) |
O4i—Cd1—N2—C3 | −72.7 (4) | C12—N1—C13—C14 | −179.2 (4) |
O2—Cd1—N2—C3 | 163.3 (4) | Cd1—N1—C13—C14 | 4.5 (5) |
O3i—Cd1—N2—C3 | 0.2 (4) | C10—C9—C13—N1 | 2.6 (6) |
N1—Cd1—N2—C3 | −176.3 (4) | C8—C9—C13—N1 | −178.7 (5) |
O1—Cd1—N2—C14 | −94.2 (3) | C10—C9—C13—C14 | −179.6 (4) |
O4i—Cd1—N2—C14 | 105.1 (3) | C8—C9—C13—C14 | −1.0 (6) |
O2—Cd1—N2—C14 | −18.9 (6) | C3—N2—C14—C6 | −2.5 (6) |
O3i—Cd1—N2—C14 | 178.0 (3) | Cd1—N2—C14—C6 | 179.5 (3) |
N1—Cd1—N2—C14 | 1.6 (3) | C3—N2—C14—C13 | 178.1 (4) |
Cd1—O2—C1—O4 | −169.5 (3) | Cd1—N2—C14—C13 | 0.1 (5) |
Cd1—O2—C1—C2 | 9.5 (4) | C5—C6—C14—N2 | 1.7 (6) |
Cd1ii—O4—C1—O2 | −174.2 (3) | C7—C6—C14—N2 | −177.6 (4) |
Cd1ii—O4—C1—C2 | 6.8 (4) | C5—C6—C14—C13 | −178.9 (4) |
Cd1—O1—C2—O3 | −179.9 (4) | C7—C6—C14—C13 | 1.8 (6) |
Cd1—O1—C2—C1 | −1.5 (5) | N1—C13—C14—N2 | −3.2 (6) |
Cd1ii—O3—C2—O1 | −176.9 (4) | C9—C13—C14—N2 | 179.0 (4) |
Cd1ii—O3—C2—C1 | 4.6 (4) | N1—C13—C14—C6 | 177.4 (4) |
O2—C1—C2—O1 | −5.6 (5) | C9—C13—C14—C6 | −0.4 (6) |
O4—C1—C2—O1 | 173.4 (5) |
Symmetry codes: (i) x−1/2, −y−1/2, z; (ii) x+1/2, −y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O2iii | 0.93 | 2.38 | 3.106 (6) | 134 |
C7—H7A···O1iv | 0.93 | 2.57 | 3.289 (6) | 134 |
C11—H11A···O3v | 0.93 | 2.42 | 3.302 (7) | 159 |
Symmetry codes: (iii) −x+1/2, y+1/2, z−1/2; (iv) x−1/2, −y+1/2, z; (v) −x+3/2, y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C2O4)(C12H8N2)] |
Mr | 380.62 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 9.7199 (2), 10.3338 (2), 13.1638 (2) |
V (Å3) | 1322.22 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.67 |
Crystal size (mm) | 0.29 × 0.14 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.76, 0.85 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11056, 2892, 2386 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.066, 1.00 |
No. of reflections | 2892 |
No. of parameters | 191 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.27 |
Absolute structure | Flack (1983), 1310 Friedel pairs |
Absolute structure parameter | 0.33 (4) |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), SHELXTL (Sheldrick, 2008).
Cd1—O1 | 2.258 (3) | Cd1—O3i | 2.294 (3) |
Cd1—O4i | 2.269 (3) | Cd1—N2 | 2.307 (3) |
Cd1—O2 | 2.271 (3) | Cd1—N1 | 2.338 (3) |
Symmetry code: (i) x−1/2, −y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O2ii | 0.93 | 2.38 | 3.106 (6) | 134.3 |
C7—H7A···O1iii | 0.93 | 2.57 | 3.289 (6) | 134.0 |
C11—H11A···O3iv | 0.93 | 2.42 | 3.302 (7) | 158.7 |
Symmetry codes: (ii) −x+1/2, y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z; (iv) −x+3/2, y+1/2, z+1/2. |
References
Athar, M., Li, G. H., Shi, Z., Chen, Y. & Feng, S. H. (2008). Solid State Sci. 10, 1853–1859. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, X. Y., Yao, Y. G., Qin, Y. Y., Lin, Q. P., Li, Z. J., Cheng, J. K. & Hur, N. H. (2009). CrystEngComm, 11, 1815–1818. Web of Science CSD CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876-881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jeanneau, E., Audebrand, N. & Louër, D. (2001). Acta Cryst. C57, 1012–1013. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kondrashev, Y. D., Bogdanov, V. S., Golubev, S. N. & Pron, G. F. (1985). Zh. Strukt. Khim. 26, 90–93. CAS Google Scholar
Lv, Y. K., Zhan, C. H., Jiang, Z. G. & Feng, Y. L. (2010). Inorg. Chem. Commun. 13, 440–444. Web of Science CSD CrossRef CAS Google Scholar
Orioli, P., Bruni, B., Vaira, M. D., Messori, L. & Piccioli, F. (2002). Inorg. Chem. 41, 4312–4314. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göettingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, C. D., Lu, C. Z., Lu, S. F., Zhuang, H. H. & Huang, J. S. (2003). Dalton Trans. pp. 3192–3198. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rational design and synthesis of metal-organic polymers is of current interest in the field of supramolecular chemistry and crystal engineering (Athar et al., 2008; Lv et al., 2010; Wu et al., 2003). Among the anions involved in the formation of such solids, the oxalate anion, which possesses four donor O atoms, plays an important role. Indeed, it can act either as a monodentate or a bidentate chelating ligand and can thus bridge two or more metal atoms in a variety of arrangements, as recently shown with a number of compounds (Kondrashev et al., 1985; Jeanneau et al., 2001; Cao et al., 2009; Orioli et al., 2002). We report here on the synthesis and structure of the title compound, [Cd(C2O4)(C12H8N2)].
As shown in Fig. 1, the central Cd(II) atom is six-coordinated by four O atoms from two symmetry-related oxalate ligands and two N atoms from a bidendate 1,10-phenanthroline ligand (Table 1), forming a distorted octahedral geometry. Each oxalate ligand bridges two cadmium(II) atoms generating a zigzag chain structure propagating along [100]. Furthermore, there are non-classical C—H···O hydrogen bonds present (Table 2). Together with van der Waals forces they interconnect the zigzag chains and construct a supramolecular network (Fig. 2).