organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-(4-Methyl­phen­yl)cyclo­penta­[a]quinolizine-10-carbaldehyde

aDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 1 October 2010; accepted 19 October 2010; online 30 October 2010)

In the title compound, C20H15NO, the heterotricycle is essential planar [maximum deviation = 0.0790 (5) Å] and makes a dihedral angle of 50.70 (2)° with the benzene ring. The formyl group is almost coplanar with the tricyclic ring, the C—C—C—O torsion angle being −0.78 (13)°.

Related literature

For background to the Vilsmeier–Haack reaction, see: Laue & Plagens (2005[Laue, T. & Plagens, A. (2005). Named Organic Reactions, 2nd ed. Chichester, England: Wiley & Sons.]). For a related structure, see: Borisenko et al. (1996[Borisenko, K., Bock, C. & Hargittaij, I. (1996). J. Phys. Chem. 100, 18, 7426-7434.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15NO

  • Mr = 285.33

  • Triclinic, [P \overline 1]

  • a = 7.2907 (13) Å

  • b = 8.9627 (14) Å

  • c = 12.0162 (19) Å

  • α = 88.48 (2)°

  • β = 81.400 (19)°

  • γ = 67.821 (18)°

  • V = 718.5 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 295 K

  • 0.15 × 0.13 × 0.11 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.649, Tmax = 1.000

  • 3186 measured reflections

  • 2909 independent reflections

  • 2394 reflections with I > 2σ(I)

  • Rint = 0.000 please give correct value

  • 1 standard reflections every 60 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 0.96

  • 2909 reflections

  • 200 parameters

  • 61 restraints

  • H-atom parameters constrained

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Cyclopenta[a]quinolizines are a novel subclass of non-benzenoid heterocycles π-isoelectronic with azulene, so called pseudoazulenes. Some pseudoazulenes show ambident reactivity towards electrophiles, since both α-sites of the cyclopentadiene ring can be substituted. The Vilsmeier–Haack reaction (Laue & Plagens, 2005) (Fig. 1) was one of the simplest tests to estimate the reactivity of cyclopenta[a]quinolizines and the regioselectivity of substitution.

We found that only one product was formed in the reaction. Simple 1H NMR spectra cannot provide an unambiguous proof of the site of substitution. By X-ray analysis we proved that the product is the title compound. From this viewpoint it becomes evident, that the strong shift of the proton H-4 signal (10.53 p.p.m. in 1 against 8.16 in the initial compound 2; Fig. 1) observed in 1H NMR spectra is caused by the peri-effect of the formyl group at C7.

In the title compound 1 (Fig. 2), the bond lengths in the heterocyclic core show slight alternations. The bond length between C7 and C71 of the carbonyl group (1.4351 (8) Å) is much shorter than that in the structure of the simplest aromatic ketone, benzaldehyde (1.477 (3) Å; Borisenko et al., 1996). Since the formyl group is almost co-planar with the tricyclic ring (the torsion angle C8—C7—C71O71 is -0.78 (13)°), it may indicate strong conjugation of the carbonyl group with the π-excessive cyclopentadiene ring.

Related literature top

For background to the Vilsmeier–Haack reaction, see: Laue & Plagens (2005). For a related structure, see: Borisenko et al. (1996).

Experimental top

Freshly distilled DMF (1 ml) was added at 263 K to the solution of POCl3 (2.34 mmol, 357 mg) in dry THF (15 ml) forming the Vilsmeier reagent. The solution of 7-(4-methylphenyl)cyclopenta[a]quinolizine 2 (300 mg, 1.17 mmol) in dry THF (10 ml) was added dropwise at 273 K to the Vilsmeier reagent. The mixture was stirred overnight at room temperature, diluted with water, and neutralized by NaOH to pH 8. The resultant precipitate was filtered off and recrystallized from DMF. Yield of 1: 311 mg (93%), m.p. = 527–528 K.

1H NMR (400 MHz; CDCl3; δ, p.p.m.; J, Hz): 2.47 (s, 3H, CH3), 6.80 (d, J = 4.0, 1H), 7.12 (m, 1H), 7.35 (m, 2H, ArH), 7.61 (m, 2H, ArH), 7.64 (s, 1H), 7.77 (d, J = 4.0, 1H), 7.82 (s, 1H), 8.21 (d, J = 7.1, 1H, H4), 9.92 (s, 1H, CHO), 10.53 (d, J = 7.1, 1H, H1).

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.93Å; 0.96 Å) and refined as riding, with Uiso(H) = 1.2(1.5)Ueq(C). The initial experimental data were measured for a full sphere, but at the final stage of the refinement, the 'MERG 2' instruction was used in SHELXL and the DIFABS procedure (Walker & Stuart, 1983) was applied. As a result, we have FVAR = 1, Rint = 0, and the experimental data were reduced to a half-sphere with indices -8 h +8, -10 k +11 and 0 l +15.

Structure description top

Cyclopenta[a]quinolizines are a novel subclass of non-benzenoid heterocycles π-isoelectronic with azulene, so called pseudoazulenes. Some pseudoazulenes show ambident reactivity towards electrophiles, since both α-sites of the cyclopentadiene ring can be substituted. The Vilsmeier–Haack reaction (Laue & Plagens, 2005) (Fig. 1) was one of the simplest tests to estimate the reactivity of cyclopenta[a]quinolizines and the regioselectivity of substitution.

We found that only one product was formed in the reaction. Simple 1H NMR spectra cannot provide an unambiguous proof of the site of substitution. By X-ray analysis we proved that the product is the title compound. From this viewpoint it becomes evident, that the strong shift of the proton H-4 signal (10.53 p.p.m. in 1 against 8.16 in the initial compound 2; Fig. 1) observed in 1H NMR spectra is caused by the peri-effect of the formyl group at C7.

In the title compound 1 (Fig. 2), the bond lengths in the heterocyclic core show slight alternations. The bond length between C7 and C71 of the carbonyl group (1.4351 (8) Å) is much shorter than that in the structure of the simplest aromatic ketone, benzaldehyde (1.477 (3) Å; Borisenko et al., 1996). Since the formyl group is almost co-planar with the tricyclic ring (the torsion angle C8—C7—C71O71 is -0.78 (13)°), it may indicate strong conjugation of the carbonyl group with the π-excessive cyclopentadiene ring.

For background to the Vilsmeier–Haack reaction, see: Laue & Plagens (2005). For a related structure, see: Borisenko et al. (1996).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. ORTEP-3 plot of the molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
7-(4-Methylphenyl)cyclopenta[a]quinolizine-10-carbaldehyde top
Crystal data top
C20H15NOZ = 2
Mr = 285.33F(000) = 300
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Melting point = 527–528 K
a = 7.2907 (13) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.9627 (14) ÅCell parameters from 25 reflections
c = 12.0162 (19) Åθ = 32.0–34.9°
α = 88.48 (2)°µ = 0.64 mm1
β = 81.400 (19)°T = 295 K
γ = 67.821 (18)°Prism, pale yellow
V = 718.5 (2) Å30.15 × 0.13 × 0.11 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2394 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 75.2°, θmin = 3.7°
non–profiled ω scansh = 89
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 1011
Tmin = 0.649, Tmax = 1.000l = 1115
3186 measured reflections1 standard reflections every 60 min
2909 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0398P)2]
where P = (Fo2 + 2Fc2)/3
2909 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.08 e Å3
61 restraintsΔρmin = 0.10 e Å3
Crystal data top
C20H15NOγ = 67.821 (18)°
Mr = 285.33V = 718.5 (2) Å3
Triclinic, P1Z = 2
a = 7.2907 (13) ÅCu Kα radiation
b = 8.9627 (14) ŵ = 0.64 mm1
c = 12.0162 (19) ÅT = 295 K
α = 88.48 (2)°0.15 × 0.13 × 0.11 mm
β = 81.400 (19)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2394 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.000
Tmin = 0.649, Tmax = 1.0001 standard reflections every 60 min
3186 measured reflections intensity decay: 5%
2909 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02461 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 0.96Δρmax = 0.08 e Å3
2909 reflectionsΔρmin = 0.10 e Å3
200 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20346 (7)0.58547 (5)0.01802 (3)0.05065 (12)
C20.09520 (9)0.71381 (6)0.09351 (4)0.05806 (16)
H20.07990.81760.07160.070*
C30.01070 (9)0.69255 (6)0.19859 (4)0.05301 (14)
C310.11306 (9)0.83714 (6)0.27192 (4)0.05427 (14)
C320.25884 (9)0.96616 (6)0.22956 (5)0.06118 (16)
H320.27710.96210.15490.073*
C330.37705 (9)1.10046 (6)0.29708 (5)0.06566 (17)
H330.47511.18490.26740.079*
C340.35215 (9)1.11184 (7)0.40883 (5)0.06390 (17)
C350.20805 (10)0.98237 (7)0.45021 (5)0.06909 (18)
H350.18970.98670.52480.083*
C360.08989 (9)0.84623 (7)0.38403 (4)0.06206 (16)
H360.00530.76060.41460.074*
C370.47854 (12)1.25985 (8)0.48145 (6)0.0930 (3)
H37A0.49651.23000.55840.140*
H37B0.60681.30880.45680.140*
H37C0.41281.33520.47550.140*
C40.03745 (9)0.53309 (6)0.23109 (4)0.05122 (14)
C50.03475 (10)0.47207 (7)0.33034 (5)0.06394 (17)
H50.10690.53150.39570.077*
C60.02069 (10)0.30912 (7)0.31294 (5)0.06486 (17)
H60.00750.24060.36620.078*
C70.12585 (9)0.25977 (6)0.20378 (4)0.05555 (15)
C710.17458 (10)0.09745 (6)0.16468 (5)0.06569 (17)
H710.15220.02860.21960.079*
O710.24109 (8)0.03569 (5)0.07002 (4)0.08139 (15)
C80.13764 (8)0.40156 (6)0.15092 (4)0.05205 (14)
C90.23175 (8)0.42748 (5)0.04415 (4)0.04982 (14)
C100.35065 (9)0.30555 (6)0.03740 (4)0.05922 (16)
H100.37210.19860.02180.071*
C110.43433 (9)0.34090 (7)0.13810 (5)0.06062 (16)
H110.51400.25890.19030.073*
C120.39948 (9)0.50275 (7)0.16278 (5)0.06187 (16)
H120.45250.52830.23260.074*
C130.28977 (9)0.62042 (7)0.08572 (4)0.05829 (16)
H130.27110.72680.10180.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0615 (3)0.03132 (19)0.0522 (2)0.01155 (18)0.00431 (18)0.00552 (15)
C20.0769 (4)0.0302 (2)0.0558 (3)0.0096 (2)0.0049 (2)0.00297 (18)
C30.0637 (4)0.0335 (2)0.0543 (3)0.0101 (2)0.0086 (2)0.00249 (18)
C310.0664 (4)0.0342 (2)0.0574 (3)0.0167 (2)0.0006 (2)0.00026 (19)
C320.0758 (4)0.0377 (2)0.0636 (3)0.0150 (2)0.0081 (3)0.0018 (2)
C330.0694 (4)0.0375 (3)0.0808 (3)0.0125 (2)0.0032 (3)0.0015 (2)
C340.0673 (4)0.0436 (3)0.0761 (3)0.0236 (3)0.0126 (3)0.0100 (2)
C350.0923 (5)0.0540 (3)0.0574 (3)0.0280 (3)0.0017 (3)0.0071 (2)
C360.0737 (4)0.0468 (3)0.0595 (3)0.0159 (3)0.0095 (3)0.0008 (2)
C370.1015 (6)0.0583 (4)0.1010 (5)0.0230 (4)0.0258 (4)0.0257 (3)
C40.0603 (3)0.0355 (2)0.0534 (2)0.0133 (2)0.0083 (2)0.00462 (18)
C50.0812 (4)0.0469 (3)0.0529 (3)0.0149 (3)0.0034 (2)0.0080 (2)
C60.0814 (4)0.0456 (3)0.0606 (3)0.0183 (3)0.0076 (3)0.0167 (2)
C70.0665 (4)0.0346 (2)0.0603 (3)0.0136 (2)0.0102 (2)0.01082 (19)
C710.0786 (4)0.0343 (2)0.0753 (3)0.0135 (2)0.0078 (3)0.0114 (2)
O710.1109 (4)0.0401 (2)0.0856 (3)0.0254 (2)0.0002 (3)0.00102 (19)
C80.0609 (3)0.0335 (2)0.0536 (2)0.0094 (2)0.0077 (2)0.00764 (18)
C90.0600 (3)0.0315 (2)0.0536 (2)0.0124 (2)0.0089 (2)0.00413 (18)
C100.0743 (4)0.0354 (2)0.0592 (3)0.0124 (2)0.0055 (2)0.0013 (2)
C110.0644 (4)0.0505 (3)0.0600 (3)0.0159 (3)0.0026 (2)0.0062 (2)
C120.0715 (4)0.0561 (3)0.0520 (3)0.0203 (3)0.0017 (2)0.0028 (2)
C130.0727 (4)0.0431 (3)0.0548 (3)0.0195 (2)0.0045 (2)0.0091 (2)
Geometric parameters (Å, º) top
N1—C91.3862 (7)C37—H37C0.9600
N1—C21.3873 (7)C4—C51.4119 (8)
N1—C131.3934 (7)C4—C81.4321 (7)
C2—C31.3614 (8)C5—C61.3731 (8)
C2—H20.9300C5—H50.9300
C3—C41.4198 (7)C6—C71.4064 (8)
C3—C311.4865 (8)C6—H60.9300
C31—C321.3887 (8)C7—C81.4315 (8)
C31—C361.3909 (8)C7—C711.4351 (8)
C32—C331.3818 (8)C71—O711.2252 (7)
C32—H320.9300C71—H710.9300
C33—C341.3930 (9)C8—C91.4185 (8)
C33—H330.9300C9—C101.4119 (7)
C34—C351.3794 (9)C10—C111.3570 (8)
C34—C371.5061 (8)C10—H100.9300
C35—C361.3843 (8)C11—C121.4065 (9)
C35—H350.9300C11—H110.9300
C36—H360.9300C12—C131.3428 (8)
C37—H37A0.9600C12—H120.9300
C37—H37B0.9600C13—H130.9300
C9—N1—C2122.34 (5)C5—C4—C3132.01 (5)
C9—N1—C13120.37 (5)C5—C4—C8107.93 (5)
C2—N1—C13117.25 (5)C3—C4—C8119.75 (5)
C3—C2—N1122.08 (5)C6—C5—C4107.68 (5)
C3—C2—H2119.0C6—C5—H5126.2
N1—C2—H2119.0C4—C5—H5126.2
C2—C3—C4118.24 (5)C5—C6—C7110.93 (6)
C2—C3—C31118.72 (5)C5—C6—H6124.5
C4—C3—C31122.97 (5)C7—C6—H6124.5
C32—C31—C36118.33 (5)C6—C7—C8106.27 (5)
C32—C31—C3120.04 (5)C6—C7—C71119.19 (6)
C36—C31—C3121.61 (5)C8—C7—C71134.02 (5)
C33—C32—C31120.75 (6)O71—C71—C7129.90 (6)
C33—C32—H32119.6O71—C71—H71115.1
C31—C32—H32119.6C7—C71—H71115.1
C32—C33—C34121.27 (6)C9—C8—C7132.70 (5)
C32—C33—H33119.4C9—C8—C4120.05 (5)
C34—C33—H33119.4C7—C8—C4107.18 (5)
C35—C34—C33117.44 (5)N1—C9—C10117.65 (5)
C35—C34—C37121.47 (6)N1—C9—C8117.11 (5)
C33—C34—C37121.09 (6)C10—C9—C8125.24 (5)
C34—C35—C36122.00 (6)C11—C10—C9121.49 (5)
C34—C35—H35119.0C11—C10—H10119.3
C36—C35—H35119.0C9—C10—H10119.3
C35—C36—C31120.20 (6)C10—C11—C12119.40 (5)
C35—C36—H36119.9C10—C11—H11120.3
C31—C36—H36119.9C12—C11—H11120.3
C34—C37—H37A109.5C13—C12—C11120.09 (5)
C34—C37—H37B109.5C13—C12—H12120.0
H37A—C37—H37B109.5C11—C12—H12120.0
C34—C37—H37C109.5C12—C13—N1120.95 (5)
H37A—C37—H37C109.5C12—C13—H13119.5
H37B—C37—H37C109.5N1—C13—H13119.5
C9—N1—C2—C30.42 (9)C5—C6—C7—C71172.26 (6)
C13—N1—C2—C3177.64 (5)C6—C7—C71—O71169.69 (7)
N1—C2—C3—C40.70 (9)C8—C7—C71—O710.78 (13)
N1—C2—C3—C31176.42 (5)C6—C7—C8—C9176.75 (6)
C2—C3—C31—C3247.59 (9)C71—C7—C8—C911.90 (12)
C4—C3—C31—C32129.39 (7)C6—C7—C8—C40.13 (7)
C2—C3—C31—C36133.71 (7)C71—C7—C8—C4171.22 (7)
C4—C3—C31—C3649.31 (9)C5—C4—C8—C9177.74 (5)
C36—C31—C32—C330.33 (10)C3—C4—C8—C97.92 (9)
C3—C31—C32—C33179.07 (5)C5—C4—C8—C70.38 (7)
C31—C32—C33—C340.92 (10)C3—C4—C8—C7174.73 (6)
C32—C33—C34—C351.43 (10)C2—N1—C9—C10177.72 (5)
C32—C33—C34—C37178.76 (6)C13—N1—C9—C100.29 (8)
C33—C34—C35—C360.72 (10)C2—N1—C9—C82.57 (8)
C37—C34—C35—C36179.47 (6)C13—N1—C9—C8179.42 (5)
C34—C35—C36—C310.51 (10)C7—C8—C9—N1176.80 (6)
C32—C31—C36—C351.03 (9)C4—C8—C9—N16.65 (8)
C3—C31—C36—C35179.75 (6)C7—C8—C9—C102.89 (11)
C2—C3—C4—C5177.57 (6)C4—C8—C9—C10173.67 (5)
C31—C3—C4—C50.58 (11)N1—C9—C10—C110.16 (9)
C2—C3—C4—C84.81 (9)C8—C9—C10—C11179.52 (5)
C31—C3—C4—C8172.18 (5)C9—C10—C11—C121.05 (10)
C3—C4—C5—C6174.15 (7)C10—C11—C12—C132.19 (10)
C8—C4—C5—C60.76 (7)C11—C12—C13—N12.10 (10)
C4—C5—C6—C70.87 (8)C9—N1—C13—C120.86 (9)
C5—C6—C7—C80.62 (7)C2—N1—C13—C12178.96 (5)

Experimental details

Crystal data
Chemical formulaC20H15NO
Mr285.33
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.2907 (13), 8.9627 (14), 12.0162 (19)
α, β, γ (°)88.48 (2), 81.400 (19), 67.821 (18)
V3)718.5 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.649, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3186, 2909, 2394
Rint0.000
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 0.96
No. of reflections2909
No. of parameters200
No. of restraints61
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.08, 0.10

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBorisenko, K., Bock, C. & Hargittaij, I. (1996). J. Phys. Chem. 100, 18, 7426–7434.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLaue, T. & Plagens, A. (2005). Named Organic Reactions, 2nd ed. Chichester, England: Wiley & Sons.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds