metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua(3,5-di­nitro-4-oxido­pyridine N-oxide-κO1)neodymium(III)]-μ-oxalato-κ4O1,O2:O1′,O2′] tetrahydrate]

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Science, Baoji 721013, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 September 2010; accepted 13 October 2010; online 23 October 2010)

In the title coordination polymer, {[Nd(C5H2N3O6)(C2O4)(H2O)4]·4H2O}n, the oxalate dianions link adjacent nine-coordinate, tricapped trigonal-prismatic Nd(III) atoms into a chain running along the b axis. The 3,5-dinitropyridin-4-oxido N-oxide ligand is formally a zwitterionic anion; the anion binds to the metal atom through the N-oxide O atom. The chains are connected into a three-dimensional network by O—H⋯O hydrogen bonds involving the coordinated and uncoordinated water mol­ecules.

Related literature

For a related Nd(III) structure, see: Wang et al. (2010[Wang, J.-G., Zhou, Q.-P., Zhang, G.-F., Li, P., Chen, B.-H., Zhao, F.-Q., Li, J.-Z. & Fan, X.-Z. (2010). J. Coord. Chem. 63, 1379-1389.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C5H2N3O6)(C2O4)(H2O)4]·4H2O

  • Mr = 576.48

  • Triclinic, [P \overline 1]

  • a = 6.7695 (7) Å

  • b = 9.9695 (11) Å

  • c = 14.6269 (16) Å

  • α = 73.719 (1)°

  • β = 88.137 (1)°

  • γ = 76.693 (1)°

  • V = 921.58 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.429, Tmax = 0.868

  • 7952 measured reflections

  • 4147 independent reflections

  • 4005 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.050

  • S = 1.06

  • 4147 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O1 2.5266 (16)
Nd1—O7 2.5124 (16)
Nd1—O8i 2.4972 (16)
Nd1—O9 2.5243 (16)
Nd1—O10ii 2.4897 (16)
Nd1—O1W 2.4798 (16)
Nd1—O2W 2.5080 (17)
Nd1—O3W 2.5241 (17)
Nd1—O4W 2.5153 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O4iii 0.84 1.99 2.809 (2) 166
O1w—H12⋯O5w 0.84 1.89 2.736 (3) 178
O2w—H21⋯O8iv 0.84 2.06 2.890 (2) 174
O2w—H22⋯O7w 0.84 1.97 2.806 (3) 174
O3w—H31⋯O7iv 0.85 2.07 2.908 (2) 170
O3w—H32⋯O8wiv 0.84 2.03 2.841 (3) 161
O4w—H41⋯O4iii 0.84 1.97 2.759 (2) 155
O4w—H42⋯O6wv 0.83 2.02 2.851 (3) 177
O5w—H51⋯O6w 0.84 2.06 2.893 (3) 171
O5w—H52⋯O3iii 0.82 2.43 2.956 (3) 123
O6w—H61⋯O10 0.84 2.09 2.915 (3) 168
O6w—H62⋯O8wii 0.85 2.13 2.942 (3) 160
O7w—H71⋯O1ii 0.84 1.93 2.766 (2) 172
O7w—H72⋯O9vi 0.84 2.13 2.953 (2) 168
O8w—H81⋯O6ii 0.85 2.46 3.310 (4) 174
O8w—H82⋯O7w 0.84 2.02 2.816 (3) 160
Symmetry codes: (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x+2, -y+1, -z+1; (v) x, y-1, z; (vi) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Lanthanum(III) oxalates adopt open-framework architectures whose cavities are occupied by the templating agent, typically an ammonium counterion. The reaction of neodymium nitrate and adipic acid in the presence of 3,5-dinitro-4-hydroxypyridine N-oxide gave an unexpected neodymium oxalate, whose positive charge is balanced by the deprotonated 3,5-dinitropyridin-4-olate-N-oxide unit. The oxalate part of the coordination polymer, [Nd(H2O)4(C5H2N3O6)(C2O4).H2O]n (Scheme I, Fig. 1), links adjacent nine-coordinate, tricapped-trigonal-prismatic Nd(III) centers (Fig. 2) into a linear chain running along the b axis of the triclinic unit cell. The 3,5-dinitropyridin-4-olate-N-oxide part is formally a zwitterionic anion; the anion binds through the N-oxide O atom. The chains are connected by O–H···O hydrogen bonds that involve the coordinated and lattice water molecules into a three-dimensional network.

This study continues from the only report of a metal derivative of 3,5-dinitro-4-hydroxypyridine N-oxide; the deprotonated ligand is also unidentate in the tris-ethanol adduct of the same metal (Wang et al., 2010).

Related literature top

For a related Nd(III) structure, see: Wang et al. (2010).

Experimental top

3,5-Dinitro-4-hydroxypyridine N-oxide (0.183 g), a commercially available chemical, was dissolved in water (25 ml) at 333 K. Neodymium nitrate hexahydrate (0.441 g) was added and the mixture heated for 6 h. Adipic acid (0.091 g) was added and the mixture heated for another 2 h. The solution was filtered and the water removed by evaporation. The residue was recrystallzed from ethanol solution to furnish violet-colored prisms. These were washed with water.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The water H atoms were placed in chemically sensible positions on the basis of hydrogen bonding (O–H 0.82–0.85 Å) and their temperature factors tied by a factor of 1.5 times.

Structure description top

Lanthanum(III) oxalates adopt open-framework architectures whose cavities are occupied by the templating agent, typically an ammonium counterion. The reaction of neodymium nitrate and adipic acid in the presence of 3,5-dinitro-4-hydroxypyridine N-oxide gave an unexpected neodymium oxalate, whose positive charge is balanced by the deprotonated 3,5-dinitropyridin-4-olate-N-oxide unit. The oxalate part of the coordination polymer, [Nd(H2O)4(C5H2N3O6)(C2O4).H2O]n (Scheme I, Fig. 1), links adjacent nine-coordinate, tricapped-trigonal-prismatic Nd(III) centers (Fig. 2) into a linear chain running along the b axis of the triclinic unit cell. The 3,5-dinitropyridin-4-olate-N-oxide part is formally a zwitterionic anion; the anion binds through the N-oxide O atom. The chains are connected by O–H···O hydrogen bonds that involve the coordinated and lattice water molecules into a three-dimensional network.

This study continues from the only report of a metal derivative of 3,5-dinitro-4-hydroxypyridine N-oxide; the deprotonated ligand is also unidentate in the tris-ethanol adduct of the same metal (Wang et al., 2010).

For a related Nd(III) structure, see: Wang et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the chain motif of [Nd(H2O)4(C5H2N3O6)(C2O4).H2O]n at the 50% probability level; hydrogen atoms are shown as spheres of arbitrary radius. Symmetry codes: i = 1 - x, 1 - y, 1 - z; ii = 1 - y, 2 - y, 1 - z.
[Figure 2] Fig. 2. Nine-coordinate geometry of Nd.
catena-Poly[[[tetraaqua(3,5-dinitro-4-oxidopyridine N-oxide-κO1)neodymium(III)]-µ-oxalato- κ4O1,O2:O1',O2'] tetrahydrate] top
Crystal data top
[Nd(C5H2N3O6)(C2O4)(H2O)4]·4H2OZ = 2
Mr = 576.48F(000) = 570
Triclinic, P1Dx = 2.077 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7695 (7) ÅCell parameters from 6995 reflections
b = 9.9695 (11) Åθ = 2.3–28.2°
c = 14.6269 (16) ŵ = 2.92 mm1
α = 73.719 (1)°T = 293 K
β = 88.137 (1)°Prism, violet
γ = 76.693 (1)°0.35 × 0.25 × 0.05 mm
V = 921.58 (17) Å3
Data collection top
Bruker SMART APEX diffraractometer
diffractometer
4147 independent reflections
Radiation source: fine-focus sealed tube4005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.429, Tmax = 0.868k = 1212
7952 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.031P)2 + 0.4577P]
where P = (Fo2 + 2Fc2)/3
4147 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Nd(C5H2N3O6)(C2O4)(H2O)4]·4H2Oγ = 76.693 (1)°
Mr = 576.48V = 921.58 (17) Å3
Triclinic, P1Z = 2
a = 6.7695 (7) ÅMo Kα radiation
b = 9.9695 (11) ŵ = 2.92 mm1
c = 14.6269 (16) ÅT = 293 K
α = 73.719 (1)°0.35 × 0.25 × 0.05 mm
β = 88.137 (1)°
Data collection top
Bruker SMART APEX diffraractometer
diffractometer
4147 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4005 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.868Rint = 0.015
7952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.06Δρmax = 0.48 e Å3
4147 reflectionsΔρmin = 0.94 e Å3
262 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.671311 (14)0.671999 (10)0.625076 (7)0.01518 (5)
N10.3029 (3)0.7237 (2)0.78523 (13)0.0226 (4)
N20.2172 (3)0.3827 (2)0.93382 (15)0.0299 (4)
N30.2733 (4)0.8438 (2)1.00008 (16)0.0403 (6)
O10.3422 (3)0.77791 (18)0.69178 (11)0.0261 (3)
O1W0.7817 (3)0.69793 (18)0.77798 (11)0.0292 (4)
H110.78670.63120.82830.044*
H120.77570.77440.79300.044*
O20.2029 (5)0.3315 (3)0.86815 (16)0.0645 (8)
O2W0.9719 (3)0.75337 (19)0.54317 (15)0.0383 (4)
H211.09370.70910.55500.057*
H220.96570.82510.49580.057*
O30.2085 (4)0.3157 (2)1.01719 (14)0.0471 (5)
O3W1.0000 (3)0.48281 (19)0.66002 (13)0.0340 (4)
H311.06490.48020.60980.051*
H321.00390.39780.69270.051*
O40.2421 (3)0.5451 (2)1.07188 (12)0.0361 (4)
O4W0.6382 (3)0.44826 (18)0.75126 (12)0.0284 (4)
H410.68310.42300.80780.043*
H420.60510.37900.73990.043*
O50.2961 (8)0.7979 (3)1.08425 (18)0.1165 (17)
O5W0.7576 (5)0.9490 (3)0.82384 (19)0.0745 (9)
H510.67531.02480.79450.112*
H520.74930.92880.88200.112*
O60.2434 (7)0.9714 (3)0.96151 (19)0.0894 (12)
O6W0.5130 (3)1.2177 (2)0.70856 (15)0.0448 (5)
H610.51061.21410.65180.067*
H620.40161.20310.73310.067*
O70.7357 (2)0.5438 (2)0.49783 (13)0.0303 (4)
O7W0.9661 (3)0.98025 (19)0.37762 (14)0.0361 (4)
H710.87191.05400.36190.054*
H721.07791.00300.37390.054*
O80.6186 (2)0.41980 (19)0.41502 (13)0.0270 (3)
O8W0.9041 (4)0.8190 (2)0.25538 (16)0.0513 (6)
H810.87350.87590.19990.077*
H820.95350.85690.29080.077*
O90.6495 (2)0.93475 (16)0.60571 (11)0.0248 (3)
O100.5087 (3)1.16112 (17)0.52372 (12)0.0306 (4)
C10.2625 (3)0.5922 (2)0.81517 (16)0.0227 (4)
H10.24760.54350.77100.027*
C20.2433 (3)0.5296 (2)0.91041 (16)0.0222 (4)
C30.2536 (3)0.6000 (2)0.98472 (16)0.0236 (4)
C40.2774 (4)0.7458 (2)0.94198 (16)0.0260 (5)
C50.3056 (4)0.8018 (2)0.84657 (17)0.0260 (5)
H50.32660.89430.82430.031*
C60.6016 (3)0.4897 (2)0.47487 (15)0.0197 (4)
C70.5458 (3)1.0272 (2)0.53784 (15)0.0209 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01768 (7)0.01469 (7)0.01310 (6)0.00390 (4)0.00032 (4)0.00356 (4)
N10.0235 (9)0.0255 (9)0.0170 (8)0.0038 (7)0.0025 (7)0.0049 (7)
N20.0405 (11)0.0271 (10)0.0236 (10)0.0120 (9)0.0007 (8)0.0063 (8)
N30.0708 (17)0.0278 (11)0.0241 (11)0.0114 (11)0.0001 (11)0.0096 (9)
O10.0309 (8)0.0277 (8)0.0163 (7)0.0035 (7)0.0063 (6)0.0041 (6)
O1W0.0431 (10)0.0254 (8)0.0193 (8)0.0061 (7)0.0061 (7)0.0071 (6)
O20.131 (3)0.0454 (13)0.0338 (11)0.0453 (15)0.0084 (13)0.0179 (10)
O2W0.0260 (8)0.0279 (9)0.0506 (12)0.0042 (7)0.0098 (8)0.0028 (8)
O30.0825 (16)0.0360 (11)0.0251 (9)0.0260 (11)0.0002 (10)0.0019 (8)
O3W0.0295 (9)0.0278 (9)0.0340 (9)0.0009 (7)0.0082 (7)0.0015 (7)
O40.0581 (12)0.0327 (10)0.0181 (8)0.0146 (9)0.0014 (8)0.0045 (7)
O4W0.0374 (9)0.0250 (8)0.0223 (8)0.0126 (7)0.0011 (7)0.0011 (6)
O50.289 (6)0.0440 (15)0.0247 (12)0.051 (2)0.018 (2)0.0095 (10)
O5W0.143 (3)0.0332 (12)0.0434 (14)0.0063 (15)0.0147 (16)0.0135 (10)
O60.196 (4)0.0310 (13)0.0439 (14)0.0246 (17)0.0042 (19)0.0161 (11)
O6W0.0596 (13)0.0429 (11)0.0366 (11)0.0140 (10)0.0045 (10)0.0163 (9)
O70.0230 (8)0.0416 (10)0.0379 (10)0.0121 (7)0.0062 (7)0.0264 (8)
O7W0.0364 (10)0.0282 (9)0.0418 (10)0.0110 (7)0.0046 (8)0.0035 (8)
O80.0240 (8)0.0359 (9)0.0300 (9)0.0120 (7)0.0066 (7)0.0200 (7)
O8W0.0771 (16)0.0401 (12)0.0403 (12)0.0189 (11)0.0021 (11)0.0123 (9)
O90.0309 (8)0.0195 (7)0.0222 (8)0.0056 (6)0.0070 (6)0.0022 (6)
O100.0488 (10)0.0176 (8)0.0240 (8)0.0041 (7)0.0123 (7)0.0049 (6)
C10.0215 (10)0.0253 (11)0.0215 (10)0.0038 (8)0.0016 (8)0.0083 (8)
C20.0223 (10)0.0236 (11)0.0207 (10)0.0055 (8)0.0008 (8)0.0061 (8)
C30.0250 (10)0.0254 (11)0.0198 (10)0.0041 (8)0.0006 (8)0.0067 (8)
C40.0333 (12)0.0242 (11)0.0218 (11)0.0055 (9)0.0002 (9)0.0095 (9)
C50.0312 (11)0.0216 (11)0.0256 (11)0.0062 (9)0.0028 (9)0.0071 (9)
C60.0191 (10)0.0205 (10)0.0202 (10)0.0034 (8)0.0015 (8)0.0078 (8)
C70.0238 (10)0.0197 (10)0.0187 (10)0.0053 (8)0.0011 (8)0.0043 (8)
Geometric parameters (Å, º) top
Nd1—O12.5266 (16)O4—C31.246 (3)
Nd1—O72.5124 (16)O4W—H410.8391
Nd1—O8i2.4972 (16)O4W—H420.8323
Nd1—O92.5243 (16)O5W—H510.8401
Nd1—O10ii2.4897 (16)O5W—H520.8205
Nd1—O1W2.4798 (16)O6W—H610.8420
Nd1—O2W2.5080 (17)O6W—H620.8503
Nd1—O3W2.5241 (17)O7—C61.255 (3)
Nd1—O4W2.5153 (16)O7W—H710.8363
N1—C51.346 (3)O7W—H720.8351
N1—C11.350 (3)O8—C61.251 (3)
N1—O11.364 (2)O8W—H810.8498
N2—O21.223 (3)O8W—H820.8376
N2—O31.222 (3)O9—C71.250 (3)
N2—C21.459 (3)O10—C71.258 (3)
N3—O51.189 (3)C1—C21.373 (3)
N3—O61.210 (3)C1—H10.9300
N3—C41.459 (3)C2—C31.461 (3)
O1W—H110.8381C3—C41.456 (3)
O1W—H120.8435C4—C51.375 (3)
O2W—H210.8386C5—H50.9300
O2W—H220.8392C6—C6i1.538 (4)
O3W—H310.8474C7—C7ii1.563 (4)
O3W—H320.8431
O1W—Nd1—O10ii135.33 (5)O6—N3—C4119.1 (2)
O1W—Nd1—O8i131.00 (6)N1—O1—Nd1119.90 (12)
O10ii—Nd1—O8i70.29 (6)Nd1—O1W—H11120.2
O1W—Nd1—O2W91.36 (6)Nd1—O1W—H12127.9
O10ii—Nd1—O2W81.90 (6)H11—O1W—H12108.0
O8i—Nd1—O2W137.49 (6)Nd1—O2W—H21125.7
O1W—Nd1—O7148.48 (6)Nd1—O2W—H22125.1
O10ii—Nd1—O772.57 (6)H21—O2W—H22108.9
O8i—Nd1—O764.62 (5)Nd1—O3W—H31111.6
O2W—Nd1—O776.89 (6)Nd1—O3W—H32121.7
O1W—Nd1—O4W73.70 (6)H31—O3W—H32108.4
O10ii—Nd1—O4W139.35 (6)Nd1—O4W—H41126.0
O8i—Nd1—O4W69.18 (6)Nd1—O4W—H42123.9
O2W—Nd1—O4W132.51 (6)H41—O4W—H42108.6
O7—Nd1—O4W92.70 (6)H51—O5W—H52114.0
O1W—Nd1—O971.57 (5)H61—O6W—H62108.1
O10ii—Nd1—O965.01 (5)C6—O7—Nd1120.14 (14)
O8i—Nd1—O9122.97 (6)H71—O7W—H72110.0
O2W—Nd1—O967.67 (6)C6—O8—Nd1i121.03 (14)
O7—Nd1—O9127.25 (6)H81—O8W—H82111.9
O4W—Nd1—O9140.03 (6)C7—O9—Nd1119.52 (14)
O1W—Nd1—O3W79.37 (6)C7—O10—Nd1ii121.18 (14)
O10ii—Nd1—O3W134.04 (6)N1—C1—C2120.4 (2)
O8i—Nd1—O3W112.90 (6)N1—C1—H1119.8
O2W—Nd1—O3W65.61 (6)C2—C1—H1119.8
O7—Nd1—O3W69.13 (6)C1—C2—N2114.8 (2)
O4W—Nd1—O3W67.38 (6)C1—C2—C3123.9 (2)
O9—Nd1—O3W123.39 (6)N2—C2—C3121.22 (19)
O1W—Nd1—O176.77 (6)O4—C3—C4124.5 (2)
O10ii—Nd1—O179.67 (6)O4—C3—C2125.6 (2)
O8i—Nd1—O167.82 (6)C4—C3—C2109.93 (19)
O2W—Nd1—O1138.53 (6)C5—C4—N3115.0 (2)
O7—Nd1—O1130.56 (5)C5—C4—C3124.1 (2)
O4W—Nd1—O182.50 (6)N3—C4—C3120.9 (2)
O9—Nd1—O170.89 (5)N1—C5—C4120.4 (2)
O3W—Nd1—O1145.78 (5)N1—C5—H5119.8
C5—N1—C1120.8 (2)C4—C5—H5119.8
C5—N1—O1119.60 (19)O8—C6—O7125.9 (2)
C1—N1—O1119.60 (18)O8—C6—C6i116.9 (2)
O2—N2—O3122.3 (2)O7—C6—C6i117.2 (2)
O2—N2—C2118.1 (2)O9—C7—O10126.3 (2)
O3—N2—C2119.6 (2)O9—C7—C7ii117.4 (2)
O5—N3—O6121.0 (3)O10—C7—C7ii116.2 (2)
O5—N3—C4119.9 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O4iii0.841.992.809 (2)166
O1w—H12···O5w0.841.892.736 (3)178
O2w—H21···O8iv0.842.062.890 (2)174
O2w—H22···O7w0.841.972.806 (3)174
O3w—H31···O7iv0.852.072.908 (2)170
O3w—H32···O8wiv0.842.032.841 (3)161
O4w—H41···O4iii0.841.972.759 (2)155
O4w—H42···O6wv0.832.022.851 (3)177
O5w—H51···O6w0.842.062.893 (3)171
O5w—H52···O3iii0.822.432.956 (3)123
O6w—H61···O100.842.092.915 (3)168
O6w—H62···O8wii0.852.132.942 (3)160
O7w—H71···O1ii0.841.932.766 (2)172
O7w—H72···O9vi0.842.132.953 (2)168
O8w—H81···O6ii0.852.463.310 (4)174
O8w—H82···O7w0.842.022.816 (3)160
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+1; (v) x, y1, z; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Nd(C5H2N3O6)(C2O4)(H2O)4]·4H2O
Mr576.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7695 (7), 9.9695 (11), 14.6269 (16)
α, β, γ (°)73.719 (1), 88.137 (1), 76.693 (1)
V3)921.58 (17)
Z2
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.35 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART APEX diffraractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.429, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
7952, 4147, 4005
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.050, 1.06
No. of reflections4147
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.94

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Nd1—O12.5266 (16)Nd1—O1W2.4798 (16)
Nd1—O72.5124 (16)Nd1—O2W2.5080 (17)
Nd1—O8i2.4972 (16)Nd1—O3W2.5241 (17)
Nd1—O92.5243 (16)Nd1—O4W2.5153 (16)
Nd1—O10ii2.4897 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O4iii0.841.992.809 (2)166
O1w—H12···O5w0.841.892.736 (3)178
O2w—H21···O8iv0.842.062.890 (2)174
O2w—H22···O7w0.841.972.806 (3)174
O3w—H31···O7iv0.852.072.908 (2)170
O3w—H32···O8wiv0.842.032.841 (3)161
O4w—H41···O4iii0.841.972.759 (2)155
O4w—H42···O6wv0.832.022.851 (3)177
O5w—H51···O6w0.842.062.893 (3)171
O5w—H52···O3iii0.822.432.956 (3)123
O6w—H61···O100.842.092.915 (3)168
O6w—H62···O8wii0.852.132.942 (3)160
O7w—H71···O1ii0.841.932.766 (2)172
O7w—H72···O9vi0.842.132.953 (2)168
O8w—H81···O6ii0.852.463.310 (4)174
O8w—H82···O7w0.842.022.816 (3)160
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+1; (v) x, y1, z; (vi) x+2, y+2, z+1.
 

Acknowledgements

We thank Baoji University of Arts and Sciences (Key Research Project No. ZK08114) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-G., Zhou, Q.-P., Zhang, G.-F., Li, P., Chen, B.-H., Zhao, F.-Q., Li, J.-Z. & Fan, X.-Z. (2010). J. Coord. Chem. 63, 1379–1389.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds