organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(Ethane-1,2-diyl)dipyridinium bis­­(2-hy­dr­oxy­benzoate)

aGeneral Education Center, Yuanpei University, No. 306, Yuanpei St, HsinChu 30015, Taiwan, and bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei St, HsinChu 30015, Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw

(Received 18 September 2010; accepted 24 September 2010; online 2 October 2010)

In the crystal structure of the title compound, C12H14N22+·2C7H5O3, the cations and anions are linked via N—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O inter­actions also occur. ππ stacking is observed between the nearly parallel benzene and pyridine rings [dihedral angle = 6.03 (8)°], the centroid–centroid separation being 3.7546 (16) Å. The 4,4′-(ethane-1,2-diyl)dipyridinium cation is centrosymmetric and the mid-point of the ethyl­ene C—C bond is located on an inversion center. An intra­molecular O—H⋯O hydrogen bond occurs in the anion.

Related literature

For the structure of 4,4′-(ethane-1,2-diyl)dipyridinium bis­(3,5-dinitro­benzoate), see: Burchell et al. (2001[Burchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201-212.]). For the structure of 4,4′-(ethane-1,2-diyl)dipyridinium bis­(hydrogen maleate), see: Bowes et al. (2003[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.]). For deprotonated salicylic acid, see: Chitradevi et al. (2009[Chitradevi, A., Athimoolam, S., Sridhar, B. & Bahadur, S. A. (2009). Acta Cryst. E65, o3041-o3042.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M. & Rajakannan, V. (2010). Acta Cryst. E66, o2010-o2011.]); Quah et al. (2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2164-o2165.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N22+·2C7H5O3

  • Mr = 460.47

  • Monoclinic, P 21 /n

  • a = 8.622 (3) Å

  • b = 6.867 (2) Å

  • c = 19.566 (6) Å

  • β = 101.324 (6)°

  • V = 1135.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.42 × 0.26 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 6165 measured reflections

  • 2246 independent reflections

  • 1645 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.147

  • S = 1.05

  • 2246 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1A⋯O1 0.86 1.70 2.556 (2) 177
O3—H3A⋯O2 0.82 1.76 2.545 (2) 160
C11—H11⋯O3i 0.93 2.55 3.406 (3) 154
Symmetry code: (i) x-1, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There are numerous examples of saliclyic acid compounds in which the salicylic acid act as deprotonated anions (Quah et al., 2010; Fun et al., 2010; Chitradevi et al., 2009). Some 4,4-ethylenedipyridinium salts have also reported previously (Burchell et al. 2001; Bowes et al. 2003).

The crystal structure of the title proton-transfer compound of salicylic acid with 4,4'-(ethane-1,2-diyl)dipyridine consists of 4,4'-(ethane-1,2-diyl)dipyridinium cations and 2-hydroxybenzoate anionst (Fig. 1). The 4,4'-(ethane-1,2-diyl)dipyridinium cation is centro-symmetric, with the mid-point of ethylene C—C bond located on the inversion center. Two salicylate anions have intramolecular hydrogen bonding. The 4,4'-(ethane-1,2-diyl)dipyridinium cation is linked by N—H···O hydrogen bond to adjacent salicylate anions.

Intermolecular weak C—H···O hydrogen bonding is present in the crystal structure (Table 1). On the other hand, ππ ring stacking is also observed, the centroid–centroid separation between the benzene and pyridine ring, Cg1(N/C8—C12)··· Cg2iii(C2—C7), is 3.7546 (16) Å and dihedral angle between two rings is 6.03 (8)° [symmetry code: (iii) = x, 1 + y, z].

Related literature top

For the structure of 4,4'-(ethane-1,2-diyl)dipyridinium bis(3,5-dinitrobenzoate), see: Burchell et al. (2001). For the structure of 4,4'-(ethane-1,2-diyl)dipyridinium bis(hydrogen maleate), see: Bowes et al. (2003). For deprotonated salicylic acid, see: Chitradevi et al. (2009); Fun et al. (2010); Quah et al. (2010).

Experimental top

The salicylic acid (138.0 mg, 1.0 mmol) and 4,4'-(ethane-1,2-diyl)dipyridine (184 mg, 1.0 mmol) were dissolved in 20 ml me thanol-water (1:1), the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube, after one week at room temperature colorless transparent crystals formed (yield 56.78%).

Refinement top

H atoms bonded to O and N atoms were located in a difference Fourier map and refined with the distances constraints of O—H = 0.82, N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 (aromatic) and 0.97 Å (methylene), and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

There are numerous examples of saliclyic acid compounds in which the salicylic acid act as deprotonated anions (Quah et al., 2010; Fun et al., 2010; Chitradevi et al., 2009). Some 4,4-ethylenedipyridinium salts have also reported previously (Burchell et al. 2001; Bowes et al. 2003).

The crystal structure of the title proton-transfer compound of salicylic acid with 4,4'-(ethane-1,2-diyl)dipyridine consists of 4,4'-(ethane-1,2-diyl)dipyridinium cations and 2-hydroxybenzoate anionst (Fig. 1). The 4,4'-(ethane-1,2-diyl)dipyridinium cation is centro-symmetric, with the mid-point of ethylene C—C bond located on the inversion center. Two salicylate anions have intramolecular hydrogen bonding. The 4,4'-(ethane-1,2-diyl)dipyridinium cation is linked by N—H···O hydrogen bond to adjacent salicylate anions.

Intermolecular weak C—H···O hydrogen bonding is present in the crystal structure (Table 1). On the other hand, ππ ring stacking is also observed, the centroid–centroid separation between the benzene and pyridine ring, Cg1(N/C8—C12)··· Cg2iii(C2—C7), is 3.7546 (16) Å and dihedral angle between two rings is 6.03 (8)° [symmetry code: (iii) = x, 1 + y, z].

For the structure of 4,4'-(ethane-1,2-diyl)dipyridinium bis(3,5-dinitrobenzoate), see: Burchell et al. (2001). For the structure of 4,4'-(ethane-1,2-diyl)dipyridinium bis(hydrogen maleate), see: Bowes et al. (2003). For deprotonated salicylic acid, see: Chitradevi et al. (2009); Fun et al. (2010); Quah et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Dashed lines indicate hydrogen bonding [symmetry code: (i) -x, 2 - y, 1 - z].
4,4'-(ethane-1,2-diyl)dipyridinium bis(2-hydroxybenzoate) top
Crystal data top
C12H14N22+·2C7H5O3F(000) = 484
Mr = 460.47Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2343 reflections
a = 8.622 (3) Åθ = 3.6–25.9°
b = 6.867 (2) ŵ = 0.10 mm1
c = 19.566 (6) ÅT = 297 K
β = 101.324 (6)°Prism, colorless
V = 1135.9 (6) Å30.42 × 0.26 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1645 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 26.1°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 510
ω scank = 88
6165 measured reflectionsl = 2423
2246 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.1342P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2246 reflectionsΔρmax = 0.21 e Å3
155 parametersΔρmin = 0.25 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=KFc[1+0.001Fc2λ3/sin(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C12H14N22+·2C7H5O3V = 1135.9 (6) Å3
Mr = 460.47Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.622 (3) ŵ = 0.10 mm1
b = 6.867 (2) ÅT = 297 K
c = 19.566 (6) Å0.42 × 0.26 × 0.17 mm
β = 101.324 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1645 reflections with I > 2σ(I)
6165 measured reflectionsRint = 0.053
2246 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.147H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2246 reflectionsΔρmin = 0.25 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.23112 (16)0.41868 (19)0.59247 (7)0.0507 (5)
C80.30204 (19)0.4936 (2)0.54421 (9)0.0508 (6)
C90.25306 (19)0.6652 (2)0.51103 (9)0.0502 (5)
C100.12421 (17)0.7649 (2)0.52708 (8)0.0419 (5)
C110.05191 (19)0.6837 (2)0.57748 (9)0.0504 (5)
C120.1084 (2)0.5109 (3)0.60879 (10)0.0545 (6)
C130.07080 (18)0.9519 (2)0.48984 (9)0.0483 (5)
O10.32265 (15)0.10150 (17)0.65611 (7)0.0612 (5)
O20.48925 (16)0.07561 (19)0.58403 (7)0.0689 (5)
O30.67244 (17)0.2176 (2)0.59167 (8)0.0822 (6)
C10.43333 (19)0.0129 (2)0.63306 (9)0.0463 (5)
C20.48956 (17)0.1735 (2)0.66799 (8)0.0425 (5)
C30.4252 (2)0.2478 (3)0.72231 (9)0.0515 (6)
C40.4772 (2)0.4221 (3)0.75408 (10)0.0660 (7)
C50.5946 (2)0.5245 (3)0.73117 (11)0.0696 (7)
C60.6594 (2)0.4550 (3)0.67733 (12)0.0670 (7)
C70.6078 (2)0.2797 (2)0.64510 (10)0.0515 (6)
H1A0.264400.311500.612900.0610*
H80.387500.427900.532500.0610*
H90.306000.715000.477800.0600*
H110.034300.745200.590200.0600*
H120.058700.457400.642500.0650*
H13A0.046100.926000.440200.0580*
H13B0.158301.043200.498300.0580*
H30.345500.178900.737600.0620*
H3A0.625200.114300.582300.1230*
H40.433500.469800.790600.0790*
H50.630300.641700.752400.0830*
H60.738400.525500.662300.0800*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0485 (8)0.0343 (7)0.0662 (9)0.0103 (6)0.0038 (7)0.0061 (6)
C80.0438 (9)0.0412 (9)0.0677 (11)0.0099 (7)0.0118 (8)0.0010 (8)
C90.0452 (9)0.0448 (9)0.0623 (10)0.0069 (7)0.0146 (7)0.0043 (8)
C100.0356 (8)0.0358 (8)0.0531 (9)0.0032 (6)0.0055 (6)0.0019 (7)
C110.0441 (9)0.0454 (9)0.0637 (10)0.0137 (7)0.0154 (8)0.0095 (8)
C120.0527 (10)0.0467 (9)0.0660 (11)0.0106 (8)0.0166 (8)0.0140 (8)
C130.0451 (9)0.0402 (9)0.0606 (10)0.0084 (7)0.0128 (7)0.0093 (8)
O10.0669 (8)0.0460 (7)0.0773 (9)0.0201 (6)0.0307 (6)0.0110 (6)
O20.0834 (10)0.0534 (8)0.0801 (9)0.0133 (7)0.0407 (8)0.0186 (7)
O30.0732 (9)0.0799 (10)0.1084 (12)0.0229 (8)0.0541 (9)0.0127 (9)
C10.0490 (9)0.0376 (8)0.0532 (10)0.0033 (7)0.0126 (7)0.0005 (7)
C20.0406 (8)0.0372 (8)0.0480 (9)0.0030 (6)0.0043 (6)0.0019 (7)
C30.0542 (10)0.0501 (10)0.0505 (9)0.0075 (8)0.0108 (8)0.0028 (8)
C40.0771 (13)0.0583 (11)0.0598 (11)0.0060 (10)0.0067 (9)0.0159 (9)
C50.0691 (12)0.0474 (10)0.0823 (14)0.0118 (10)0.0094 (10)0.0130 (10)
C60.0499 (11)0.0530 (11)0.0933 (15)0.0185 (9)0.0026 (10)0.0063 (11)
C70.0415 (9)0.0474 (10)0.0657 (11)0.0045 (7)0.0111 (8)0.0046 (8)
Geometric parameters (Å, º) top
O1—C11.286 (2)C11—H110.9300
O2—C11.233 (2)C12—H120.9300
O3—C71.347 (2)C13—H13A0.9700
O3—H3A0.8200C13—H13B0.9700
N—C81.326 (2)C1—C21.487 (2)
N—C121.325 (2)C2—C71.397 (2)
N—H1A0.8600C2—C31.389 (2)
C8—C91.371 (2)C3—C41.382 (3)
C9—C101.392 (2)C4—C51.378 (3)
C10—C111.383 (2)C5—C61.371 (3)
C10—C131.503 (2)C6—C71.391 (3)
C11—C121.380 (3)C3—H30.9300
C13—C13i1.509 (2)C4—H40.9300
C8—H80.9300C5—H50.9300
C9—H90.9300C6—H60.9300
C7—O3—H3A101.00C13i—C13—H13B108.00
C8—N—C12119.22 (15)C13i—C13—H13A108.00
C8—N—H1A120.00O1—C1—C2116.34 (14)
C12—N—H1A120.00O2—C1—C2121.09 (15)
N—C8—C9121.90 (15)O1—C1—O2122.57 (14)
C8—C9—C10120.06 (15)C1—C2—C7119.65 (14)
C9—C10—C13119.52 (14)C3—C2—C7118.68 (15)
C11—C10—C13123.49 (14)C1—C2—C3121.65 (15)
C9—C10—C11116.99 (13)C2—C3—C4121.27 (16)
C10—C11—C12119.61 (15)C3—C4—C5119.33 (18)
N—C12—C11122.22 (17)C4—C5—C6120.56 (19)
C10—C13—C13i115.66 (13)C5—C6—C7120.48 (18)
N—C8—H8119.00O3—C7—C6118.79 (16)
C9—C8—H8119.00C2—C7—C6119.68 (16)
C8—C9—H9120.00O3—C7—C2121.52 (14)
C10—C9—H9120.00C2—C3—H3119.00
C12—C11—H11120.00C4—C3—H3119.00
C10—C11—H11120.00C3—C4—H4120.00
N—C12—H12119.00C5—C4—H4120.00
C11—C12—H12119.00C4—C5—H5120.00
C10—C13—H13B108.00C6—C5—H5120.00
H13A—C13—H13B107.00C5—C6—H6120.00
C10—C13—H13A108.00C7—C6—H6120.00
C12—N—C8—C90.7 (2)O2—C1—C2—C3178.62 (16)
C8—N—C12—C110.4 (3)O2—C1—C2—C70.1 (2)
N—C8—C9—C100.8 (3)C1—C2—C3—C4179.41 (16)
C8—C9—C10—C110.6 (2)C7—C2—C3—C40.7 (3)
C8—C9—C10—C13179.43 (15)C1—C2—C7—O30.2 (2)
C9—C10—C11—C120.4 (2)C1—C2—C7—C6179.40 (16)
C13—C10—C11—C12179.70 (16)C3—C2—C7—O3178.52 (16)
C9—C10—C13—C13i179.34 (14)C3—C2—C7—C60.7 (3)
C11—C10—C13—C13i0.7 (2)C2—C3—C4—C50.3 (3)
C10—C11—C12—N0.2 (3)C3—C4—C5—C60.1 (3)
C10—C13—C13i—C10i179.97 (17)C4—C5—C6—C70.1 (3)
O1—C1—C2—C30.3 (2)C5—C6—C7—O3178.96 (18)
O1—C1—C2—C7178.98 (15)C5—C6—C7—C20.3 (3)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1A···O10.861.702.556 (2)177
O3—H3A···O20.821.762.545 (2)160
C11—H11···O3ii0.932.553.406 (3)154
Symmetry code: (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H14N22+·2C7H5O3
Mr460.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)8.622 (3), 6.867 (2), 19.566 (6)
β (°) 101.324 (6)
V3)1135.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.26 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6165, 2246, 1645
Rint0.053
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.147, 1.05
No. of reflections2246
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1A···O10.861.702.556 (2)177
O3—H3A···O20.821.762.545 (2)160
C11—H11···O3i0.932.553.406 (3)154
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201–212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChitradevi, A., Athimoolam, S., Sridhar, B. & Bahadur, S. A. (2009). Acta Cryst. E65, o3041–o3042.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M. & Rajakannan, V. (2010). Acta Cryst. E66, o2010–o2011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2164–o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds