organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­ethyl 4-nitro­benzoate

aKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: haijiaoyiya@sina.com

(Received 27 September 2010; accepted 28 September 2010; online 2 October 2010)

The title compound, C9H8ClNO4, crystallizes with two mol­ecules in the asymmetric unit. In each mol­ecule, the carboxyl­ate group is nearly coplanar with the benzene ring, forming dihedral angles of 2.4 (1) and 4.9 (1)°. In the crystal, mol­ecules are linked through weak C—H⋯O and C—H⋯Cl hydrogen bonds. A short O⋯N contact of 2.7660 (19) Å occurs between the nitro groups of adjacent mol­ecules.

Related literature

For benzoates as inter­mediates in the chemistry of pigments and pharmaceuticals, see: Zhang et al. (1995[Zhang, A.-Y., Qian, B., Min, J. & Fang, Q.-X. (1995). J. Shanxi Normal Univ. (Nat. Sci. Ed.), 23, 44-47.], 1990[Zhang, Z.-S., Wu, J.-G. & Deng, R.-W. (1990). J. Lanzhou Univ. (Nat. Sci. Ed.), 26, 69-75.]). For a related structure, see: Wu et al. (2009[Wu, H., Xie, M.-H., Zou, P., Liu, Y.-L. & He, Y.-J. (2009). Acta Cryst. E65, o3096.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8ClNO4

  • Mr = 229.61

  • Monoclinic, P 21 /n

  • a = 4.9404 (10) Å

  • b = 21.618 (5) Å

  • c = 18.325 (4) Å

  • β = 90.441 (3)°

  • V = 1957.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 103 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.862, Tmax = 0.927

  • 18618 measured reflections

  • 4466 independent reflections

  • 3781 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.00

  • 4466 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1′ 0.95 2.79 3.6234 (18) 147
C2′—H2′⋯O3′i 0.95 2.50 3.318 (2) 145
C4′—H4′⋯O2 0.95 2.40 3.223 (2) 144
C5—H5⋯O2′ii 0.95 2.42 3.205 (2) 140
C9—H9B⋯O2′iii 0.99 2.55 3.526 (2) 167
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzoates are important intermediates in the chemistry of pigments and pharmaceuticals, which are widely used all over the world (Zhang et al., 1995; Zhang et al., 1990). The crystall structure of Methyl 4-nitrobenzoate has been reported (Wu et al., 2009). As an extension of our study, we report here the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig.1) contains two crystallographically independent molecules in an asymmetric unit.The crystal data show that the bond lengths and angles are within expected ranges. The ester groups and the benzene rings in the two molecules are almost coplanar, as indicated by the dihedral angles of 2.4 (1)° (O1/O2/C6/C7; C1—C6) and 4.9 (1)° (O1'/O2'/C6'/C7'; C1'—C6'). The dihedral angle between the ring(C1—C6) and the ring(C1'—C6') is 92.7 (1)°.

In the cyrstal structure, adjacent molecules are linked together by the weak C—H···O and C—H···Cl hydrogen bonds (Table 1). Intramolecular C—H···O interactions are also observed. These hydrogen-bonding interactions stabilize the crystal structure.

Related literature top

For benzoates as intermediates in the chemistry of pigments and pharmaceuticals, see: Zhang et al. (1995, 1990). For a related structure, see: Wu et al. (2009).

Experimental top

Commercial 2-chloroethyl 4-nitrobenzoate was recrystallized by slow evaporation of methanol/water solution (1:1 v/v). Colourless single crystals were formed after two weeks.

Refinement top

H atoms were placed in calculated positions with C–H = 0.99 (methylene) and 0.95 Å (aromatic), and were refined in a riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

Benzoates are important intermediates in the chemistry of pigments and pharmaceuticals, which are widely used all over the world (Zhang et al., 1995; Zhang et al., 1990). The crystall structure of Methyl 4-nitrobenzoate has been reported (Wu et al., 2009). As an extension of our study, we report here the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig.1) contains two crystallographically independent molecules in an asymmetric unit.The crystal data show that the bond lengths and angles are within expected ranges. The ester groups and the benzene rings in the two molecules are almost coplanar, as indicated by the dihedral angles of 2.4 (1)° (O1/O2/C6/C7; C1—C6) and 4.9 (1)° (O1'/O2'/C6'/C7'; C1'—C6'). The dihedral angle between the ring(C1—C6) and the ring(C1'—C6') is 92.7 (1)°.

In the cyrstal structure, adjacent molecules are linked together by the weak C—H···O and C—H···Cl hydrogen bonds (Table 1). Intramolecular C—H···O interactions are also observed. These hydrogen-bonding interactions stabilize the crystal structure.

For benzoates as intermediates in the chemistry of pigments and pharmaceuticals, see: Zhang et al. (1995, 1990). For a related structure, see: Wu et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. eA view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
2-Chloroethyl 4-nitrobenzoate top
Crystal data top
C9H8ClNO4F(000) = 944
Mr = 229.61Dx = 1.559 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5688 reflections
a = 4.9404 (10) Åθ = 3.0–27.5°
b = 21.618 (5) ŵ = 0.38 mm1
c = 18.325 (4) ÅT = 103 K
β = 90.441 (3)°Prism, colorless
V = 1957.0 (7) Å30.40 × 0.20 × 0.20 mm
Z = 8
Data collection top
Rigaku SPIDER
diffractometer
4466 independent reflections
Radiation source: Rotating Anode3781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.862, Tmax = 0.927k = 2828
18618 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.680P]
where P = (Fo2 + 2Fc2)/3
4466 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H8ClNO4V = 1957.0 (7) Å3
Mr = 229.61Z = 8
Monoclinic, P21/nMo Kα radiation
a = 4.9404 (10) ŵ = 0.38 mm1
b = 21.618 (5) ÅT = 103 K
c = 18.325 (4) Å0.40 × 0.20 × 0.20 mm
β = 90.441 (3)°
Data collection top
Rigaku SPIDER
diffractometer
4466 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3781 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.927Rint = 0.033
18618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
4466 reflectionsΔρmin = 0.23 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58062 (8)0.615621 (18)0.60156 (2)0.02137 (10)
O10.5719 (2)0.70861 (5)0.72719 (6)0.0201 (2)
O20.4652 (2)0.80061 (5)0.77677 (6)0.0230 (3)
O31.4451 (3)0.74075 (6)1.03965 (7)0.0288 (3)
O41.5555 (2)0.65746 (6)0.98123 (7)0.0274 (3)
N11.4158 (3)0.70367 (6)0.98970 (8)0.0203 (3)
C10.8669 (3)0.78260 (7)0.88589 (9)0.0169 (3)
H10.76990.82050.88650.020*
C21.0633 (3)0.77121 (7)0.93827 (9)0.0176 (3)
H21.10250.80070.97520.021*
C31.2012 (3)0.71558 (7)0.93535 (8)0.0163 (3)
C41.1480 (3)0.67097 (7)0.88291 (9)0.0169 (3)
H41.24550.63310.88250.020*
C50.9499 (3)0.68282 (7)0.83117 (8)0.0163 (3)
H50.90900.65280.79490.020*
C60.8102 (3)0.73879 (7)0.83215 (8)0.0143 (3)
C70.5974 (3)0.75381 (7)0.77687 (8)0.0155 (3)
C80.3759 (3)0.71808 (7)0.66929 (9)0.0193 (3)
H8A0.45550.74340.62990.023*
H8B0.21480.73990.68820.023*
C90.2977 (3)0.65561 (7)0.64066 (9)0.0183 (3)
H9A0.15410.66050.60310.022*
H9B0.22310.63050.68100.022*
Cl1'0.09925 (8)0.578510 (18)0.46926 (2)0.02083 (10)
O1'0.0719 (2)0.53366 (5)0.30930 (6)0.0170 (2)
O2'0.0224 (2)0.45272 (5)0.23673 (6)0.0203 (2)
O3'0.9692 (2)0.56670 (5)0.00593 (7)0.0249 (3)
O4'1.0593 (2)0.63815 (6)0.08520 (6)0.0243 (3)
N1'0.9309 (3)0.59294 (6)0.06415 (7)0.0176 (3)
C1'0.3955 (3)0.49087 (7)0.13991 (8)0.0158 (3)
H1'0.30830.45270.12910.019*
C2'0.5964 (3)0.51288 (7)0.09445 (9)0.0165 (3)
H2'0.64970.49030.05250.020*
C3'0.7174 (3)0.56882 (7)0.11200 (8)0.0150 (3)
C4'0.6481 (3)0.60310 (7)0.17254 (9)0.0170 (3)
H4'0.73660.64110.18310.020*
C5'0.4468 (3)0.58079 (7)0.21743 (8)0.0160 (3)
H5'0.39410.60370.25920.019*
C6'0.3209 (3)0.52453 (7)0.20138 (8)0.0139 (3)
C7'0.1063 (3)0.49883 (7)0.24947 (8)0.0149 (3)
C8'0.1343 (3)0.51265 (7)0.35872 (8)0.0168 (3)
H8'10.07180.47530.38520.020*
H8'20.30170.50220.33140.020*
C9'0.1878 (3)0.56394 (8)0.41134 (9)0.0211 (3)
H9'10.34540.55300.44180.025*
H9'20.23340.60200.38390.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01863 (19)0.0242 (2)0.0213 (2)0.00012 (15)0.00069 (15)0.00381 (16)
O10.0238 (6)0.0183 (5)0.0182 (6)0.0036 (5)0.0087 (5)0.0042 (4)
O20.0287 (6)0.0174 (5)0.0228 (6)0.0070 (5)0.0078 (5)0.0007 (5)
O30.0304 (7)0.0329 (7)0.0229 (7)0.0062 (5)0.0103 (6)0.0002 (5)
O40.0203 (6)0.0359 (7)0.0259 (7)0.0089 (5)0.0000 (5)0.0089 (5)
N10.0156 (6)0.0272 (7)0.0182 (7)0.0039 (6)0.0011 (5)0.0071 (6)
C10.0191 (8)0.0141 (7)0.0174 (8)0.0020 (6)0.0006 (6)0.0007 (6)
C20.0209 (8)0.0178 (7)0.0142 (8)0.0020 (6)0.0001 (6)0.0011 (6)
C30.0131 (7)0.0215 (7)0.0144 (7)0.0020 (6)0.0004 (6)0.0050 (6)
C40.0165 (7)0.0150 (7)0.0191 (8)0.0026 (6)0.0021 (6)0.0020 (6)
C50.0199 (8)0.0142 (7)0.0148 (7)0.0005 (6)0.0013 (6)0.0012 (6)
C60.0157 (7)0.0146 (7)0.0127 (7)0.0006 (6)0.0015 (6)0.0016 (6)
C70.0179 (7)0.0155 (7)0.0131 (7)0.0016 (6)0.0009 (6)0.0005 (6)
C80.0217 (8)0.0192 (7)0.0168 (8)0.0010 (6)0.0071 (6)0.0008 (6)
C90.0152 (7)0.0209 (7)0.0189 (8)0.0011 (6)0.0006 (6)0.0018 (6)
Cl1'0.0243 (2)0.02306 (19)0.01513 (19)0.00621 (15)0.00131 (15)0.00093 (15)
O1'0.0212 (6)0.0176 (5)0.0123 (5)0.0048 (4)0.0038 (4)0.0015 (4)
O2'0.0235 (6)0.0157 (5)0.0216 (6)0.0044 (5)0.0024 (5)0.0019 (5)
O3'0.0313 (7)0.0233 (6)0.0203 (6)0.0061 (5)0.0107 (5)0.0013 (5)
O4'0.0200 (6)0.0302 (6)0.0225 (6)0.0072 (5)0.0001 (5)0.0030 (5)
N1'0.0154 (6)0.0206 (7)0.0167 (7)0.0054 (5)0.0004 (5)0.0052 (5)
C1'0.0183 (7)0.0139 (7)0.0153 (8)0.0010 (6)0.0024 (6)0.0015 (6)
C2'0.0184 (7)0.0178 (7)0.0134 (7)0.0047 (6)0.0009 (6)0.0025 (6)
C3'0.0125 (7)0.0181 (7)0.0144 (7)0.0026 (6)0.0001 (6)0.0048 (6)
C4'0.0183 (8)0.0164 (7)0.0164 (8)0.0014 (6)0.0022 (6)0.0002 (6)
C5'0.0195 (8)0.0154 (7)0.0130 (7)0.0000 (6)0.0002 (6)0.0021 (6)
C6'0.0146 (7)0.0145 (7)0.0127 (7)0.0014 (6)0.0021 (6)0.0013 (6)
C7'0.0164 (7)0.0144 (7)0.0138 (7)0.0031 (6)0.0026 (6)0.0006 (6)
C8'0.0170 (7)0.0200 (7)0.0134 (8)0.0038 (6)0.0032 (6)0.0012 (6)
C9'0.0172 (8)0.0261 (8)0.0202 (8)0.0018 (6)0.0014 (6)0.0025 (7)
Geometric parameters (Å, º) top
Cl1—C91.7971 (16)Cl1'—C9'1.7927 (17)
O1—C71.3408 (18)O1'—C7'1.3419 (18)
O1—C81.4454 (19)O1'—C8'1.4416 (18)
O2—C71.2043 (18)O2'—C7'1.2041 (18)
O3—N11.2245 (19)O3'—N1'1.2243 (18)
O4—N11.2247 (18)O4'—N1'1.2258 (17)
N1—C31.472 (2)N1'—C3'1.4725 (19)
C1—C21.382 (2)C1'—C2'1.385 (2)
C1—C61.393 (2)C1'—C6'1.393 (2)
C1—H10.9500C1'—H1'0.9500
C2—C31.383 (2)C2'—C3'1.386 (2)
C2—H20.9500C2'—H2'0.9500
C3—C41.385 (2)C3'—C4'1.380 (2)
C4—C51.381 (2)C4'—C5'1.382 (2)
C4—H40.9500C4'—H4'0.9500
C5—C61.393 (2)C5'—C6'1.396 (2)
C5—H50.9500C5'—H5'0.9500
C6—C71.490 (2)C6'—C7'1.491 (2)
C8—C91.498 (2)C8'—C9'1.494 (2)
C8—H8A0.9900C8'—H8'10.9900
C8—H8B0.9900C8'—H8'20.9900
C9—H9A0.9900C9'—H9'10.9900
C9—H9B0.9900C9'—H9'20.9900
C7—O1—C8117.01 (12)C7'—O1'—C8'115.53 (11)
O3—N1—O4124.40 (14)O3'—N1'—O4'124.11 (14)
O3—N1—C3118.16 (14)O3'—N1'—C3'118.11 (13)
O4—N1—C3117.44 (14)O4'—N1'—C3'117.79 (13)
C2—C1—C6120.41 (14)C2'—C1'—C6'120.14 (14)
C2—C1—H1119.8C2'—C1'—H1'119.9
C6—C1—H1119.8C6'—C1'—H1'119.9
C1—C2—C3118.13 (14)C1'—C2'—C3'118.03 (14)
C1—C2—H2120.9C1'—C2'—H2'121.0
C3—C2—H2120.9C3'—C2'—H2'121.0
C2—C3—C4122.76 (14)C4'—C3'—C2'123.12 (14)
C2—C3—N1118.58 (14)C4'—C3'—N1'118.16 (13)
C4—C3—N1118.65 (14)C2'—C3'—N1'118.72 (14)
C5—C4—C3118.48 (14)C3'—C4'—C5'118.36 (14)
C5—C4—H4120.8C3'—C4'—H4'120.8
C3—C4—H4120.8C5'—C4'—H4'120.8
C4—C5—C6120.04 (14)C4'—C5'—C6'120.00 (14)
C4—C5—H5120.0C4'—C5'—H5'120.0
C6—C5—H5120.0C6'—C5'—H5'120.0
C1—C6—C5120.18 (14)C1'—C6'—C5'120.34 (14)
C1—C6—C7118.00 (13)C1'—C6'—C7'118.48 (13)
C5—C6—C7121.83 (14)C5'—C6'—C7'121.17 (14)
O2—C7—O1124.27 (14)O2'—C7'—O1'123.57 (14)
O2—C7—C6124.32 (14)O2'—C7'—C6'124.79 (14)
O1—C7—C6111.41 (12)O1'—C7'—C6'111.64 (12)
O1—C8—C9107.38 (12)O1'—C8'—C9'107.52 (12)
O1—C8—H8A110.2O1'—C8'—H8'1110.2
C9—C8—H8A110.2C9'—C8'—H8'1110.2
O1—C8—H8B110.2O1'—C8'—H8'2110.2
C9—C8—H8B110.2C9'—C8'—H8'2110.2
H8A—C8—H8B108.5H8'1—C8'—H8'2108.5
C8—C9—Cl1111.97 (11)C8'—C9'—Cl1'111.67 (11)
C8—C9—H9A109.2C8'—C9'—H9'1109.3
Cl1—C9—H9A109.2Cl1'—C9'—H9'1109.3
C8—C9—H9B109.2C8'—C9'—H9'2109.3
Cl1—C9—H9B109.2Cl1'—C9'—H9'2109.3
H9A—C9—H9B107.9H9'1—C9'—H9'2107.9
C6—C1—C2—C30.3 (2)C6'—C1'—C2'—C3'0.3 (2)
C1—C2—C3—C40.8 (2)C1'—C2'—C3'—C4'0.4 (2)
C1—C2—C3—N1178.39 (13)C1'—C2'—C3'—N1'179.86 (13)
O3—N1—C3—C27.2 (2)O3'—N1'—C3'—C4'171.12 (13)
O4—N1—C3—C2171.95 (14)O4'—N1'—C3'—C4'8.8 (2)
O3—N1—C3—C4173.58 (14)O3'—N1'—C3'—C2'9.1 (2)
O4—N1—C3—C47.3 (2)O4'—N1'—C3'—C2'170.90 (13)
C2—C3—C4—C50.4 (2)C2'—C3'—C4'—C5'0.6 (2)
N1—C3—C4—C5178.79 (13)N1'—C3'—C4'—C5'179.68 (13)
C3—C4—C5—C60.5 (2)C3'—C4'—C5'—C6'0.6 (2)
C2—C1—C6—C50.5 (2)C2'—C1'—C6'—C5'0.4 (2)
C2—C1—C6—C7179.66 (14)C2'—C1'—C6'—C7'179.20 (13)
C4—C5—C6—C10.9 (2)C4'—C5'—C6'—C1'0.5 (2)
C4—C5—C6—C7179.26 (14)C4'—C5'—C6'—C7'179.00 (14)
C8—O1—C7—O21.3 (2)C8'—O1'—C7'—O2'0.4 (2)
C8—O1—C7—C6178.60 (13)C8'—O1'—C7'—C6'179.34 (12)
C1—C6—C7—O22.3 (2)C1'—C6'—C7'—O2'5.3 (2)
C5—C6—C7—O2177.53 (15)C5'—C6'—C7'—O2'175.17 (15)
C1—C6—C7—O1177.65 (13)C1'—C6'—C7'—O1'174.96 (13)
C5—C6—C7—O12.5 (2)C5'—C6'—C7'—O1'4.60 (19)
C7—O1—C8—C9156.81 (13)C7'—O1'—C8'—C9'166.85 (12)
O1—C8—C9—Cl162.71 (15)O1'—C8'—C9'—Cl1'66.44 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.952.793.6234 (18)147
C2—H2···O3i0.952.503.318 (2)145
C4—H4···O20.952.403.223 (2)144
C5—H5···O2ii0.952.423.205 (2)140
C5—H5···O10.952.392.7112 (19)100
C9—H9B···O2iii0.992.553.526 (2)167
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H8ClNO4
Mr229.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)103
a, b, c (Å)4.9404 (10), 21.618 (5), 18.325 (4)
β (°) 90.441 (3)
V3)1957.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerRigaku SPIDER
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.862, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
18618, 4466, 3781
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.00
No. of reflections4466
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.23

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1'0.952.793.6234 (18)147
C2'—H2'···O3'i0.952.503.318 (2)145
C4'—H4'···O20.952.403.223 (2)144
C5—H5···O2'ii0.952.423.205 (2)140
C9—H9B···O2'iii0.992.553.526 (2)167
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Science Foundation of the Health Department of Jiangsu Province, China (No. H200934).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Xie, M.-H., Zou, P., Liu, Y.-L. & He, Y.-J. (2009). Acta Cryst. E65, o3096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, A.-Y., Qian, B., Min, J. & Fang, Q.-X. (1995). J. Shanxi Normal Univ. (Nat. Sci. Ed.), 23, 44–47.  CAS Google Scholar
First citationZhang, Z.-S., Wu, J.-G. & Deng, R.-W. (1990). J. Lanzhou Univ. (Nat. Sci. Ed.), 26, 69–75.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds