organic compounds
9-(4-Chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the crystal of the title compound, C21H15ClNO2+·CF3SO3−, adjacent cations are linked through C—H⋯π and π–π interactions [centroid–centroid distance = 3.987 (2) Å], and neighboring cations and anions via C—H⋯O and C—F⋯π interactions. The acridine ring system and benzene ring are oriented at a dihedral angle of 1.0 (1)° while the carboxyl group is twisted at an angle of 85.0 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are either parallel or inclined at an angle of 78.2 (1)° in the crystal structure.
Related literature
For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810039541/xu5039sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810039541/xu5039Isup2.hkl
4-Chlorophenylacridine-9-carboxylate was synthesized by esterification of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 4-chlorophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(4-chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 488–489 K).
H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
The long-known
of 9-(phenoxycarbonyl)-10-methylacridinium salts has been used as chemiluminescent indicators and labels that are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In continuing our investigations on the latter aspect, we synthesized 9-(4-chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose is presented here.In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0412 (3) Å and 0.0034 (3) Å, the acridine and benzene ring systems are almost parallel (are oriented at a dihedral angle of 1.0 (1)°). The carboxyl group is twisted at an angle of 85.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 78.2 (1)° in the crystal lattice.
In the π (Table 1, Fig. 2) and π-π (Table 3, Fig.2) contacts, and the cations and neighboring anions via C–H···O (Table 1, Figs. 1 and 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006). The C–H···π (Takahashi et al., 2001), C–F···π (Dorn et al., 2005) and π–π (Hunter et al., 2001) interactions should be of an attractive nature. The is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.
the adjacent cations are linked by C–H···For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O interactions are represented by dashed lines. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 2, –y + 1, –z + 1; (ii) –x + 3/2, y – 1/2, –z + 1/2; (iii) x – 1, y, z; (iv) –x + 1, –y + 1, –z + 1; (v) –x + 1, –y + 2, –z + 1.] |
C21H15ClNO2+·CF3SO3− | F(000) = 1016 |
Mr = 497.87 | Dx = 1.524 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1665 reflections |
a = 13.3025 (11) Å | θ = 3.0–29.1° |
b = 8.6750 (9) Å | µ = 0.33 mm−1 |
c = 19.6191 (18) Å | T = 295 K |
β = 106.577 (10)° | Plate, yellow |
V = 2169.9 (4) Å3 | 0.35 × 0.28 × 0.06 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2679 reflections with I > 2σ(I) |
Radiation source: Enhanced (Mo) X-ray Source | Rint = 0.031 |
Graphite monochromator | θmax = 25.1°, θmin = 3.2° |
Detector resolution: 10.4002 pixels mm-1 | h = −15→15 |
ω scans | k = −10→8 |
11162 measured reflections | l = −23→23 |
3777 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0386P)2 + 1.4339P] where P = (Fo2 + 2Fc2)/3 |
3777 reflections | (Δ/σ)max < 0.001 |
299 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C21H15ClNO2+·CF3SO3− | V = 2169.9 (4) Å3 |
Mr = 497.87 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.3025 (11) Å | µ = 0.33 mm−1 |
b = 8.6750 (9) Å | T = 295 K |
c = 19.6191 (18) Å | 0.35 × 0.28 × 0.06 mm |
β = 106.577 (10)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2679 reflections with I > 2σ(I) |
11162 measured reflections | Rint = 0.031 |
3777 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.24 e Å−3 |
3777 reflections | Δρmin = −0.29 e Å−3 |
299 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6412 (3) | 0.7757 (4) | 0.51159 (16) | 0.0551 (8) | |
H1 | 0.5968 | 0.8280 | 0.5327 | 0.066* | |
C2 | 0.7459 (3) | 0.7893 (4) | 0.53941 (18) | 0.0655 (9) | |
H2 | 0.7736 | 0.8503 | 0.5794 | 0.079* | |
C3 | 0.8127 (3) | 0.7105 (4) | 0.50748 (19) | 0.0642 (9) | |
H3 | 0.8848 | 0.7193 | 0.5274 | 0.077* | |
C4 | 0.7761 (2) | 0.6220 (4) | 0.44874 (17) | 0.0545 (8) | |
H4 | 0.8226 | 0.5731 | 0.4284 | 0.065* | |
C5 | 0.4792 (3) | 0.3888 (4) | 0.27537 (17) | 0.0610 (9) | |
H5 | 0.5241 | 0.3355 | 0.2551 | 0.073* | |
C6 | 0.3742 (3) | 0.3699 (5) | 0.2497 (2) | 0.0827 (12) | |
H6 | 0.3480 | 0.3034 | 0.2116 | 0.099* | |
C7 | 0.3035 (3) | 0.4472 (5) | 0.2787 (2) | 0.0811 (12) | |
H7 | 0.2316 | 0.4327 | 0.2597 | 0.097* | |
C8 | 0.3403 (2) | 0.5423 (4) | 0.33414 (19) | 0.0610 (9) | |
H8 | 0.2933 | 0.5927 | 0.3536 | 0.073* | |
C9 | 0.4901 (2) | 0.6658 (3) | 0.42070 (14) | 0.0407 (7) | |
N10 | 0.62580 (17) | 0.5155 (3) | 0.35967 (12) | 0.0408 (5) | |
C11 | 0.5976 (2) | 0.6831 (3) | 0.45086 (14) | 0.0408 (7) | |
C12 | 0.6666 (2) | 0.6045 (3) | 0.41855 (15) | 0.0416 (7) | |
C13 | 0.4494 (2) | 0.5676 (3) | 0.36378 (15) | 0.0426 (7) | |
C14 | 0.5202 (2) | 0.4893 (3) | 0.33286 (14) | 0.0421 (7) | |
C15 | 0.4160 (2) | 0.7658 (3) | 0.44662 (15) | 0.0451 (7) | |
O16 | 0.39162 (15) | 0.7040 (2) | 0.50208 (10) | 0.0497 (5) | |
O17 | 0.3831 (2) | 0.8846 (3) | 0.41934 (13) | 0.0785 (8) | |
C18 | 0.3180 (2) | 0.7867 (3) | 0.52827 (14) | 0.0410 (7) | |
C19 | 0.2135 (2) | 0.7596 (4) | 0.49788 (15) | 0.0503 (8) | |
H19 | 0.1910 | 0.6928 | 0.4594 | 0.060* | |
C20 | 0.1421 (2) | 0.8339 (4) | 0.52579 (16) | 0.0566 (8) | |
H20 | 0.0706 | 0.8176 | 0.5063 | 0.068* | |
C21 | 0.1776 (3) | 0.9314 (4) | 0.58220 (15) | 0.0535 (8) | |
C22 | 0.2823 (3) | 0.9565 (4) | 0.61275 (15) | 0.0558 (8) | |
H22 | 0.3049 | 1.0220 | 0.6516 | 0.067* | |
C23 | 0.3544 (2) | 0.8829 (3) | 0.58496 (15) | 0.0484 (7) | |
H23 | 0.4259 | 0.8987 | 0.6045 | 0.058* | |
Cl24 | 0.08737 (9) | 1.02661 (14) | 0.61618 (5) | 0.0951 (4) | |
C25 | 0.6984 (2) | 0.4487 (4) | 0.32249 (17) | 0.0568 (8) | |
H25A | 0.6590 | 0.4126 | 0.2763 | 0.085* | |
H25B | 0.7360 | 0.3641 | 0.3497 | 0.085* | |
H25C | 0.7473 | 0.5262 | 0.3173 | 0.085* | |
S26 | 0.99146 (6) | 0.51449 (9) | 0.33370 (4) | 0.0456 (2) | |
O27 | 0.91136 (17) | 0.6102 (2) | 0.28913 (11) | 0.0578 (6) | |
O28 | 0.96649 (17) | 0.4501 (3) | 0.39381 (11) | 0.0709 (7) | |
O29 | 1.09667 (17) | 0.5708 (3) | 0.34719 (12) | 0.0704 (7) | |
C30 | 0.9908 (3) | 0.3493 (4) | 0.27794 (18) | 0.0641 (9) | |
F31 | 0.89748 (18) | 0.2801 (2) | 0.25860 (13) | 0.0971 (7) | |
F32 | 1.01300 (19) | 0.3885 (3) | 0.21805 (11) | 0.0974 (8) | |
F33 | 1.06074 (19) | 0.2433 (3) | 0.30961 (12) | 0.0989 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.056 (2) | 0.0547 (19) | 0.0543 (19) | 0.0055 (16) | 0.0160 (16) | 0.0022 (16) |
C2 | 0.064 (2) | 0.065 (2) | 0.059 (2) | −0.0006 (19) | 0.0042 (18) | −0.0015 (17) |
C3 | 0.0434 (19) | 0.072 (2) | 0.071 (2) | 0.0002 (18) | 0.0048 (17) | 0.0125 (19) |
C4 | 0.0419 (19) | 0.0549 (19) | 0.069 (2) | 0.0081 (15) | 0.0189 (16) | 0.0107 (17) |
C5 | 0.057 (2) | 0.058 (2) | 0.076 (2) | −0.0016 (17) | 0.0320 (18) | −0.0180 (18) |
C6 | 0.063 (3) | 0.088 (3) | 0.098 (3) | −0.015 (2) | 0.024 (2) | −0.044 (2) |
C7 | 0.043 (2) | 0.094 (3) | 0.108 (3) | −0.013 (2) | 0.024 (2) | −0.034 (2) |
C8 | 0.0386 (18) | 0.065 (2) | 0.086 (2) | 0.0017 (16) | 0.0285 (17) | −0.0115 (19) |
C9 | 0.0458 (18) | 0.0348 (15) | 0.0479 (16) | 0.0071 (13) | 0.0235 (14) | 0.0073 (13) |
N10 | 0.0377 (13) | 0.0403 (13) | 0.0514 (13) | 0.0090 (11) | 0.0240 (11) | 0.0084 (11) |
C11 | 0.0454 (18) | 0.0338 (15) | 0.0455 (16) | 0.0060 (13) | 0.0167 (14) | 0.0081 (12) |
C12 | 0.0377 (17) | 0.0388 (16) | 0.0512 (17) | 0.0065 (13) | 0.0172 (13) | 0.0121 (14) |
C13 | 0.0396 (17) | 0.0387 (15) | 0.0554 (17) | 0.0060 (13) | 0.0227 (14) | 0.0039 (13) |
C14 | 0.0396 (17) | 0.0370 (15) | 0.0560 (17) | 0.0045 (13) | 0.0237 (14) | 0.0027 (13) |
C15 | 0.0490 (18) | 0.0407 (17) | 0.0517 (17) | 0.0095 (14) | 0.0239 (15) | 0.0049 (14) |
O16 | 0.0550 (13) | 0.0479 (12) | 0.0560 (12) | 0.0168 (10) | 0.0316 (10) | 0.0107 (9) |
O17 | 0.110 (2) | 0.0622 (15) | 0.0876 (17) | 0.0457 (15) | 0.0674 (15) | 0.0311 (13) |
C18 | 0.0443 (18) | 0.0428 (16) | 0.0401 (15) | 0.0089 (13) | 0.0188 (14) | 0.0044 (13) |
C19 | 0.053 (2) | 0.0585 (19) | 0.0414 (16) | −0.0012 (15) | 0.0157 (15) | −0.0035 (14) |
C20 | 0.0387 (18) | 0.081 (2) | 0.0514 (18) | 0.0058 (16) | 0.0144 (15) | 0.0060 (17) |
C21 | 0.057 (2) | 0.068 (2) | 0.0418 (16) | 0.0242 (17) | 0.0241 (15) | 0.0113 (15) |
C22 | 0.068 (2) | 0.057 (2) | 0.0411 (16) | 0.0115 (17) | 0.0140 (16) | −0.0056 (14) |
C23 | 0.0401 (17) | 0.0562 (19) | 0.0464 (16) | 0.0050 (15) | 0.0081 (14) | 0.0026 (15) |
Cl24 | 0.0976 (8) | 0.1281 (9) | 0.0771 (6) | 0.0595 (7) | 0.0531 (6) | 0.0170 (6) |
C25 | 0.0459 (19) | 0.069 (2) | 0.066 (2) | 0.0127 (16) | 0.0333 (16) | 0.0015 (16) |
S26 | 0.0369 (4) | 0.0554 (5) | 0.0466 (4) | −0.0024 (4) | 0.0151 (3) | −0.0039 (4) |
O27 | 0.0521 (13) | 0.0545 (13) | 0.0673 (14) | 0.0069 (11) | 0.0176 (11) | 0.0104 (11) |
O28 | 0.0590 (15) | 0.1053 (19) | 0.0566 (13) | 0.0177 (13) | 0.0296 (11) | 0.0210 (13) |
O29 | 0.0442 (13) | 0.0904 (17) | 0.0758 (15) | −0.0218 (12) | 0.0157 (11) | −0.0182 (13) |
C30 | 0.053 (2) | 0.069 (2) | 0.063 (2) | 0.0070 (19) | 0.0048 (17) | −0.0033 (18) |
F31 | 0.0796 (16) | 0.0704 (14) | 0.1195 (18) | −0.0186 (12) | −0.0069 (14) | −0.0203 (13) |
F32 | 0.1092 (19) | 0.130 (2) | 0.0568 (12) | 0.0208 (15) | 0.0297 (12) | −0.0186 (13) |
F33 | 0.0931 (17) | 0.0805 (15) | 0.1065 (17) | 0.0384 (13) | 0.0016 (14) | −0.0116 (13) |
C1—C2 | 1.349 (4) | C13—C14 | 1.428 (4) |
C1—C11 | 1.417 (4) | C15—O17 | 1.186 (3) |
C1—H1 | 0.9300 | C15—O16 | 1.334 (3) |
C2—C3 | 1.402 (5) | O16—C18 | 1.423 (3) |
C2—H2 | 0.9300 | C18—C23 | 1.364 (4) |
C3—C4 | 1.354 (5) | C18—C19 | 1.367 (4) |
C3—H3 | 0.9300 | C19—C20 | 1.384 (4) |
C4—C12 | 1.415 (4) | C19—H19 | 0.9300 |
C4—H4 | 0.9300 | C20—C21 | 1.366 (4) |
C5—C6 | 1.353 (5) | C20—H20 | 0.9300 |
C5—C14 | 1.407 (4) | C21—C22 | 1.368 (4) |
C5—H5 | 0.9300 | C21—Cl24 | 1.739 (3) |
C6—C7 | 1.401 (5) | C22—C23 | 1.386 (4) |
C6—H6 | 0.9300 | C22—H22 | 0.9300 |
C7—C8 | 1.341 (5) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C25—H25A | 0.9600 |
C8—C13 | 1.418 (4) | C25—H25B | 0.9600 |
C8—H8 | 0.9300 | C25—H25C | 0.9600 |
C9—C13 | 1.386 (4) | S26—O28 | 1.427 (2) |
C9—C11 | 1.391 (4) | S26—O29 | 1.434 (2) |
C9—C15 | 1.506 (4) | S26—O27 | 1.434 (2) |
N10—C12 | 1.367 (4) | S26—C30 | 1.801 (4) |
N10—C14 | 1.372 (3) | C30—F33 | 1.330 (4) |
N10—C25 | 1.485 (3) | C30—F31 | 1.333 (4) |
C11—C12 | 1.429 (4) | C30—F32 | 1.335 (4) |
C2—C1—C11 | 121.2 (3) | C5—C14—C13 | 118.9 (3) |
C2—C1—H1 | 119.4 | O17—C15—O16 | 125.0 (3) |
C11—C1—H1 | 119.4 | O17—C15—C9 | 122.7 (3) |
C1—C2—C3 | 119.3 (3) | O16—C15—C9 | 112.2 (2) |
C1—C2—H2 | 120.4 | C15—O16—C18 | 116.4 (2) |
C3—C2—H2 | 120.4 | C23—C18—C19 | 122.7 (3) |
C4—C3—C2 | 122.5 (3) | C23—C18—O16 | 118.8 (3) |
C4—C3—H3 | 118.8 | C19—C18—O16 | 118.3 (2) |
C2—C3—H3 | 118.8 | C18—C19—C20 | 118.3 (3) |
C3—C4—C12 | 119.6 (3) | C18—C19—H19 | 120.8 |
C3—C4—H4 | 120.2 | C20—C19—H19 | 120.8 |
C12—C4—H4 | 120.2 | C21—C20—C19 | 119.5 (3) |
C6—C5—C14 | 119.7 (3) | C21—C20—H20 | 120.3 |
C6—C5—H5 | 120.1 | C19—C20—H20 | 120.3 |
C14—C5—H5 | 120.1 | C20—C21—C22 | 121.8 (3) |
C5—C6—C7 | 122.2 (3) | C20—C21—Cl24 | 119.2 (3) |
C5—C6—H6 | 118.9 | C22—C21—Cl24 | 119.0 (2) |
C7—C6—H6 | 118.9 | C21—C22—C23 | 119.1 (3) |
C8—C7—C6 | 119.4 (3) | C21—C22—H22 | 120.4 |
C8—C7—H7 | 120.3 | C23—C22—H22 | 120.4 |
C6—C7—H7 | 120.3 | C18—C23—C22 | 118.6 (3) |
C7—C8—C13 | 121.5 (3) | C18—C23—H23 | 120.7 |
C7—C8—H8 | 119.3 | C22—C23—H23 | 120.7 |
C13—C8—H8 | 119.3 | N10—C25—H25A | 109.5 |
C13—C9—C11 | 121.7 (2) | N10—C25—H25B | 109.5 |
C13—C9—C15 | 118.9 (3) | H25A—C25—H25B | 109.5 |
C11—C9—C15 | 119.1 (3) | N10—C25—H25C | 109.5 |
C12—N10—C14 | 122.3 (2) | H25A—C25—H25C | 109.5 |
C12—N10—C25 | 118.6 (2) | H25B—C25—H25C | 109.5 |
C14—N10—C25 | 119.1 (2) | O28—S26—O29 | 115.20 (14) |
C9—C11—C1 | 122.9 (3) | O28—S26—O27 | 115.00 (13) |
C9—C11—C12 | 118.2 (3) | O29—S26—O27 | 115.57 (14) |
C1—C11—C12 | 118.9 (3) | O28—S26—C30 | 103.23 (17) |
N10—C12—C4 | 121.8 (3) | O29—S26—C30 | 102.62 (16) |
N10—C12—C11 | 119.6 (3) | O27—S26—C30 | 102.48 (14) |
C4—C12—C11 | 118.6 (3) | F33—C30—F31 | 107.0 (3) |
C9—C13—C8 | 122.9 (3) | F33—C30—F32 | 106.6 (3) |
C9—C13—C14 | 118.8 (3) | F31—C30—F32 | 106.6 (3) |
C8—C13—C14 | 118.3 (3) | F33—C30—S26 | 112.6 (2) |
N10—C14—C5 | 122.0 (2) | F31—C30—S26 | 112.0 (2) |
N10—C14—C13 | 119.1 (2) | F32—C30—S26 | 111.6 (3) |
C11—C1—C2—C3 | 0.1 (5) | C6—C5—C14—C13 | 1.1 (5) |
C1—C2—C3—C4 | 0.9 (5) | C9—C13—C14—N10 | −1.0 (4) |
C2—C3—C4—C12 | −1.3 (5) | C8—C13—C14—N10 | 178.3 (3) |
C14—C5—C6—C7 | −0.3 (6) | C9—C13—C14—C5 | 179.6 (3) |
C5—C6—C7—C8 | −0.6 (7) | C8—C13—C14—C5 | −1.1 (4) |
C6—C7—C8—C13 | 0.6 (6) | C13—C9—C15—O17 | −82.2 (4) |
C13—C9—C11—C1 | −176.2 (3) | C11—C9—C15—O17 | 92.9 (4) |
C15—C9—C11—C1 | 8.8 (4) | C13—C9—C15—O16 | 96.9 (3) |
C13—C9—C11—C12 | 4.3 (4) | C11—C9—C15—O16 | −88.0 (3) |
C15—C9—C11—C12 | −170.7 (2) | O17—C15—O16—C18 | 1.9 (4) |
C2—C1—C11—C9 | 179.9 (3) | C9—C15—O16—C18 | −177.1 (2) |
C2—C1—C11—C12 | −0.6 (4) | C15—O16—C18—C23 | −96.8 (3) |
C14—N10—C12—C4 | 175.5 (2) | C15—O16—C18—C19 | 86.8 (3) |
C25—N10—C12—C4 | −6.3 (4) | C23—C18—C19—C20 | 0.4 (4) |
C14—N10—C12—C11 | −4.7 (4) | O16—C18—C19—C20 | 176.7 (3) |
C25—N10—C12—C11 | 173.5 (2) | C18—C19—C20—C21 | 0.1 (5) |
C3—C4—C12—N10 | −179.4 (3) | C19—C20—C21—C22 | −0.9 (5) |
C3—C4—C12—C11 | 0.8 (4) | C19—C20—C21—Cl24 | 179.1 (2) |
C9—C11—C12—N10 | −0.1 (4) | C20—C21—C22—C23 | 1.1 (5) |
C1—C11—C12—N10 | −179.6 (2) | Cl24—C21—C22—C23 | −178.9 (2) |
C9—C11—C12—C4 | 179.7 (2) | C19—C18—C23—C22 | −0.2 (4) |
C1—C11—C12—C4 | 0.2 (4) | O16—C18—C23—C22 | −176.4 (2) |
C11—C9—C13—C8 | 177.0 (3) | C21—C22—C23—C18 | −0.6 (4) |
C15—C9—C13—C8 | −8.0 (4) | O28—S26—C30—F33 | −60.1 (3) |
C11—C9—C13—C14 | −3.8 (4) | O29—S26—C30—F33 | 60.0 (3) |
C15—C9—C13—C14 | 171.2 (2) | O27—S26—C30—F33 | −179.9 (3) |
C7—C8—C13—C9 | 179.5 (3) | O28—S26—C30—F31 | 60.5 (3) |
C7—C8—C13—C14 | 0.3 (5) | O29—S26—C30—F31 | −179.4 (2) |
C12—N10—C14—C5 | −175.4 (3) | O27—S26—C30—F31 | −59.2 (3) |
C25—N10—C14—C5 | 6.4 (4) | O28—S26—C30—F32 | 180.0 (2) |
C12—N10—C14—C13 | 5.2 (4) | O29—S26—C30—F32 | −60.0 (3) |
C25—N10—C14—C13 | −173.0 (2) | O27—S26—C30—F32 | 60.2 (3) |
C6—C5—C14—N10 | −178.3 (3) |
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O28i | 0.93 | 2.59 | 3.328 (5) | 136 |
C4—H4···O28 | 0.93 | 2.45 | 3.370 (4) | 171 |
C5—H5···O27ii | 0.93 | 2.39 | 3.258 (4) | 154 |
C6—H6···O29ii | 0.93 | 2.54 | 3.304 (5) | 140 |
C8—H8···O29iii | 0.93 | 2.59 | 3.332 (4) | 137 |
C19—H19···O29iii | 0.93 | 2.44 | 3.349 (4) | 165 |
C25—H25C···O27 | 0.96 | 2.51 | 3.387 (4) | 152 |
C25—H25B···Cg4iv | 0.96 | 2.65 | 3.519 (4) | 151 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C21H15ClNO2+·CF3SO3− |
Mr | 497.87 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 13.3025 (11), 8.6750 (9), 19.6191 (18) |
β (°) | 106.577 (10) |
V (Å3) | 2169.9 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.35 × 0.28 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11162, 3777, 2679 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.112, 1.08 |
No. of reflections | 3777 |
No. of parameters | 299 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.29 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O28i | 0.93 | 2.59 | 3.328 (5) | 136 |
C4—H4···O28 | 0.93 | 2.45 | 3.370 (4) | 171 |
C5—H5···O27ii | 0.93 | 2.39 | 3.258 (4) | 154 |
C6—H6···O29ii | 0.93 | 2.54 | 3.304 (5) | 140 |
C8—H8···O29iii | 0.93 | 2.59 | 3.332 (4) | 137 |
C19—H19···O29iii | 0.93 | 2.44 | 3.349 (4) | 165 |
C25—H25C···O27 | 0.96 | 2.51 | 3.387 (4) | 152 |
C25—H25B···Cg4iv | 0.96 | 2.65 | 3.519 (4) | 151 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1. |
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively. |
X | I | J | I···J | X···J | X–I···J |
C30 | F31 | Cg1ii | 3.570 (3) | 3.916 (4) | 94.4 (2) |
C30 | F32 | Cg1ii | 3.337 (3) | 3.916 (4) | 105.8 (2) |
C30 | F33 | Cg3ii | 3.387 (3) | 4.073 (4) | 111.9 (2) |
Symmetry code: (ii) -x + 3/2, y - 1/2, -z + 1/2. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
2 | 4v | 3.987 (2) | 2.96 (15) | 3.477 (2) | 1.951 (2) |
Symmetry code: (v) –x + 1, –y + 2, –z + 1. Notes: Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
Footnotes
‡to whom correspondence should be addressed
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant DS/8220-4-0087-0).
References
Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394. Web of Science CrossRef PubMed CAS Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. Web of Science CrossRef PubMed CAS Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008. Web of Science CrossRef PubMed CAS Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462–470. Web of Science CrossRef Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005). Acta Cryst. C61, o227–o230. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn. 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313–o1314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The long-known chemiluminescence of 9-(phenoxycarbonyl)-10-methylacridinium salts has been used as chemiluminescent indicators and labels that are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In continuing our investigations on the latter aspect, we synthesized 9-(4-chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose crystal structure is presented here.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0412 (3) Å and 0.0034 (3) Å, the acridine and benzene ring systems are almost parallel (are oriented at a dihedral angle of 1.0 (1)°). The carboxyl group is twisted at an angle of 85.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 78.2 (1)° in the crystal lattice.
In the crystal structure, the adjacent cations are linked by C–H···π (Table 1, Fig. 2) and π-π (Table 3, Fig.2) contacts, and the cations and neighboring anions via C–H···O (Table 1, Figs. 1 and 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006). The C–H···π (Takahashi et al., 2001), C–F···π (Dorn et al., 2005) and π–π (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.