metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-4,4′-Bi­pyridine-κ2N:N′)bis­­[bis­­(N,N-di­methyl­di­thio­carbamato-κ2S,S′)zinc(II)]

aFaculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo Zhejiang 315211, People's Republic of China
*Correspondence e-mail: lixing@nbu.edu.cn

(Received 29 September 2010; accepted 20 October 2010; online 23 October 2010)

The title dinuclear ZnII complex, [Zn2(C3H6NS2)4(C10H8N2)], is centrosymmetric; the mid-point of the C—C bond linking the two pyridine rings is located on an inversion center. The pyridine N atom coordinates to the ZnII cation, which is also chelated by two dimethyl­dithio­carbamate anions, giving a trigonal-bipyramidal ZnNS4 geometry. Weak inter­molecular C—H⋯S hydrogen bonding is present in the crystal structure.

Related literature

Dialkyl­dithio­carbamates have strong metal-binding properties as well as biological functions, see: Jian et al. (2002[Jian, F., Bei, F., Zhao, P., Wang, X., Fun, H. K. & Chinnakali, K. (2002). J. Coord. Chem. 55, 429-437.]); Arora et al. (2003[Arora, A., Sud, D., Sharma, J. R. & Arora, C. L. (2003). Asia J. Chem. 15, 715-719.]); Hogarth & Richards (2006[Hogarth, G. & Richards, I. (2006). Inorg. Chim. Acta, 359, 1335-1338.]). For related zinc(II) dithio­carbamate compounds, see: Lai et al. (2002[Lai, C.-S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596-600.]); Chen et al. (2006[Chen, D., Lai, C.-S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]); Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C3H6NS2)4(C10H8N2)]

  • Mr = 767.76

  • Monoclinic, P 21 /c

  • a = 8.0490 (8) Å

  • b = 13.8770 (14) Å

  • c = 14.8134 (14) Å

  • β = 100.070 (1)°

  • V = 1629.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 173 K

  • 0.34 × 0.26 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.540, Tmax = 0.770

  • 14059 measured reflections

  • 3754 independent reflections

  • 3205 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.04

  • 3754 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.95 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.064 (2)
Zn1—S1 2.5909 (9)
Zn1—S2 2.3488 (9)
Zn1—S3 2.3495 (8)
Zn1—S4 2.6239 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯S3i 0.95 2.86 3.782 (3) 164
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dialkyldithiocarbamates, (R2dtc) (where R is an alkyl group such as methyl, ethyl or propyl), have strong metal-binding properties as well as biological functions (Jian et al., 2002; Arora et al., 2003; Hogarth & Richards, 2006). Crystal engineering studies of zinc(II) dithiocarbamates (-S2CNR2) are less well developed (Lai et al., 2002; Chen et al., 2006; Benson et al., 2007), this is likely due to the stronger chelating ability of the dithiocarbamate ligand which tends to preclude incorporation of multiple bridging ligands within the Zn atom coordination sphere. Here, we report the crystal structure of the title zinc complex with 4,4'-bipy and dimethyldithiocarbamate (Me2dtc), [Zn2(C3H6NS2)4(C10H8N2)], (I).

Complex (I) is a binuclear structure, in which Zn1A is symmetrical component related by Zn1 (Symmetry code: -x, y + 1/2, -z + 3/2), and the two Zn2+ ions possess the same coordination environment (Fig. 1). The Zn2+ ion adopts a distorted square-pyramidal coordination geometry comprising two S,S'- bidentate dimethyldithiocarbamate (Me2dtc) ligands, one N atom from 4,4'-bipy ligand, the N atom in the apical site, Zn—O distances ranging from 2.349 to 2.624 Å and Cd –N distance being 2.064 Å. In the crystal, the molecules are generate to a one-dimensional chain, which is further extended into two-dimensional supramolecular network via weak C—H···S contacts (Fig. 2), and finally assembled into three-dimensional supramolecular network by C—H···π interactions (Fig. 3).

Related literature top

Dialkyldithiocarbamates have strong metal-binding properties as well as biological functions, see: Jian et al. (2002); Arora et al. (2003); Hogarth & Richards (2006). For related zinc(II) dithiocarbamate compounds, see: Lai et al. (2002); Chen et al. (2006); Benson et al. (2007).

Experimental top

Tetramethylthiuram monosulfide (5.0 mg, 0.024 mmol) dissolved in N,N-dimethylformamide (DMF) (2 ml) was mixed with a DMF solution (1 ml) of 4,4'-bipy (2.38 mg, 0.012 mmol) and stirred for 20 min at room temperature. A DMF solution (0.2 ml) of Zn(NO3)2.6H2O (3.57 mg, 0.012 mmol) was then added dropwise and the mixture was allowed to react for 15 min. The solution was left at room temperature to allow slow evaporation. After a few days, pale yellow block crystals of (I) were obtained from the mother liquor.

Refinement top

H atoms were placed in calculated positions and treated using a riding-model approximation with C–H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Structure description top

Dialkyldithiocarbamates, (R2dtc) (where R is an alkyl group such as methyl, ethyl or propyl), have strong metal-binding properties as well as biological functions (Jian et al., 2002; Arora et al., 2003; Hogarth & Richards, 2006). Crystal engineering studies of zinc(II) dithiocarbamates (-S2CNR2) are less well developed (Lai et al., 2002; Chen et al., 2006; Benson et al., 2007), this is likely due to the stronger chelating ability of the dithiocarbamate ligand which tends to preclude incorporation of multiple bridging ligands within the Zn atom coordination sphere. Here, we report the crystal structure of the title zinc complex with 4,4'-bipy and dimethyldithiocarbamate (Me2dtc), [Zn2(C3H6NS2)4(C10H8N2)], (I).

Complex (I) is a binuclear structure, in which Zn1A is symmetrical component related by Zn1 (Symmetry code: -x, y + 1/2, -z + 3/2), and the two Zn2+ ions possess the same coordination environment (Fig. 1). The Zn2+ ion adopts a distorted square-pyramidal coordination geometry comprising two S,S'- bidentate dimethyldithiocarbamate (Me2dtc) ligands, one N atom from 4,4'-bipy ligand, the N atom in the apical site, Zn—O distances ranging from 2.349 to 2.624 Å and Cd –N distance being 2.064 Å. In the crystal, the molecules are generate to a one-dimensional chain, which is further extended into two-dimensional supramolecular network via weak C—H···S contacts (Fig. 2), and finally assembled into three-dimensional supramolecular network by C—H···π interactions (Fig. 3).

Dialkyldithiocarbamates have strong metal-binding properties as well as biological functions, see: Jian et al. (2002); Arora et al. (2003); Hogarth & Richards (2006). For related zinc(II) dithiocarbamate compounds, see: Lai et al. (2002); Chen et al. (2006); Benson et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molcular structure of (I) showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Two-dimensional supramolecular framework for (I) by C—H···S interactions (orange dashed lines).
[Figure 3] Fig. 3. Unit-cell contents for (I) viewed in projection down the b axis.
(µ-4,4'-Bipyridine-κ2N:N')bis[bis(N,N- dimethyldithiocarbamato-κ2S,S')zinc(II)] top
Crystal data top
[Zn2(C3H6NS2)4(C10H8N2)]F(000) = 788
Mr = 767.76Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14059 reflections
a = 8.0490 (8) Åθ = 2.0–27.5°
b = 13.8770 (14) ŵ = 2.01 mm1
c = 14.8134 (14) ÅT = 173 K
β = 100.070 (1)°Block, yellow
V = 1629.1 (3) Å30.34 × 0.26 × 0.13 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3754 independent reflections
Radiation source: fine-focus sealed tube3205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.540, Tmax = 0.770k = 1815
14059 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0365P)2 + 3.8184P]
where P = (Fo2 + 2Fc2)/3
3754 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 1.95 e Å3
Crystal data top
[Zn2(C3H6NS2)4(C10H8N2)]V = 1629.1 (3) Å3
Mr = 767.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0490 (8) ŵ = 2.01 mm1
b = 13.8770 (14) ÅT = 173 K
c = 14.8134 (14) Å0.34 × 0.26 × 0.13 mm
β = 100.070 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3754 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3205 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.770Rint = 0.044
14059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 1.21 e Å3
3754 reflectionsΔρmin = 1.95 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13314 (4)0.27435 (3)0.24330 (2)0.02256 (11)
S10.08181 (9)0.16003 (5)0.10290 (5)0.02256 (11)
S20.12799 (10)0.31820 (6)0.15575 (6)0.02636 (18)
S30.39861 (9)0.33093 (6)0.22187 (5)0.02260 (17)
S40.21808 (10)0.41611 (6)0.35942 (6)0.02694 (18)
C10.0291 (4)0.1060 (2)0.3154 (2)0.0286 (7)
H1A0.08870.10490.25410.034*
C20.0689 (4)0.0385 (2)0.3764 (2)0.0292 (7)
H2A0.15620.00690.35700.035*
C30.0183 (4)0.0363 (2)0.46632 (19)0.0183 (6)
C40.1429 (4)0.1065 (2)0.4901 (2)0.0236 (6)
H4A0.20650.10840.55040.028*
C50.1731 (4)0.1731 (2)0.4255 (2)0.0235 (6)
H5A0.25680.22090.44340.028*
C60.1905 (5)0.1389 (3)0.0636 (3)0.0444 (10)
H6A0.07510.11360.05030.067*
H6B0.21230.16580.12570.067*
H6C0.27060.08670.05910.067*
C70.3640 (5)0.2736 (4)0.0185 (3)0.0495 (11)
H7A0.40420.28950.03850.074*
H7B0.45140.23750.05910.074*
H7C0.33870.33320.04890.074*
C80.0971 (4)0.2285 (2)0.0785 (2)0.0230 (6)
C90.6095 (5)0.5119 (3)0.2449 (3)0.0372 (8)
H9A0.59710.46090.19850.056*
H9B0.72110.50720.28360.056*
H9C0.59760.57500.21470.056*
C100.4667 (5)0.5812 (3)0.3652 (3)0.0362 (8)
H10A0.36680.57230.39390.054*
H10B0.45700.64210.33120.054*
H10C0.56800.58250.41270.054*
C110.3763 (4)0.4248 (2)0.2965 (2)0.0206 (6)
N10.0906 (3)0.17348 (17)0.33906 (17)0.0203 (5)
N20.2105 (3)0.2147 (2)0.0027 (2)0.0331 (7)
N30.4789 (3)0.50091 (19)0.30182 (18)0.0255 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02293 (17)0.02255 (18)0.02164 (18)0.00291 (12)0.00229 (12)0.00392 (12)
S10.02293 (17)0.02255 (18)0.02164 (18)0.00291 (12)0.00229 (12)0.00392 (12)
S20.0227 (4)0.0276 (4)0.0287 (4)0.0040 (3)0.0042 (3)0.0005 (3)
S30.0212 (3)0.0237 (4)0.0230 (4)0.0016 (3)0.0042 (3)0.0034 (3)
S40.0300 (4)0.0249 (4)0.0284 (4)0.0040 (3)0.0119 (3)0.0024 (3)
C10.0389 (18)0.0250 (16)0.0183 (15)0.0113 (13)0.0045 (13)0.0017 (12)
C20.0391 (18)0.0238 (16)0.0216 (15)0.0152 (14)0.0032 (13)0.0036 (12)
C30.0251 (14)0.0133 (13)0.0171 (13)0.0003 (11)0.0055 (11)0.0020 (11)
C40.0269 (15)0.0259 (16)0.0167 (14)0.0071 (12)0.0002 (11)0.0008 (12)
C50.0240 (14)0.0245 (16)0.0217 (15)0.0074 (12)0.0032 (12)0.0016 (12)
C60.039 (2)0.065 (3)0.0268 (18)0.0130 (19)0.0011 (15)0.0150 (18)
C70.0289 (19)0.072 (3)0.043 (2)0.0039 (19)0.0056 (17)0.006 (2)
C80.0222 (14)0.0263 (16)0.0213 (15)0.0054 (12)0.0057 (11)0.0024 (12)
C90.0364 (18)0.036 (2)0.043 (2)0.0150 (15)0.0175 (16)0.0078 (16)
C100.042 (2)0.0242 (17)0.045 (2)0.0088 (15)0.0146 (16)0.0106 (15)
C110.0202 (13)0.0212 (14)0.0190 (14)0.0016 (11)0.0004 (11)0.0035 (11)
N10.0254 (12)0.0168 (12)0.0186 (12)0.0027 (10)0.0034 (10)0.0014 (9)
N20.0236 (13)0.0464 (18)0.0279 (15)0.0042 (12)0.0005 (11)0.0005 (13)
N30.0268 (13)0.0219 (13)0.0290 (14)0.0045 (10)0.0082 (11)0.0022 (11)
Geometric parameters (Å, º) top
Zn1—N12.064 (2)C5—H5A0.9500
Zn1—S12.5909 (9)C6—N21.467 (5)
Zn1—S22.3488 (9)C6—H6A0.9800
Zn1—S32.3495 (8)C6—H6B0.9800
Zn1—S42.6239 (9)C6—H6C0.9800
S1—C81.710 (3)C7—N21.468 (5)
S2—C81.738 (3)C7—H7A0.9800
S3—C111.738 (3)C7—H7B0.9800
S4—C111.708 (3)C7—H7C0.9800
C1—N11.345 (4)C8—N21.331 (4)
C1—C21.378 (4)C9—N31.466 (4)
C1—H1A0.9500C9—H9A0.9800
C2—C31.393 (4)C9—H9B0.9800
C2—H2A0.9500C9—H9C0.9800
C3—C41.398 (4)C10—N31.471 (4)
C3—C3i1.483 (6)C10—H10A0.9800
C4—C51.383 (4)C10—H10B0.9800
C4—H4A0.9500C10—H10C0.9800
C5—N11.335 (4)C11—N31.334 (4)
N1—Zn1—S2108.37 (7)H6B—C6—H6C109.5
N1—Zn1—S3125.72 (7)N2—C7—H7A109.5
S2—Zn1—S3125.87 (3)N2—C7—H7B109.5
N1—Zn1—S196.55 (7)H7A—C7—H7B109.5
S2—Zn1—S173.36 (3)N2—C7—H7C109.5
S3—Zn1—S196.74 (3)H7A—C7—H7C109.5
N1—Zn1—S496.52 (7)H7B—C7—H7C109.5
S2—Zn1—S4105.85 (3)N2—C8—S1121.7 (3)
S3—Zn1—S472.49 (3)N2—C8—S2120.2 (3)
S1—Zn1—S4166.41 (3)S1—C8—S2118.10 (18)
C8—S1—Zn180.77 (11)N3—C9—H9A109.5
C8—S2—Zn187.75 (11)N3—C9—H9B109.5
C11—S3—Zn188.10 (10)H9A—C9—H9B109.5
C11—S4—Zn180.15 (10)N3—C9—H9C109.5
N1—C1—C2122.7 (3)H9A—C9—H9C109.5
N1—C1—H1A118.6H9B—C9—H9C109.5
C2—C1—H1A118.6N3—C10—H10A109.5
C1—C2—C3120.4 (3)N3—C10—H10B109.5
C1—C2—H2A119.8H10A—C10—H10B109.5
C3—C2—H2A119.8N3—C10—H10C109.5
C2—C3—C4116.4 (3)H10A—C10—H10C109.5
C2—C3—C3i122.1 (3)H10B—C10—H10C109.5
C4—C3—C3i121.5 (3)N3—C11—S4122.4 (2)
C5—C4—C3119.8 (3)N3—C11—S3119.9 (2)
C5—C4—H4A120.1S4—C11—S3117.64 (17)
C3—C4—H4A120.1C5—N1—C1117.4 (3)
N1—C5—C4123.2 (3)C5—N1—Zn1123.2 (2)
N1—C5—H5A118.4C1—N1—Zn1119.4 (2)
C4—C5—H5A118.4C8—N2—C6121.9 (3)
N2—C6—H6A109.5C8—N2—C7121.8 (3)
N2—C6—H6B109.5C6—N2—C7116.3 (3)
H6A—C6—H6B109.5C11—N3—C9123.2 (3)
N2—C6—H6C109.5C11—N3—C10121.8 (3)
H6A—C6—H6C109.5C9—N3—C10115.0 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S3ii0.952.863.782 (3)164
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C3H6NS2)4(C10H8N2)]
Mr767.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.0490 (8), 13.8770 (14), 14.8134 (14)
β (°) 100.070 (1)
V3)1629.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.34 × 0.26 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.540, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
14059, 3754, 3205
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.04
No. of reflections3754
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.95

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.064 (2)Zn1—S32.3495 (8)
Zn1—S12.5909 (9)Zn1—S42.6239 (9)
Zn1—S22.3488 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S3i0.952.863.782 (3)164
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (20971075), the `Qianjiang Talent' Projects of Zhejiang Province (2009R10032), the Program for Innovative Research Teams of Ningbo Novel Photoelectric Materials and Devices (2009B21007) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationArora, A., Sud, D., Sharma, J. R. & Arora, C. L. (2003). Asia J. Chem. 15, 715–719.  CAS Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, D., Lai, C.-S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationHogarth, G. & Richards, I. (2006). Inorg. Chim. Acta, 359, 1335–1338.  Web of Science CSD CrossRef CAS Google Scholar
First citationJian, F., Bei, F., Zhao, P., Wang, X., Fun, H. K. & Chinnakali, K. (2002). J. Coord. Chem. 55, 429–437.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C.-S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds