organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Pyridin-4-yl)isophthalic acid

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: zhangqingfu@foxmail.com

(Received 29 September 2010; accepted 3 October 2010; online 23 October 2010)

In the title compound, C13H9NO4, the two carb­oxy­lic groups and the benzene ring are approximately co-planar with a maximum atomic deviation 0.175 (4) Å, while the pyridine ring is oriented at a dihedral angle of 31.07 (18)° with respect to the benzene ring. In the crystal, mol­ecules are linked by O—H⋯O, O—H⋯N and weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular framework.

Related literature

For background to carb­oxy­lic acids as supra­molecular synthons, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]); Thalladi et al. (1996[Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9NO4

  • Mr = 243.21

  • Orthorhombic, F d d 2

  • a = 15.5362 (16) Å

  • b = 37.371 (3) Å

  • c = 7.1716 (9) Å

  • V = 4163.9 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.988

  • 4224 measured reflections

  • 1004 independent reflections

  • 879 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.04

  • 1004 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 1.78 2.558 (3) 157
O3—H3A⋯O2ii 0.82 1.91 2.620 (3) 144
C10—H10⋯O1iii 0.93 2.57 3.491 (4) 172
Symmetry codes: (i) [-x+{\script{7\over 4}}, y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [x-{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: SMART (Siemens, 1996[Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxylic acid is an interesting supramolecular synthon, widely used to construct supramolecular array with one to three different dimensions via hydrogen bonds (Desiraju, 1995; Thalladi et al., 1996). In order to explore this area, the structure of the title compound, 5-(pyridin-4-yl)isophthalic acid, is reported herein.

As shown in Fig.1, the two carboxylic groups and the phenyl ring system in the title compound are almost planar with the maximum deviation 0.175Å for atom O2 in the carboxylic group. However, the pyridine ring and the phenyl ring is not coplanar, with the dihedral angle 31.07°. This may be due to intermolecular O—H···N hydrogen-bonding interactions.

In the crystal structure, the dicarboxylic acid molecules are linked by intermolecular O—H···N, O—H···O and C—H···O hydrogen bonding interactions into a three-dimensional framework (Fig. 2).

Related literature top

For background to carboxylic acids as supramolecular synthons, see: Desiraju (1995); Thalladi et al. (1996).

Experimental top

The commercially available title compound, 5-(pyridin-4-yl)isophthalic acid, was recrystallized from an aqueous solution.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). As no significant anomalous scatterings, Friedel pairs were merged.

Structure description top

Carboxylic acid is an interesting supramolecular synthon, widely used to construct supramolecular array with one to three different dimensions via hydrogen bonds (Desiraju, 1995; Thalladi et al., 1996). In order to explore this area, the structure of the title compound, 5-(pyridin-4-yl)isophthalic acid, is reported herein.

As shown in Fig.1, the two carboxylic groups and the phenyl ring system in the title compound are almost planar with the maximum deviation 0.175Å for atom O2 in the carboxylic group. However, the pyridine ring and the phenyl ring is not coplanar, with the dihedral angle 31.07°. This may be due to intermolecular O—H···N hydrogen-bonding interactions.

In the crystal structure, the dicarboxylic acid molecules are linked by intermolecular O—H···N, O—H···O and C—H···O hydrogen bonding interactions into a three-dimensional framework (Fig. 2).

For background to carboxylic acids as supramolecular synthons, see: Desiraju (1995); Thalladi et al. (1996).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound.
5-(Pyridin-4-yl)isophthalic acid top
Crystal data top
C13H9NO4F(000) = 2016
Mr = 243.21Dx = 1.552 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1601 reflections
a = 15.5362 (16) Åθ = 2.8–26.5°
b = 37.371 (3) ŵ = 0.12 mm1
c = 7.1716 (9) ÅT = 296 K
V = 4163.9 (8) Å3Block, colorless
Z = 160.30 × 0.20 × 0.10 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
1004 independent reflections
Radiation source: fine-focus sealed tube879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 188
Tmin = 0.966, Tmax = 0.988k = 4438
4224 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0701P)2 + 2.9125P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1004 reflectionsΔρmax = 0.33 e Å3
164 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (3)
Crystal data top
C13H9NO4V = 4163.9 (8) Å3
Mr = 243.21Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 15.5362 (16) ŵ = 0.12 mm1
b = 37.371 (3) ÅT = 296 K
c = 7.1716 (9) Å0.30 × 0.20 × 0.10 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
1004 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
879 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.988Rint = 0.045
4224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
1004 reflectionsΔρmin = 0.21 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70913 (15)0.16593 (6)0.0729 (5)0.0455 (7)
O20.81725 (15)0.13320 (6)0.0349 (5)0.0401 (7)
H2A0.83540.15280.06780.060*
O30.45574 (15)0.10618 (6)0.3114 (4)0.0450 (8)
H3A0.40680.10540.35410.068*
O40.45297 (14)0.04779 (6)0.3757 (4)0.0451 (8)
N10.85168 (17)0.05737 (7)0.1930 (5)0.0351 (7)
C10.74454 (19)0.13706 (8)0.0469 (5)0.0290 (8)
C20.4902 (2)0.07358 (8)0.3152 (6)0.0294 (8)
C30.70358 (19)0.10312 (8)0.1149 (5)0.0265 (7)
C40.74860 (19)0.07115 (8)0.1188 (5)0.0274 (8)
H40.80580.07070.08070.033*
C50.70940 (18)0.03966 (8)0.1790 (5)0.0257 (7)
C60.62393 (19)0.04072 (8)0.2376 (5)0.0283 (8)
H60.59660.01980.27550.034*
C70.57949 (19)0.07292 (8)0.2395 (5)0.0270 (8)
C80.6192 (2)0.10389 (8)0.1779 (5)0.0268 (8)
H80.58910.12540.17880.032*
C90.7591 (2)0.00577 (8)0.1821 (5)0.0276 (8)
C100.8478 (2)0.00577 (8)0.2122 (6)0.0330 (9)
H100.87720.02720.22820.040*
C110.8915 (2)0.02631 (9)0.2179 (6)0.0374 (9)
H110.95050.02620.23990.045*
C120.7669 (2)0.05810 (9)0.1627 (6)0.0361 (9)
H120.73970.08000.14500.043*
C130.7191 (2)0.02726 (8)0.1570 (5)0.0319 (8)
H130.66010.02840.13640.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (14)0.0232 (12)0.074 (2)0.0034 (10)0.0125 (14)0.0062 (14)
O20.0330 (12)0.0211 (11)0.0664 (18)0.0048 (10)0.0166 (13)0.0045 (11)
O30.0301 (12)0.0342 (13)0.071 (2)0.0072 (10)0.0199 (13)0.0063 (14)
O40.0318 (13)0.0342 (13)0.069 (2)0.0040 (10)0.0164 (13)0.0055 (13)
N10.0337 (15)0.0266 (14)0.045 (2)0.0059 (12)0.0011 (14)0.0036 (14)
C10.0239 (15)0.0255 (17)0.037 (2)0.0015 (13)0.0017 (14)0.0042 (15)
C20.0261 (15)0.0287 (17)0.033 (2)0.0007 (13)0.0011 (15)0.0030 (15)
C30.0240 (15)0.0243 (15)0.031 (2)0.0011 (12)0.0009 (14)0.0007 (14)
C40.0202 (15)0.0279 (16)0.034 (2)0.0013 (12)0.0025 (14)0.0003 (14)
C50.0241 (15)0.0239 (15)0.0289 (18)0.0014 (12)0.0013 (14)0.0020 (15)
C60.0255 (16)0.0251 (16)0.034 (2)0.0024 (13)0.0025 (15)0.0008 (14)
C70.0238 (15)0.0254 (16)0.032 (2)0.0003 (12)0.0006 (15)0.0006 (14)
C80.0233 (15)0.0234 (15)0.034 (2)0.0032 (12)0.0020 (14)0.0008 (15)
C90.0275 (16)0.0253 (16)0.030 (2)0.0031 (13)0.0064 (14)0.0026 (15)
C100.0252 (15)0.0253 (16)0.048 (2)0.0004 (12)0.0006 (16)0.0026 (16)
C110.0269 (17)0.0345 (19)0.051 (3)0.0037 (14)0.0009 (17)0.0042 (17)
C120.0347 (18)0.0246 (16)0.049 (3)0.0007 (13)0.0011 (18)0.0024 (16)
C130.0277 (16)0.0259 (15)0.042 (2)0.0008 (13)0.0018 (16)0.0041 (15)
Geometric parameters (Å, º) top
O1—C11.225 (4)C5—C61.393 (4)
O2—C11.281 (4)C5—C91.483 (4)
O2—H2A0.8200C6—C71.387 (4)
O3—C21.331 (4)C6—H60.9300
O3—H3A0.8200C7—C81.384 (4)
O4—C21.205 (4)C8—H80.9300
N1—C111.327 (4)C9—C101.395 (4)
N1—C121.335 (4)C9—C131.394 (5)
C1—C31.501 (4)C10—C111.378 (5)
C2—C71.489 (4)C10—H100.9300
C3—C41.385 (4)C11—H110.9300
C3—C81.386 (4)C12—C131.372 (5)
C4—C51.394 (4)C12—H120.9300
C4—H40.9300C13—H130.9300
C1—O2—H2A109.5C8—C7—C6120.0 (3)
C2—O3—H3A109.5C8—C7—C2121.2 (3)
C11—N1—C12120.0 (3)C6—C7—C2118.8 (3)
O1—C1—O2124.4 (3)C7—C8—C3120.6 (3)
O1—C1—C3120.3 (3)C7—C8—H8119.7
O2—C1—C3115.3 (3)C3—C8—H8119.7
O4—C2—O3123.1 (3)C10—C9—C13117.4 (3)
O4—C2—C7124.4 (3)C10—C9—C5121.1 (3)
O3—C2—C7112.5 (3)C13—C9—C5121.5 (3)
C4—C3—C8119.3 (3)C11—C10—C9119.4 (3)
C4—C3—C1121.4 (3)C11—C10—H10120.3
C8—C3—C1119.3 (3)C9—C10—H10120.3
C3—C4—C5120.9 (3)N1—C11—C10121.8 (3)
C3—C4—H4119.5N1—C11—H11119.1
C5—C4—H4119.5C10—C11—H11119.1
C6—C5—C4119.1 (3)N1—C12—C13121.5 (3)
C6—C5—C9121.1 (3)N1—C12—H12119.3
C4—C5—C9119.9 (3)C13—C12—H12119.3
C7—C6—C5120.2 (3)C12—C13—C9119.9 (3)
C7—C6—H6119.9C12—C13—H13120.0
C5—C6—H6119.9C9—C13—H13120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.782.558 (3)157
O3—H3A···O2ii0.821.912.620 (3)144
C10—H10···O1iii0.932.573.491 (4)172
Symmetry codes: (i) x+7/4, y+1/4, z1/4; (ii) x1/2, y, z+1/2; (iii) x+1/4, y+1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC13H9NO4
Mr243.21
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)296
a, b, c (Å)15.5362 (16), 37.371 (3), 7.1716 (9)
V3)4163.9 (8)
Z16
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4224, 1004, 879
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.04
No. of reflections1004
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.782.558 (3)157
O3—H3A···O2ii0.821.912.620 (3)144
C10—H10···O1iii0.932.573.491 (4)172
Symmetry codes: (i) x+7/4, y+1/4, z1/4; (ii) x1/2, y, z+1/2; (iii) x+1/4, y+1/4, z+1/4.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant No. 21001061), Liaocheng University Funds for Young Scientists (31805) and the Students Science and Technology Innovation Fund of Liaocheng University, China (SRT10058HX2).

References

First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens. (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationThalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds