organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­benzoic acid–4,4′-(propane-1,3-diyl)di­pyridine (1/1)

aDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei St, HsinChu, 30015 Taiwan, and bDepartment of General Education Center, Yuanpei University, No. 306, Yuanpei St, HsinChu, 30015 Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 3 October 2010; accepted 4 October 2010; online 9 October 2010)

In the crystal structure of the title compound, C13H14N2·C7H7NO2, the 4,4′-trimethyl­ene-dipyridine (TMDP) mol­ecule displays an approximately planar structure, the maximum atomic deviation excluding H atoms being 0.118 (2) Å and the dihedral angle between the pyridine rings 4.59 (10)°. The TMDP and 4-amino­benzoic acid (ABA) mol­ecules are linked by O—H⋯N and N—H⋯N hydrogen bonding, while ABA mol­ecules are linked by O—H⋯O hydrogen bonding. C—H⋯π interactions are also observed between the methyl­ene groups of TMDP mol­ecules and the benzene rings of ABA mol­ecules.

Related literature

For general background to 4-amino­benzoic acid as a ligand, see: Smith et al. (2005[Smith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. E61, o313-o316.]). For related structures, see: Lynch & McClenaghan (2001[Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830-832.]); Smith et al. (1997[Smith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727-736.], 2000[Smith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155-1156.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2·C7H7NO2

  • Mr = 335.40

  • Monoclinic, P 21 /c

  • a = 7.6417 (6) Å

  • b = 11.1708 (9) Å

  • c = 20.8775 (18) Å

  • β = 99.436 (2)°

  • V = 1758.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 297 K

  • 0.60 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • 9816 measured reflections

  • 3470 independent reflections

  • 2055 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.02

  • 3470 reflections

  • 238 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 (2) 1.81 (2) 2.632 (2) 179 (3)
N1—H1A⋯N3i 0.86 (2) 2.19 (2) 3.045 (3) 172 (2)
N1—H1B⋯O1ii 0.86 (1) 2.30 (1) 3.151 (3) 170 (1)
C13—H13ACg3iii 0.97 2.87 3.6606 (17) 139
C14—H14ACg3iv 0.97 2.88 3.6902 (17) 142
Symmetry codes: (i) x-1, y, z-1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-Aminobenzoic acid is a useful ligand for structure extension through both the carboxylic acid and amine functional groups, forming linear hydrogen bonding associations (Smith et al., 2005). Other related reports with 4-aminobenzoic acid and Lewis base such as 4-(4-nitrobenzyl)pyridine (Smith, 1997), 4-aminobenzonitrile (smith et al., 2000) and 2-amino-4-(4-pyridyl)pyrimidine (Lynch & McClenaghan, 2001).

We present here the crystal structure analysis of the 1:1 4-aminobenzoic acid and 4,4'-trimethylene-dipyridine adduct (Fig 1). In the title compound, C13H14N2.C7H7NO2, comprises one 4-aminobenzoic acid molecule and one 4,4'-trimethylene-dipyridine molecule, with no proton transfer. The dihedral angle between pyridyl rings for the molecule is 4.59 (10) °.

4-Aminobenzoic acid molecules are linked by O—H···N hydrogen bonds to 4,4'-trimethylene-dipyridine, forming linear hydrogen bonding. The structure exhibits a hydrogen-bonding network involving NH···N(prridyl) [N···N 3.043 (3) Å], amine and carboxylic N—H··· O [N···O 3.152 (3) Å] (Table 1 and Fig. 2), respectively.

This layer is consolidated by C—H···π stackings, the distance between C13—H13Aiii···Cg3(C1—C6) and C14—H14Aiv···Cg3 are 2.87 and 2.88 Å [symmetry code: (iii) = X,1/2-Y,1/2+Z; (iV) = 1+X, 1/2-Y, 1/2+Z].

Related literature top

For general background to 4-aminobenzoic acid as a ligand, see: Smith et al. (2005). For related structures, see: Lynch & McClenaghan (2001); Smith et al. (1997, 2000).

Experimental top

The 4-aminobenzoic acid (137 mg, 1.0 mmol) and 4,4'-trimethylene-dipyridine (198 mg, 1.0 mmol) were dissolved in 20 ml methanol-water (1:1), the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube after one week at room temperature, and colorless transparent crystals formed (yield 50.22%).

Refinement top

Water H and amino H atoms were located in a difference Fourier map and were refined isotropically with the distance constraints of O—H = 0.820±0.001 and N—H = 0.860±0.001 Å. Other H atoms were positioned geometrically with C—H = 0.93 (aromatic) and 0.97 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

4-Aminobenzoic acid is a useful ligand for structure extension through both the carboxylic acid and amine functional groups, forming linear hydrogen bonding associations (Smith et al., 2005). Other related reports with 4-aminobenzoic acid and Lewis base such as 4-(4-nitrobenzyl)pyridine (Smith, 1997), 4-aminobenzonitrile (smith et al., 2000) and 2-amino-4-(4-pyridyl)pyrimidine (Lynch & McClenaghan, 2001).

We present here the crystal structure analysis of the 1:1 4-aminobenzoic acid and 4,4'-trimethylene-dipyridine adduct (Fig 1). In the title compound, C13H14N2.C7H7NO2, comprises one 4-aminobenzoic acid molecule and one 4,4'-trimethylene-dipyridine molecule, with no proton transfer. The dihedral angle between pyridyl rings for the molecule is 4.59 (10) °.

4-Aminobenzoic acid molecules are linked by O—H···N hydrogen bonds to 4,4'-trimethylene-dipyridine, forming linear hydrogen bonding. The structure exhibits a hydrogen-bonding network involving NH···N(prridyl) [N···N 3.043 (3) Å], amine and carboxylic N—H··· O [N···O 3.152 (3) Å] (Table 1 and Fig. 2), respectively.

This layer is consolidated by C—H···π stackings, the distance between C13—H13Aiii···Cg3(C1—C6) and C14—H14Aiv···Cg3 are 2.87 and 2.88 Å [symmetry code: (iii) = X,1/2-Y,1/2+Z; (iV) = 1+X, 1/2-Y, 1/2+Z].

For general background to 4-aminobenzoic acid as a ligand, see: Smith et al. (2005). For related structures, see: Lynch & McClenaghan (2001); Smith et al. (1997, 2000).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing for the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
4-Aminobenzoic acid–4,4'-(propane-1,3-diyl)dipyridine (1/1) top
Crystal data top
C13H14N2·C7H7NO2F(000) = 712
Mr = 335.40Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2559 reflections
a = 7.6417 (6) Åθ = 2.7–25.5°
b = 11.1708 (9) ŵ = 0.08 mm1
c = 20.8775 (18) ÅT = 297 K
β = 99.436 (2)°Block, colorless
V = 1758.1 (2) Å30.60 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2055 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
φ and ω scansh = 99
9816 measured reflectionsk = 1213
3470 independent reflectionsl = 2125
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1063P]
where P = (Fo2 + 2Fc2)/3
3470 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.14 e Å3
3 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H14N2·C7H7NO2V = 1758.1 (2) Å3
Mr = 335.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6417 (6) ŵ = 0.08 mm1
b = 11.1708 (9) ÅT = 297 K
c = 20.8775 (18) Å0.60 × 0.20 × 0.17 mm
β = 99.436 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2055 reflections with I > 2σ(I)
9816 measured reflectionsRint = 0.034
3470 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
3470 reflectionsΔρmin = 0.18 e Å3
238 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2978 (2)0.32540 (12)0.38052 (6)0.0690 (4)
O20.3140 (2)0.13738 (12)0.41752 (7)0.0628 (4)
N10.0339 (3)0.04320 (17)0.12447 (8)0.0627 (5)
C10.1876 (2)0.24074 (15)0.25210 (9)0.0464 (5)
H10.22850.31920.25640.056*
C20.1117 (2)0.19990 (15)0.19194 (9)0.0470 (5)
H20.10270.25070.15630.056*
C30.0479 (2)0.08273 (15)0.18373 (8)0.0449 (4)
C40.0743 (2)0.00735 (15)0.23811 (9)0.0490 (5)
H40.04050.07260.23340.059*
C50.1492 (2)0.04932 (15)0.29817 (8)0.0450 (4)
H50.16300.00210.33370.054*
C60.2049 (2)0.16768 (15)0.30680 (8)0.0422 (4)
C70.2759 (3)0.21774 (17)0.37126 (9)0.0497 (5)
N20.4334 (2)0.23425 (14)0.53122 (8)0.0576 (4)
N30.8995 (3)0.22955 (18)1.01679 (8)0.0715 (5)
C80.4148 (3)0.35141 (18)0.53916 (10)0.0701 (6)
H80.36450.39660.50340.084*
C90.4660 (3)0.40938 (18)0.59730 (9)0.0643 (6)
H90.45180.49180.59990.077*
C100.5383 (2)0.34557 (15)0.65190 (8)0.0433 (4)
C110.5601 (3)0.22429 (16)0.64341 (9)0.0556 (5)
H110.61050.17710.67830.067*
C120.5072 (3)0.17298 (18)0.58325 (9)0.0599 (6)
H120.52410.09110.57890.072*
C130.5864 (2)0.40875 (15)0.71617 (8)0.0480 (5)
H13A0.47960.44540.72680.058*
H13B0.66800.47300.71070.058*
C140.6693 (2)0.33409 (16)0.77385 (8)0.0467 (5)
H14A0.78190.30240.76590.056*
H14B0.59220.26700.77910.056*
C150.6987 (3)0.40804 (16)0.83572 (8)0.0506 (5)
H15A0.77880.47300.82990.061*
H15B0.58620.44360.84100.061*
C160.7721 (2)0.34403 (17)0.89766 (9)0.0482 (5)
C170.7995 (3)0.22242 (19)0.90228 (10)0.0707 (6)
H170.77630.17500.86530.085*
C180.8616 (3)0.1705 (2)0.96176 (11)0.0794 (7)
H180.87760.08790.96300.095*
C190.8731 (3)0.3476 (2)1.01235 (10)0.0758 (7)
H190.89810.39261.05020.091*
C200.8115 (3)0.4068 (2)0.95554 (10)0.0671 (6)
H200.79610.48940.95590.080*
H1A0.062 (3)0.0975 (14)0.0954 (8)0.081 (8)*
H1B0.094 (2)0.0219 (10)0.1227 (10)0.078 (8)*
H2A0.350 (3)0.167 (2)0.4531 (6)0.103 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0985 (12)0.0443 (8)0.0564 (9)0.0035 (8)0.0104 (8)0.0094 (7)
O20.0919 (11)0.0506 (8)0.0408 (8)0.0001 (7)0.0047 (7)0.0014 (7)
N10.0825 (14)0.0561 (11)0.0444 (10)0.0045 (11)0.0043 (9)0.0057 (10)
C10.0511 (11)0.0361 (9)0.0506 (11)0.0010 (8)0.0043 (9)0.0006 (8)
C20.0559 (12)0.0445 (10)0.0398 (10)0.0029 (9)0.0052 (9)0.0050 (8)
C30.0484 (11)0.0443 (10)0.0411 (10)0.0031 (8)0.0046 (8)0.0053 (8)
C40.0589 (12)0.0366 (9)0.0509 (11)0.0040 (9)0.0068 (9)0.0032 (8)
C50.0511 (11)0.0414 (10)0.0418 (10)0.0007 (8)0.0052 (8)0.0043 (8)
C60.0434 (10)0.0399 (9)0.0414 (10)0.0032 (8)0.0016 (8)0.0026 (8)
C70.0536 (12)0.0464 (11)0.0469 (11)0.0037 (9)0.0012 (9)0.0016 (9)
N20.0750 (12)0.0542 (10)0.0403 (9)0.0031 (9)0.0007 (8)0.0030 (8)
N30.0816 (13)0.0886 (14)0.0413 (10)0.0064 (11)0.0011 (9)0.0041 (10)
C80.1005 (18)0.0587 (13)0.0430 (12)0.0066 (12)0.0118 (11)0.0034 (10)
C90.0930 (17)0.0475 (11)0.0469 (12)0.0052 (11)0.0046 (11)0.0028 (10)
C100.0459 (11)0.0444 (10)0.0388 (10)0.0034 (8)0.0047 (8)0.0008 (8)
C110.0769 (14)0.0484 (11)0.0390 (11)0.0047 (10)0.0019 (10)0.0027 (9)
C120.0829 (15)0.0472 (11)0.0473 (12)0.0006 (11)0.0038 (11)0.0031 (9)
C130.0558 (12)0.0454 (10)0.0414 (10)0.0013 (9)0.0042 (9)0.0026 (9)
C140.0506 (11)0.0498 (10)0.0390 (10)0.0000 (9)0.0050 (8)0.0014 (8)
C150.0573 (12)0.0524 (11)0.0411 (10)0.0008 (9)0.0052 (9)0.0024 (9)
C160.0488 (11)0.0576 (12)0.0380 (10)0.0023 (9)0.0062 (8)0.0029 (9)
C170.1055 (18)0.0632 (13)0.0407 (12)0.0134 (13)0.0039 (11)0.0054 (10)
C180.115 (2)0.0710 (14)0.0498 (14)0.0199 (14)0.0069 (13)0.0050 (12)
C190.0960 (19)0.0853 (17)0.0408 (13)0.0093 (14)0.0048 (12)0.0106 (12)
C200.0840 (16)0.0632 (13)0.0495 (13)0.0069 (12)0.0026 (11)0.0086 (11)
Geometric parameters (Å, º) top
O1—C71.225 (2)C9—H90.9300
O2—C71.316 (2)C10—C111.380 (2)
O2—H2A0.819 (15)C10—C131.507 (2)
N1—C31.365 (2)C11—C121.379 (3)
N1—H1A0.860 (16)C11—H110.9300
N1—H1B0.858 (13)C12—H120.9300
C1—C21.372 (2)C13—C141.515 (2)
C1—C61.392 (2)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.398 (2)C14—C151.519 (2)
C2—H20.9300C14—H14A0.9700
C3—C41.401 (2)C14—H14B0.9700
C4—C51.373 (2)C15—C161.503 (2)
C4—H40.9300C15—H15A0.9700
C5—C61.392 (2)C15—H15B0.9700
C5—H50.9300C16—C171.376 (3)
C6—C71.476 (2)C16—C201.387 (3)
N2—C121.329 (2)C17—C181.382 (3)
N2—C81.330 (2)C17—H170.9300
N3—C181.316 (3)C18—H180.9300
N3—C191.335 (3)C19—C201.373 (3)
C8—C91.375 (3)C19—H190.9300
C8—H80.9300C20—H200.9300
C9—C101.381 (2)
C7—O2—H2A112.9 (18)C10—C11—H11120.0
C3—N1—H1A115.9 (15)N2—C12—C11123.50 (18)
C3—N1—H1B118.4 (15)N2—C12—H12118.2
H1A—N1—H1B120 (2)C11—C12—H12118.2
C2—C1—C6121.66 (16)C10—C13—C14117.31 (15)
C2—C1—H1119.2C10—C13—H13A108.0
C6—C1—H1119.2C14—C13—H13A108.0
C1—C2—C3120.68 (17)C10—C13—H13B108.0
C1—C2—H2119.7C14—C13—H13B108.0
C3—C2—H2119.7H13A—C13—H13B107.2
N1—C3—C2120.86 (17)C13—C14—C15111.15 (15)
N1—C3—C4121.59 (17)C13—C14—H14A109.4
C2—C3—C4117.54 (16)C15—C14—H14A109.4
C5—C4—C3121.20 (16)C13—C14—H14B109.4
C5—C4—H4119.4C15—C14—H14B109.4
C3—C4—H4119.4H14A—C14—H14B108.0
C4—C5—C6121.04 (16)C16—C15—C14117.08 (16)
C4—C5—H5119.5C16—C15—H15A108.0
C6—C5—H5119.5C14—C15—H15A108.0
C5—C6—C1117.71 (16)C16—C15—H15B108.0
C5—C6—C7122.47 (16)C14—C15—H15B108.0
C1—C6—C7119.81 (16)H15A—C15—H15B107.3
O1—C7—O2123.08 (17)C17—C16—C20115.43 (19)
O1—C7—C6122.41 (17)C17—C16—C15124.14 (17)
O2—C7—C6114.51 (16)C20—C16—C15120.40 (18)
C12—N2—C8116.41 (17)C16—C17—C18120.2 (2)
C18—N3—C19115.21 (19)C16—C17—H17119.9
N2—C8—C9123.57 (19)C18—C17—H17119.9
N2—C8—H8118.2N3—C18—C17124.6 (2)
C9—C8—H8118.2N3—C18—H18117.7
C8—C9—C10120.21 (18)C17—C18—H18117.7
C8—C9—H9119.9N3—C19—C20124.3 (2)
C10—C9—H9119.9N3—C19—H19117.9
C11—C10—C9116.17 (17)C20—C19—H19117.9
C11—C10—C13123.86 (17)C19—C20—C16120.3 (2)
C9—C10—C13119.96 (16)C19—C20—H20119.9
C12—C11—C10120.10 (18)C16—C20—H20119.9
C12—C11—H11120.0
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.82 (2)1.81 (2)2.632 (2)179 (3)
N1—H1A···N3i0.86 (2)2.19 (2)3.045 (3)172 (2)
N1—H1B···O1ii0.86 (1)2.30 (1)3.151 (3)170 (1)
C13—H13A···Cg3iii0.972.873.6606 (17)139
C14—H14A···Cg3iv0.972.883.6902 (17)142
Symmetry codes: (i) x1, y, z1; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14N2·C7H7NO2
Mr335.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)7.6417 (6), 11.1708 (9), 20.8775 (18)
β (°) 99.436 (2)
V3)1758.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9816, 3470, 2055
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.02
No. of reflections3470
No. of parameters238
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.819 (15)1.814 (15)2.632 (2)179 (3)
N1—H1A···N3i0.860 (16)2.190 (16)3.045 (3)172 (2)
N1—H1B···O1ii0.858 (13)2.303 (14)3.151 (3)169.7 (13)
C13—H13A···Cg3iii0.972.873.6606 (17)139
C14—H14A···Cg3iv0.972.883.6902 (17)142
Symmetry codes: (i) x1, y, z1; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by Yuanpei University.

References

First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830–832.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727–736.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155–1156.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. E61, o313–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds