metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­nickel(II) 4,4′-(1,2-dihy­dr­oxy­ethane-1,2-di­yl)dibenzoate monohydrate

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Agriculture, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 4 October 2010; accepted 6 October 2010; online 9 October 2010)

In the title compound, [Ni(H2O)6](C16H12O6)·H2O, the NiII cation is located on a mirror plane and is coordinated by six water mol­ecules, two of which are also located on the mirror plane, in a distorted octa­hedral geometry. The 4,4′-(1,2-dihy­droxy­ethane-1,2-di­yl)dibenzoate anion is centrosymmetric with the mid-point of the central ethane C—C bond located on an inversion center. The uncoordinated water mol­ecule is located on a mirror plane. Extensive O—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For metal-organic networks constructed from benzene–multicarboxyl­ate ligands, see: Wisser et al. (2008[Wisser, B., Chamayou, A. C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461-466.]); Sun et al. (2006[Sun, C. Y., Gao, S. & Jin, L. P. (2006). Eur. J. Inorg. Chem. pp. 2411-2421.]); Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]). For structures incorporating benzene-1,4-dicarboxyl­ate, see: Carton et al. (2007[Carton, A., Mesbah, A., Perrin, L. & François, M. (2007). Acta Cryst. E63, m948-m949.]); Manna et al. (2007[Manna, S. C., Zangrando, E., Ribas, J. & Chaudjuri, N. R. (2007). Dalton Trans. pp. 1383-1391.]); Banerjee et al. (2005[Banerjee, S., Lassahn, P. G., Janiak, C. & Ghosh, A. (2005). Polyhedron, 24, 2963-2971.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(H2O)6](C16H12O6)·H2O

  • Mr = 485.08

  • Monoclinic, P 21 /m

  • a = 6.0189 (12) Å

  • b = 20.436 (4) Å

  • c = 8.6096 (17) Å

  • β = 103.95 (3)°

  • V = 1027.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.21 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.751, Tmax = 0.816

  • 9071 measured reflections

  • 2120 independent reflections

  • 2024 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.184

  • S = 1.03

  • 2120 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H10⋯O1i 0.89 1.94 2.810 (6) 168
O1W—H1W⋯O1ii 0.84 1.87 2.684 (5) 162
O2W—H3W⋯O1 0.84 2.01 2.821 (6) 163
O2W—H4W⋯O2ii 0.84 1.83 2.667 (6) 174
O3W—H5W⋯O5Wiii 0.84 2.06 2.724 (10) 136
O3W—H6W⋯O1Wiv 0.84 1.98 2.783 (8) 161
O4W—H7W⋯O5Wv 0.84 2.23 3.017 (8) 157
O4W—H8W⋯O3vi 0.84 2.05 2.840 (6) 157
O5W—H9W⋯O2 0.84 1.95 2.776 (8) 168
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) x-1, y, z+1; (vi) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal-organic networks constructed by benzene-multicarboxylato ligands, have attracted a great deal of recent interest (Wisser et al., 2008; Sun et al., 2006; Janiak et al., 2003). Benzene-1,4-dicarboxylate with a 180° angle between the two carboxylic groups, can form short bridges via one carboxylato end and long bridges via the benzene ring, leading to a great variety of novel structures (Carton et al., 2007; Manna et al., 2007; Banerjee et al., 2005). Considering that in mind, our group select a derivative of the benzene-1,4-dicarboxylate named 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate to react with Ni(NO3)2 to obtain novel metal-organic complex.

In figure 1, the title compound (C16H12O6)[Ni6H2O].H2O is obtained under hydrothermal condition, which comprises one 4,4'-(1,2-dihydroxyethane-1,2 -diyl)dibenzoate anion, one [Ni6H2O]2+ cation and a solvent water molecule, of which the [Ni6H2O]2+ cation and solvent water is lying on mirror planes, and the anion is locating on an inversion center. the two carboxyl groups of the ligand are total deprotonated, indicated by a difference of the bond lengths, which are also lying in the plane of the benzene rings. and the NiII center is coordinated by six water molecules instead of the 4,4'-(1,2-dihydroxyethane- 1,2-diyl)dibenzoate ligand. the O—H···O hydrogen bonding interactions between the carboxyl and hydroxyl of the ligands build an infinite chain along a axis. the chains, [Ni6H2O]2+ cations and solvent water molecules was further linked by additional O—H···O hydrogen bonds, forming a three-dimensional network.

Related literature top

For metal-organic networks constructed from benzene–multicarboxylate ligands, see: Wisser et al. (2008); Sun et al. (2006); Janiak (2003). For structures incorporating benzene-1,4-dicarboxylate, see: Carton et al. (2007); Manna et al. (2007); Banerjee et al. (2005).

Experimental top

A solution of 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoic acid (0.5 mol, 0.15 g) and Ni(NO3)2 (0.5 mol, 0.14 g) and 20 ml water was stirred continuously, whose pH was adjusted to 7 by the addition of NaOH solution. The solution was then sealed in an autoclave equipped with a Teflon liner (20 ml) and heated at 373 K for 4 days. Crystals of the title compound were obtained by slow evaporation at room temperature.

Refinement top

H atoms bound to C atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 Å (aromatic) and 0.98 Å (CH) and with Uiso(H) = 1.2 Ueq(C). H atoms of hydroxyl group and water molecules were located in a difference Fourier map and refined as riding with O—H = 0.85+_0.01 Å and Uiso(H) = 1.5Ueq(O) for water O atoms and O—H = 0.89±0.01 Å and 1.2 Ueq(O) for hydroxyl.

Structure description top

Metal-organic networks constructed by benzene-multicarboxylato ligands, have attracted a great deal of recent interest (Wisser et al., 2008; Sun et al., 2006; Janiak et al., 2003). Benzene-1,4-dicarboxylate with a 180° angle between the two carboxylic groups, can form short bridges via one carboxylato end and long bridges via the benzene ring, leading to a great variety of novel structures (Carton et al., 2007; Manna et al., 2007; Banerjee et al., 2005). Considering that in mind, our group select a derivative of the benzene-1,4-dicarboxylate named 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate to react with Ni(NO3)2 to obtain novel metal-organic complex.

In figure 1, the title compound (C16H12O6)[Ni6H2O].H2O is obtained under hydrothermal condition, which comprises one 4,4'-(1,2-dihydroxyethane-1,2 -diyl)dibenzoate anion, one [Ni6H2O]2+ cation and a solvent water molecule, of which the [Ni6H2O]2+ cation and solvent water is lying on mirror planes, and the anion is locating on an inversion center. the two carboxyl groups of the ligand are total deprotonated, indicated by a difference of the bond lengths, which are also lying in the plane of the benzene rings. and the NiII center is coordinated by six water molecules instead of the 4,4'-(1,2-dihydroxyethane- 1,2-diyl)dibenzoate ligand. the O—H···O hydrogen bonding interactions between the carboxyl and hydroxyl of the ligands build an infinite chain along a axis. the chains, [Ni6H2O]2+ cations and solvent water molecules was further linked by additional O—H···O hydrogen bonds, forming a three-dimensional network.

For metal-organic networks constructed from benzene–multicarboxylate ligands, see: Wisser et al. (2008); Sun et al. (2006); Janiak (2003). For structures incorporating benzene-1,4-dicarboxylate, see: Carton et al. (2007); Manna et al. (2007); Banerjee et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound, with the atom-numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids (H atoms are represented by arbitrary spheres). [Symmetry codes: (i) -x, -y, -z; (ii) x, 0.5 - y, z.]
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound.
Hexaaquanickel(II) 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate monohydrate top
Crystal data top
[Ni(H2O)6](C16H12O6)·H2OF(000) = 508
Mr = 485.08Dx = 1.567 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 3600 reflections
a = 6.0189 (12) Åθ = 1.4–28°
b = 20.436 (4) ŵ = 1.01 mm1
c = 8.6096 (17) ÅT = 293 K
β = 103.95 (3)°Block, green
V = 1027.8 (4) Å30.30 × 0.25 × 0.21 mm
Z = 2
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2120 independent reflections
Radiation source: fine-focus sealed tube2024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 26.2°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 77
Tmin = 0.751, Tmax = 0.816k = 2525
9071 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.040P)2 + 10.P]
where P = (Fo2 + 2Fc2)/3
2120 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ni(H2O)6](C16H12O6)·H2OV = 1027.8 (4) Å3
Mr = 485.08Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.0189 (12) ŵ = 1.01 mm1
b = 20.436 (4) ÅT = 293 K
c = 8.6096 (17) Å0.30 × 0.25 × 0.21 mm
β = 103.95 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2120 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2024 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.816Rint = 0.036
9071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
2120 reflectionsΔρmin = 0.54 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.14235 (16)0.25000.95708 (11)0.0242 (3)
O1W0.2105 (8)0.25000.8578 (6)0.0279 (11)
H1W0.24880.21520.80650.042*
O2W0.1795 (7)0.1762 (3)0.8058 (6)0.0555 (14)
H3W0.29470.15840.78500.083*
H4W0.06310.17130.73010.083*
O3W0.4872 (10)0.25001.0567 (7)0.0504 (18)
H5W0.52460.25001.15720.076*
H6W0.60210.25001.01750.076*
O4W0.0917 (8)0.3180 (2)1.1214 (5)0.0439 (11)
H7W0.02010.31011.19180.066*
H8W0.04390.35091.06470.066*
O10.5811 (7)0.1431 (2)0.7095 (5)0.0438 (11)
O20.8274 (7)0.1532 (3)0.5570 (6)0.0559 (14)
O30.1710 (8)0.0731 (2)0.0238 (6)0.0478 (12)
H100.26660.09210.10560.072*
C10.6426 (10)0.1337 (3)0.5802 (8)0.0404 (15)
C20.4864 (9)0.0953 (3)0.4462 (7)0.0352 (13)
C30.2822 (10)0.0692 (3)0.4681 (8)0.0401 (14)
H10.23940.07650.56350.048*
C40.1421 (10)0.0323 (3)0.3473 (7)0.0397 (14)
H20.00510.01550.36210.048*
C50.2046 (10)0.0205 (3)0.2063 (7)0.0364 (14)
C60.5483 (10)0.0834 (3)0.3050 (8)0.0416 (15)
H40.68520.10040.29030.050*
C70.4090 (11)0.0465 (3)0.1839 (8)0.0432 (15)
H30.45200.03920.08860.052*
C80.0514 (10)0.0204 (3)0.0746 (7)0.0389 (14)
H90.07400.03840.11580.047*
O5W0.8270 (14)0.25000.3307 (9)0.097 (4)
H9W0.84550.21920.39710.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0219 (5)0.0290 (5)0.0213 (5)0.0000.0045 (3)0.000
O1W0.024 (2)0.026 (3)0.032 (3)0.0000.003 (2)0.000
O2W0.028 (2)0.076 (4)0.056 (3)0.008 (2)0.003 (2)0.036 (3)
O3W0.027 (3)0.099 (6)0.021 (3)0.0000.003 (2)0.000
O4W0.048 (2)0.045 (3)0.037 (2)0.002 (2)0.0068 (19)0.010 (2)
O10.036 (2)0.041 (2)0.045 (3)0.0026 (19)0.0069 (19)0.011 (2)
O20.032 (2)0.071 (3)0.058 (3)0.013 (2)0.002 (2)0.027 (3)
O30.050 (3)0.030 (2)0.052 (3)0.004 (2)0.010 (2)0.007 (2)
C10.033 (3)0.033 (3)0.045 (4)0.005 (3)0.012 (3)0.014 (3)
C20.029 (3)0.028 (3)0.039 (3)0.003 (2)0.010 (2)0.009 (2)
C30.038 (3)0.036 (3)0.040 (3)0.001 (3)0.003 (3)0.006 (3)
C40.036 (3)0.035 (3)0.041 (3)0.007 (3)0.006 (3)0.003 (3)
C50.035 (3)0.022 (3)0.041 (3)0.001 (2)0.013 (2)0.002 (2)
C60.031 (3)0.039 (3)0.047 (4)0.001 (3)0.005 (3)0.013 (3)
C70.039 (3)0.041 (3)0.041 (3)0.002 (3)0.007 (3)0.010 (3)
C80.036 (3)0.028 (3)0.044 (3)0.000 (2)0.009 (3)0.008 (3)
O5W0.062 (5)0.197 (12)0.033 (4)0.0000.015 (4)0.000
Geometric parameters (Å, º) top
Ni1—O2Wi2.039 (5)O3—H100.8851
Ni1—O2W2.039 (4)C1—C21.519 (7)
Ni1—O3W2.046 (6)C2—C61.376 (9)
Ni1—O4W2.058 (4)C2—C31.393 (9)
Ni1—O4Wi2.058 (4)C3—C41.392 (8)
Ni1—O1W2.090 (5)C3—H10.9300
O1W—H1W0.8400C4—C51.377 (9)
O2W—H3W0.8400C4—H20.9300
O2W—H4W0.8400C5—C71.395 (9)
O3W—H5W0.8400C5—C81.526 (7)
O3W—H6W0.8400C6—C71.393 (8)
O4W—H7W0.8400C6—H40.9300
O4W—H8W0.8398C7—H30.9300
O1—C11.269 (8)C8—C8ii1.531 (12)
O2—C11.242 (8)C8—H90.9800
O3—C81.422 (7)O5W—H9W0.8396
O2Wi—Ni1—O2W95.4 (3)O2—C1—C2117.2 (6)
O2Wi—Ni1—O3W90.66 (17)O1—C1—C2119.1 (6)
O2W—Ni1—O3W90.66 (17)C6—C2—C3119.2 (5)
O2Wi—Ni1—O4W89.8 (2)C6—C2—C1120.8 (6)
O2W—Ni1—O4W174.6 (2)C3—C2—C1120.0 (6)
O3W—Ni1—O4W90.87 (18)C4—C3—C2120.1 (6)
O2Wi—Ni1—O4Wi174.6 (2)C4—C3—H1119.9
O2W—Ni1—O4Wi89.8 (2)C2—C3—H1119.9
O3W—Ni1—O4Wi90.87 (18)C5—C4—C3120.5 (6)
O4W—Ni1—O4Wi85.0 (3)C5—C4—H2119.7
O2Wi—Ni1—O1W89.75 (16)C3—C4—H2119.7
O2W—Ni1—O1W89.75 (16)C4—C5—C7119.5 (5)
O3W—Ni1—O1W179.4 (2)C4—C5—C8120.4 (6)
O4W—Ni1—O1W88.68 (17)C7—C5—C8120.1 (6)
O4Wi—Ni1—O1W88.68 (17)C2—C6—C7121.0 (6)
Ni1—O1W—H1W109.7C2—C6—H4119.5
Ni1—O2W—H3W132.8C7—C6—H4119.5
Ni1—O2W—H4W112.6C6—C7—C5119.7 (6)
H3W—O2W—H4W111.1C6—C7—H3120.2
Ni1—O3W—H5W115.1C5—C7—H3120.2
Ni1—O3W—H6W133.0O3—C8—C5112.6 (5)
H5W—O3W—H6W111.9O3—C8—C8ii106.6 (7)
Ni1—O4W—H7W123.6C5—C8—C8ii112.0 (6)
Ni1—O4W—H8W103.2O3—C8—H9108.5
H7W—O4W—H8W114.1C5—C8—H9108.5
C8—O3—H10111.6C8ii—C8—H9108.5
O2—C1—O1123.7 (5)
O2—C1—C2—C60.5 (9)C3—C2—C6—C70.7 (9)
O1—C1—C2—C6179.2 (6)C1—C2—C6—C7177.9 (6)
O2—C1—C2—C3176.7 (6)C2—C6—C7—C50.6 (10)
O1—C1—C2—C32.0 (9)C4—C5—C7—C60.6 (9)
C6—C2—C3—C40.7 (9)C8—C5—C7—C6179.6 (5)
C1—C2—C3—C4178.0 (6)C4—C5—C8—O3126.7 (6)
C2—C3—C4—C50.8 (9)C7—C5—C8—O353.5 (8)
C3—C4—C5—C70.7 (9)C4—C5—C8—C8ii113.2 (8)
C3—C4—C5—C8179.6 (5)C7—C5—C8—C8ii66.6 (9)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H10···O1iii0.891.942.810 (6)168
O1W—H1W···O1iv0.841.872.684 (5)162
O2W—H3W···O10.842.012.821 (6)163
O2W—H4W···O2iv0.841.832.667 (6)174
O3W—H5W···O5Wv0.842.062.724 (10)136
O3W—H6W···O1Wvi0.841.982.783 (8)161
O4W—H7W···O5Wvii0.842.233.017 (8)157
O4W—H8W···O3viii0.842.052.840 (6)157
O5W—H9W···O20.841.952.776 (8)168
Symmetry codes: (iii) x+1, y, z+1; (iv) x1, y, z; (v) x, y, z+1; (vi) x+1, y, z; (vii) x1, y, z+1; (viii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(H2O)6](C16H12O6)·H2O
Mr485.08
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)6.0189 (12), 20.436 (4), 8.6096 (17)
β (°) 103.95 (3)
V3)1027.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.30 × 0.25 × 0.21
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.751, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
9071, 2120, 2024
Rint0.036
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.184, 1.03
No. of reflections2120
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.54

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H10···O1i0.891.942.810 (6)168.0
O1W—H1W···O1ii0.841.872.684 (5)162.3
O2W—H3W···O10.842.012.821 (6)162.6
O2W—H4W···O2ii0.841.832.667 (6)173.5
O3W—H5W···O5Wiii0.842.062.724 (10)135.9
O3W—H6W···O1Wiv0.841.982.783 (8)160.5
O4W—H7W···O5Wv0.842.233.017 (8)156.7
O4W—H8W···O3vi0.842.052.840 (6)157.1
O5W—H9W···O20.841.952.776 (8)168.2
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) x1, y, z+1; (vi) x, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge Guangdong Ocean University for supporting this work.

References

First citationBanerjee, S., Lassahn, P. G., Janiak, C. & Ghosh, A. (2005). Polyhedron, 24, 2963–2971.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarton, A., Mesbah, A., Perrin, L. & François, M. (2007). Acta Cryst. E63, m948–m949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationManna, S. C., Zangrando, E., Ribas, J. & Chaudjuri, N. R. (2007). Dalton Trans. pp. 1383–1391.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. Y., Gao, S. & Jin, L. P. (2006). Eur. J. Inorg. Chem. pp. 2411–2421.  Web of Science CSD CrossRef Google Scholar
First citationWisser, B., Chamayou, A. C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461–466.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds