organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1,3-Benzo­thia­zol-2-yl)-5-methyl-2-phenyl-1-propynyl-1H-pyrazol-3(2H)-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2010; accepted 8 October 2010; online 20 October 2010)

The title compound, C20H15N3OS, is a 1H-pyrazol-3(2H)-one having aromatic 4-(1,3-benzothia­zol-2-yl) and 2-phenyl substit­uents. The five-membered ring and the fused-ring system are close to planar, the r.m.s. deviations being 0.025 and 0.005 Å, respectively. The five-membered ring is aligned at 67.5 (1)° with respect to the phenyl ring and at 4.7 (1)° with respect to the fused-ring system. In the crystal, adjacent mol­ecules are linked through the acetyl­enic H atom by a C—H⋯O hydrogen bond into C(8) chains propagating in [010].

Related literature

For the structure of a similar compound, 4-(benzo[d]thia­zol-2-yl)-2-allyl-3-methyl-1-phenyl-1,2-dihydro­pyrazol-5-one, see: Chakibe et al. (2010[Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, o1096.]). For the structure of a related compound, (E)-4-(2,3-dihydro-1,3-benzothia­zol-2-yl­idene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakib et al. (2010[Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o2842.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3OS

  • Mr = 345.41

  • Orthorhombic, P 21 21 21

  • a = 4.8221 (1) Å

  • b = 9.3698 (2) Å

  • c = 37.6990 (9) Å

  • V = 1703.32 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.961

  • 10502 measured reflections

  • 3699 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 0.99

  • 3699 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1483 Friedel pairs

  • Flack parameter: 0.00 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.24 3.174 (3) 179
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

(E)-4-(2,3-Dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one is an amine that can under a nucleophilic substitution with organo bromides to form 2-substituted derivatives if tetra-n-butyl ammonium bromide is used as catalyst. In this study, the compound is reacted with propargyl bromide to yield the title compound (Scheme I, Fig. 1).

Related literature top

For the structure of a similar compound 4-(benzo[d]thiazol-2-yl)-2-allyl-3-methyl-1-phenyl-1,2-dihydropyrazol-5-one, see: Chakibe et al. (2010). For the structure of a related compound (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakib et al. (2010).

Experimental top

To a solution of (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (1 g, 3.25 mmol) in DMF (50 ml), was added sodium carbonate (2.5 g, 23 mmol), tetra-n-butyl ammonium bromide (0.15 g, 1 mmol) and propargyl bromide (5.5 g, 46 mmol). The mixture was stirred for 24 h at room temperature. The solid material was removed by filtration and the solution was evaporated under reduced. The residue was washed with dichloromethane and hexane, and the recrystallized from ethanol to afford the title compound as yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

Structure description top

(E)-4-(2,3-Dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one is an amine that can under a nucleophilic substitution with organo bromides to form 2-substituted derivatives if tetra-n-butyl ammonium bromide is used as catalyst. In this study, the compound is reacted with propargyl bromide to yield the title compound (Scheme I, Fig. 1).

For the structure of a similar compound 4-(benzo[d]thiazol-2-yl)-2-allyl-3-methyl-1-phenyl-1,2-dihydropyrazol-5-one, see: Chakibe et al. (2010). For the structure of a related compound (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakib et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H15N3OS at the 50% probability level; hydrogen atoms are drawn as arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
4-(1,3-Benzothiazol-2-yl)-5-methyl-2-phenyl-1-propynyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C20H15N3OSF(000) = 720
Mr = 345.41Dx = 1.347 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2503 reflections
a = 4.8221 (1) Åθ = 2.4–22.9°
b = 9.3698 (2) ŵ = 0.20 mm1
c = 37.6990 (9) ÅT = 293 K
V = 1703.32 (6) Å3Prism, yellow
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Bruker X8 APEXII
diffractometer
3699 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 56
Tmin = 0.923, Tmax = 0.961k = 1111
10502 measured reflectionsl = 4746
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3699 reflectionsΔρmax = 0.20 e Å3
227 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1483 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (9)
Crystal data top
C20H15N3OSV = 1703.32 (6) Å3
Mr = 345.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8221 (1) ŵ = 0.20 mm1
b = 9.3698 (2) ÅT = 293 K
c = 37.6990 (9) Å0.40 × 0.20 × 0.20 mm
Data collection top
Bruker X8 APEXII
diffractometer
3699 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3008 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.961Rint = 0.033
10502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.20 e Å3
S = 0.99Δρmin = 0.19 e Å3
3699 reflectionsAbsolute structure: Flack (1983), 1483 Friedel pairs
227 parametersAbsolute structure parameter: 0.00 (9)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55911 (13)0.45298 (6)0.105599 (16)0.04655 (17)
O10.9129 (4)0.52382 (15)0.16533 (4)0.0487 (4)
N10.5947 (4)0.6723 (2)0.06358 (5)0.0445 (4)
N21.1641 (4)0.85264 (18)0.14034 (5)0.0422 (4)
N31.1570 (4)0.73580 (18)0.16370 (5)0.0408 (4)
C10.3603 (5)0.4536 (3)0.06743 (6)0.0469 (5)
C20.1735 (6)0.3514 (3)0.05524 (7)0.0599 (7)
H20.14220.26800.06800.072*
C30.0366 (6)0.3767 (3)0.02398 (8)0.0681 (8)
H30.08940.30970.01550.082*
C40.0833 (6)0.4998 (3)0.00504 (8)0.0683 (8)
H40.01210.51420.01610.082*
C50.2662 (5)0.6015 (3)0.01643 (7)0.0593 (7)
H50.29610.68410.00330.071*
C60.4073 (5)0.5783 (3)0.04845 (6)0.0446 (5)
C70.6919 (5)0.6195 (2)0.09303 (6)0.0376 (5)
C80.9769 (5)0.6346 (2)0.14978 (5)0.0386 (5)
C90.8913 (4)0.6897 (2)0.11590 (5)0.0351 (4)
C101.0182 (4)0.8196 (2)0.11109 (5)0.0386 (5)
C111.0201 (6)0.9159 (3)0.07987 (6)0.0558 (7)
H11A0.98301.01190.08740.084*
H11B0.88000.88610.06340.084*
H11C1.19850.91200.06860.084*
C121.3789 (5)0.9610 (2)0.14413 (7)0.0479 (6)
H12A1.49650.93710.16410.057*
H12B1.49340.96200.12300.057*
C131.2600 (5)1.1024 (3)0.14956 (6)0.0494 (6)
C141.1643 (7)1.2142 (3)0.15376 (8)0.0657 (8)
H141.08731.30420.15710.079*
C151.2100 (5)0.7561 (2)0.20074 (5)0.0383 (5)
C161.0709 (5)0.8595 (3)0.21937 (7)0.0534 (6)
H160.94440.91890.20800.064*
C171.1218 (6)0.8741 (3)0.25519 (7)0.0625 (7)
H171.02930.94400.26810.075*
C181.3064 (6)0.7867 (3)0.27184 (7)0.0588 (7)
H181.33890.79730.29600.071*
C191.4434 (6)0.6842 (3)0.25322 (7)0.0629 (7)
H191.56930.62480.26470.075*
C201.3951 (5)0.6682 (3)0.21707 (6)0.0505 (6)
H201.48800.59830.20420.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0594 (3)0.0375 (3)0.0427 (3)0.0076 (3)0.0002 (3)0.0022 (2)
O10.0764 (10)0.0299 (8)0.0397 (9)0.0053 (8)0.0008 (9)0.0053 (6)
N10.0509 (11)0.0449 (11)0.0376 (10)0.0009 (9)0.0005 (9)0.0036 (8)
N20.0573 (11)0.0309 (9)0.0386 (11)0.0056 (8)0.0001 (9)0.0042 (8)
N30.0598 (12)0.0303 (9)0.0323 (10)0.0002 (8)0.0029 (9)0.0021 (8)
C10.0480 (12)0.0497 (13)0.0431 (13)0.0012 (11)0.0078 (10)0.0093 (11)
C20.0620 (15)0.0589 (17)0.0587 (17)0.0136 (13)0.0045 (13)0.0111 (13)
C30.0521 (14)0.086 (2)0.0662 (19)0.0125 (15)0.0019 (14)0.0292 (17)
C40.0551 (15)0.096 (2)0.0535 (17)0.0027 (16)0.0097 (13)0.0122 (15)
C50.0586 (15)0.0776 (19)0.0418 (15)0.0006 (14)0.0034 (12)0.0016 (13)
C60.0435 (12)0.0544 (14)0.0358 (12)0.0030 (11)0.0021 (10)0.0053 (10)
C70.0442 (11)0.0346 (11)0.0340 (12)0.0014 (9)0.0085 (9)0.0004 (9)
C80.0528 (13)0.0297 (10)0.0334 (12)0.0042 (9)0.0042 (9)0.0043 (8)
C90.0456 (11)0.0301 (10)0.0297 (10)0.0026 (9)0.0057 (9)0.0008 (8)
C100.0488 (12)0.0333 (10)0.0336 (12)0.0023 (8)0.0052 (9)0.0002 (9)
C110.0780 (17)0.0472 (14)0.0422 (14)0.0119 (12)0.0012 (12)0.0132 (10)
C120.0470 (12)0.0391 (12)0.0577 (15)0.0027 (10)0.0044 (11)0.0016 (11)
C130.0636 (15)0.0378 (13)0.0467 (15)0.0098 (12)0.0002 (12)0.0017 (10)
C140.093 (2)0.0388 (14)0.0652 (18)0.0028 (14)0.0063 (16)0.0001 (12)
C150.0451 (12)0.0360 (12)0.0339 (12)0.0026 (9)0.0016 (9)0.0021 (9)
C160.0570 (13)0.0545 (15)0.0487 (14)0.0157 (12)0.0105 (12)0.0128 (11)
C170.0676 (16)0.0679 (18)0.0519 (16)0.0054 (14)0.0002 (14)0.0231 (13)
C180.0733 (17)0.0678 (18)0.0353 (14)0.0125 (15)0.0049 (13)0.0038 (12)
C190.0728 (17)0.0678 (17)0.0479 (15)0.0121 (15)0.0133 (14)0.0063 (13)
C200.0628 (15)0.0459 (13)0.0428 (13)0.0117 (12)0.0012 (12)0.0030 (11)
Geometric parameters (Å, º) top
S1—C11.729 (2)C9—C101.374 (3)
S1—C71.752 (2)C10—C111.483 (3)
O1—C81.232 (2)C11—H11A0.9600
N1—C71.303 (3)C11—H11B0.9600
N1—C61.385 (3)C11—H11C0.9600
N2—C101.344 (3)C12—C131.458 (3)
N2—N31.405 (2)C12—H12A0.9700
N2—C121.458 (3)C12—H12B0.9700
N3—C81.389 (3)C13—C141.156 (4)
N3—C151.433 (3)C14—H140.9300
C1—C61.389 (3)C15—C201.362 (3)
C1—C21.393 (3)C15—C161.372 (3)
C2—C31.371 (4)C16—C171.379 (3)
C2—H20.9300C16—H160.9300
C3—C41.375 (4)C17—C181.362 (4)
C3—H30.9300C17—H170.9300
C4—C51.368 (4)C18—C191.361 (4)
C4—H40.9300C18—H180.9300
C5—C61.403 (3)C19—C201.391 (3)
C5—H50.9300C19—H190.9300
C7—C91.449 (3)C20—H200.9300
C8—C91.438 (3)
C1—S1—C788.55 (12)N2—C10—C9109.20 (18)
C7—N1—C6110.14 (19)N2—C10—C11120.51 (19)
C10—N2—N3108.77 (17)C9—C10—C11130.3 (2)
C10—N2—C12127.79 (18)C10—C11—H11A109.5
N3—N2—C12119.92 (19)C10—C11—H11B109.5
C8—N3—N2108.09 (17)H11A—C11—H11B109.5
C8—N3—C15124.80 (18)C10—C11—H11C109.5
N2—N3—C15120.19 (17)H11A—C11—H11C109.5
C6—C1—C2120.9 (2)H11B—C11—H11C109.5
C6—C1—S1109.94 (18)C13—C12—N2111.6 (2)
C2—C1—S1129.1 (2)C13—C12—H12A109.3
C3—C2—C1118.5 (3)N2—C12—H12A109.3
C3—C2—H2120.8C13—C12—H12B109.3
C1—C2—H2120.8N2—C12—H12B109.3
C2—C3—C4120.8 (3)H12A—C12—H12B108.0
C2—C3—H3119.6C14—C13—C12179.6 (3)
C4—C3—H3119.6C13—C14—H14180.0
C5—C4—C3121.9 (3)C20—C15—C16121.1 (2)
C5—C4—H4119.1C20—C15—N3118.5 (2)
C3—C4—H4119.1C16—C15—N3120.4 (2)
C4—C5—C6118.3 (3)C15—C16—C17118.9 (2)
C4—C5—H5120.8C15—C16—H16120.5
C6—C5—H5120.8C17—C16—H16120.5
N1—C6—C1115.4 (2)C18—C17—C16120.5 (3)
N1—C6—C5124.9 (2)C18—C17—H17119.7
C1—C6—C5119.7 (2)C16—C17—H17119.7
N1—C7—C9125.0 (2)C19—C18—C17120.2 (2)
N1—C7—S1115.93 (17)C19—C18—H18119.9
C9—C7—S1119.08 (16)C17—C18—H18119.9
O1—C8—N3123.5 (2)C18—C19—C20120.0 (3)
O1—C8—C9130.8 (2)C18—C19—H19120.0
N3—C8—C9105.66 (18)C20—C19—H19120.0
C10—C9—C8107.89 (19)C15—C20—C19119.2 (2)
C10—C9—C7128.25 (19)C15—C20—H20120.4
C8—C9—C7123.76 (19)C19—C20—H20120.4
C10—N2—N3—C86.4 (2)O1—C8—C9—C72.1 (4)
C12—N2—N3—C8166.84 (19)N3—C8—C9—C7177.20 (19)
C10—N2—N3—C15158.63 (19)N1—C7—C9—C101.5 (4)
C12—N2—N3—C1541.0 (3)S1—C7—C9—C10179.60 (17)
C7—S1—C1—C60.38 (17)N1—C7—C9—C8174.4 (2)
C7—S1—C1—C2179.8 (2)S1—C7—C9—C83.7 (3)
C6—C1—C2—C30.0 (4)N3—N2—C10—C96.0 (2)
S1—C1—C2—C3179.4 (2)C12—N2—C10—C9164.5 (2)
C1—C2—C3—C40.2 (4)N3—N2—C10—C11172.1 (2)
C2—C3—C4—C50.1 (4)C12—N2—C10—C1113.7 (3)
C3—C4—C5—C60.3 (4)C8—C9—C10—N23.4 (2)
C7—N1—C6—C11.1 (3)C7—C9—C10—N2173.0 (2)
C7—N1—C6—C5179.4 (2)C8—C9—C10—C11174.5 (2)
C2—C1—C6—N1179.1 (2)C7—C9—C10—C119.1 (4)
S1—C1—C6—N10.3 (2)C10—N2—C12—C1381.7 (3)
C2—C1—C6—C50.4 (3)N3—N2—C12—C13122.0 (2)
S1—C1—C6—C5179.83 (18)C8—N3—C15—C2081.6 (3)
C4—C5—C6—N1178.9 (2)N2—N3—C15—C20131.0 (2)
C4—C5—C6—C10.5 (4)C8—N3—C15—C1696.6 (3)
C6—N1—C7—C9179.6 (2)N2—N3—C15—C1650.7 (3)
C6—N1—C7—S11.4 (2)C20—C15—C16—C170.2 (4)
C1—S1—C7—N11.08 (18)N3—C15—C16—C17178.4 (2)
C1—S1—C7—C9179.36 (17)C15—C16—C17—C180.3 (4)
N2—N3—C8—O1175.2 (2)C16—C17—C18—C190.1 (4)
C15—N3—C8—O124.6 (3)C17—C18—C19—C200.0 (4)
N2—N3—C8—C94.2 (2)C16—C15—C20—C190.1 (4)
C15—N3—C8—C9154.8 (2)N3—C15—C20—C19178.3 (2)
O1—C8—C9—C10178.7 (2)C18—C19—C20—C150.0 (4)
N3—C8—C9—C100.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.243.174 (3)179
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H15N3OS
Mr345.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.8221 (1), 9.3698 (2), 37.6990 (9)
V3)1703.32 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
10502, 3699, 3008
Rint0.033
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 0.99
No. of reflections3699
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19
Absolute structureFlack (1983), 1483 Friedel pairs
Absolute structure parameter0.00 (9)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.243.174 (3)179
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o2842.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, o1096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds