organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,4R)-3-(tert-But­­oxy­carbon­yl)-2-(3-chloro­phen­yl)-1,3-thia­zolidine-4-carb­­oxy­lic acid monohydrate

aBioengineering Department, Zhejiang Traditional Chinese Medicine University, Hangzhou 310053, People's Republic of China
*Correspondence e-mail: songzhongcheng@gmail.com

(Received 14 October 2010; accepted 17 October 2010; online 23 October 2010)

In the title compound, C15H18ClNO4S·H2O, the thia­zolidine ring displays a half-chair conformation. In the crystal, the water mol­ecules are linked to the organic acid mol­ecules via inter­molecular O—H⋯O hydrogen bonds.

Related literature

For applications of thia­zolidine derivatives, see: Kallen (1971[Kallen, R. G. (1971). J. Am. Chem. Soc. 93, 6236-6248.]); Seki et al. (2004[Seki, M., Hatsuda, M., Mori, Y., Yoshida, S. I., Yamada, S. I. & Shimizu, T. (2004). Chem. Eur. J. 10, 6102-6110.]); Song et al. (2009[Song, Z.-C., Ma, G.-Y., Lv, P.-C., Li, H.-Q., Xiao, Z.-P. & Zhu, H.-L. (2009). Eur. J. Med. Chem. 44, 3903-3908.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18ClNO4S·H2O

  • Mr = 361.83

  • Monoclinic, P 21

  • a = 8.2460 (16) Å

  • b = 5.9660 (12) Å

  • c = 18.132 (4) Å

  • β = 99.81 (3)°

  • V = 879.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.932, Tmax = 0.948

  • 3417 measured reflections

  • 3182 independent reflections

  • 2169 reflections with I > 2σ(I)

  • Rint = 0.080

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.167

  • S = 1.03

  • 3182 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1451 Friedel pairs

  • Flack parameter: −0.11 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯O5i 0.82 1.80 2.620 (6) 177
O5—H5A⋯O3ii 0.85 2.20 2.890 (5) 139
O5—H5B⋯O3iii 0.85 2.37 2.827 (5) 114
Symmetry codes: (i) x-1, y-1, z; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The steric course of the reaction between L-cysteine and aldehydes deserved much attention because this reaction had been implicated in several biochemical processes (Kallen, 1971). An analogous condensation reaction constituted the first step in the syntheses of important natural products, such as penicillin and biotin (Seki et al., 2004). Therefore, thiazolidine derivatives have become especially noteworthy in recent years (Song et al. 2009). In the present work, the structure of the title new compound is reported.

The compound consists of a (2R,4R)-3-(tert-butoxycarbonyl)-2-(3-chlorophenyl)thiazolidine-4-carboxylic acid molecule and a water molecule of crystallization (Fig. 1). The torsion angles C12—O4—C11—O3, C12—O4—C11—N1, and N1—C1—C2—S1 are 3.2 (5), 5.5 (5), and 37.1 (5)°, respectively. The S1 atom is located 0.762 (6)Å from the least-squares plane defined by C2/C1/N1/C3. In the crystal structure, the (2R,4R)-3-(tert-butoxycarbonyl)-2- (3-chlorophenyl)thiazolidine-4-carboxylic acid molecules are linked by water molecules through intermolecular O–H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Related literature top

For applications of thiazolidine derivatives, see: Kallen (1971); Seki et al. (2004); Song et al. (2009).

Experimental top

Cysteine (0.121 g, 1.0 mmol) and appropriate aldehyde (1.0 mmol) in ethanol (25 ml) was stirred at room temperature for 8 h, and the solid separated was collected, washed with diethyl ether and dried to obtain (2RS,4R)-2-(3-chlorophenyl)thiazolidine-4-carboxylic acid (TCA). A mixture of TCA (1.0 mmol) and appropriate NaOH (10%, 1.0 mmol) in dioxane (25 ml) was stirred at ice-water temperature for 2 h. BOC2O (1.0 mmol) was added and stirred at ice-water temperature for 1 h and then at room temperature for 5 h. Most of the solvent was extracted and appropriate amount of water was added to adjust to neutral pH value. Ethyl acetate was added and extracted (50 ml), and washed with appropriate saturated aqueous solution of common salt, and dried with anhydrous magnesium sulfate. Solvent was extracted to dry to obtain whiter solids (2R,4R)-3-(tert-butoxycarbonyl)-2-(3-chlorophenyl)thiazolidine-4-carboxylic acid hydrate

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93–0.97 Å, O–H = 0.82–0.85 Å, and Uiso(H) = 1.2Ueq(C,O) or Uiso(H) = 1.5Ueq(methyl C).

Structure description top

The steric course of the reaction between L-cysteine and aldehydes deserved much attention because this reaction had been implicated in several biochemical processes (Kallen, 1971). An analogous condensation reaction constituted the first step in the syntheses of important natural products, such as penicillin and biotin (Seki et al., 2004). Therefore, thiazolidine derivatives have become especially noteworthy in recent years (Song et al. 2009). In the present work, the structure of the title new compound is reported.

The compound consists of a (2R,4R)-3-(tert-butoxycarbonyl)-2-(3-chlorophenyl)thiazolidine-4-carboxylic acid molecule and a water molecule of crystallization (Fig. 1). The torsion angles C12—O4—C11—O3, C12—O4—C11—N1, and N1—C1—C2—S1 are 3.2 (5), 5.5 (5), and 37.1 (5)°, respectively. The S1 atom is located 0.762 (6)Å from the least-squares plane defined by C2/C1/N1/C3. In the crystal structure, the (2R,4R)-3-(tert-butoxycarbonyl)-2- (3-chlorophenyl)thiazolidine-4-carboxylic acid molecules are linked by water molecules through intermolecular O–H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

For applications of thiazolidine derivatives, see: Kallen (1971); Seki et al. (2004); Song et al. (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounds with atom labels and the 30% probability displacement ellipsoids for H atoms.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(2R,4R)-3-(tert-Butoxycarbonyl)-2-(3-chlorophenyl)- 1,3-thiazolidine-4-carboxylic acid monohydrate top
Crystal data top
C15H18ClNO4S·H2OF(000) = 380
Mr = 361.83Dx = 1.367 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 8.2460 (16) Åθ = 9–12°
b = 5.9660 (12) ŵ = 0.36 mm1
c = 18.132 (4) ÅT = 293 K
β = 99.81 (3)°Block, colorless
V = 879.0 (3) Å30.20 × 0.17 × 0.15 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2169 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 25.3°, θmin = 1.1°
ω/2θ scansh = 09
Absorption correction: ψ scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.932, Tmax = 0.948l = 2121
3417 measured reflections3 standard reflections every 200 reflections
3182 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.2379P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3182 reflectionsΔρmax = 0.19 e Å3
208 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 1451 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (16)
Crystal data top
C15H18ClNO4S·H2OV = 879.0 (3) Å3
Mr = 361.83Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.2460 (16) ŵ = 0.36 mm1
b = 5.9660 (12) ÅT = 293 K
c = 18.132 (4) Å0.20 × 0.17 × 0.15 mm
β = 99.81 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2169 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSCOR; Higashi, 1995)
Rint = 0.080
Tmin = 0.932, Tmax = 0.9483 standard reflections every 200 reflections
3417 measured reflections intensity decay: 1%
3182 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.167Δρmax = 0.19 e Å3
S = 1.03Δρmin = 0.28 e Å3
3182 reflectionsAbsolute structure: Flack (1983), 1451 Friedel pairs
208 parametersAbsolute structure parameter: 0.11 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27417 (18)0.2513 (3)0.65551 (8)0.0556 (4)
Cl0.2514 (3)0.2819 (5)0.47181 (11)0.1051 (8)
N10.0494 (5)0.1770 (7)0.7725 (2)0.0353 (10)
O10.0704 (5)0.2937 (7)0.8136 (2)0.0621 (12)
C10.1971 (6)0.0662 (9)0.7899 (3)0.0379 (13)
H1A0.25630.16770.81850.045*
O20.2241 (5)0.1623 (7)0.8928 (2)0.0531 (11)
H2C0.19840.28050.91480.080*
C20.3015 (7)0.0154 (11)0.7147 (3)0.0519 (16)
H2A0.41630.00050.71950.062*
H2B0.26530.12220.69400.062*
O30.0636 (4)0.1875 (6)0.89459 (18)0.0422 (9)
C30.0548 (6)0.2640 (10)0.6970 (3)0.0415 (12)
H3A0.02120.42170.70070.050*
O40.1931 (4)0.3384 (6)0.80485 (18)0.0407 (9)
C40.0541 (7)0.1417 (9)0.6516 (3)0.0395 (13)
C50.0950 (7)0.2482 (12)0.5896 (3)0.0505 (14)
H5C0.05310.38970.57590.061*
C60.1987 (8)0.1427 (12)0.5482 (3)0.0592 (17)
C70.2659 (8)0.0660 (13)0.5677 (4)0.0651 (19)
H7A0.33660.13340.53940.078*
C80.2260 (8)0.1720 (11)0.6297 (3)0.0590 (17)
H8A0.26890.31310.64330.071*
C90.1218 (7)0.0688 (10)0.6721 (3)0.0487 (15)
H9A0.09700.14020.71440.058*
C100.1541 (6)0.1503 (10)0.8333 (3)0.0390 (13)
C110.0700 (6)0.2343 (9)0.8296 (3)0.0366 (11)
C120.3466 (7)0.4010 (9)0.8560 (3)0.0424 (14)
C130.4314 (7)0.1879 (12)0.8896 (4)0.0663 (19)
H13A0.36870.12360.92430.099*
H13B0.54000.22380.91520.099*
H13C0.43880.08230.85040.099*
C140.4440 (8)0.5092 (12)0.8017 (4)0.0635 (19)
H14A0.38940.64380.78190.095*
H14B0.45160.40710.76150.095*
H14C0.55250.54510.82740.095*
C150.3093 (9)0.5670 (12)0.9141 (4)0.073 (2)
H15A0.25740.69730.88940.110*
H15B0.40990.61000.94570.110*
H15C0.23690.49890.94380.110*
O50.8493 (5)0.4638 (7)0.9669 (2)0.0585 (12)
H5B0.79430.48471.00190.070*
H5A0.90530.34460.96590.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0481 (8)0.0689 (11)0.0474 (8)0.0106 (9)0.0013 (6)0.0065 (8)
Cl0.1239 (18)0.130 (2)0.0752 (12)0.0239 (16)0.0570 (12)0.0417 (14)
N10.041 (2)0.034 (2)0.030 (2)0.003 (2)0.0042 (19)0.0031 (19)
O10.076 (3)0.049 (3)0.069 (3)0.013 (2)0.031 (2)0.005 (2)
C10.037 (3)0.038 (3)0.040 (3)0.002 (2)0.011 (2)0.004 (2)
O20.061 (3)0.048 (3)0.055 (2)0.005 (2)0.021 (2)0.012 (2)
C20.042 (3)0.061 (4)0.052 (4)0.007 (3)0.005 (3)0.006 (3)
O30.047 (2)0.046 (2)0.034 (2)0.0027 (18)0.0101 (16)0.0039 (17)
C30.046 (3)0.035 (3)0.041 (3)0.001 (3)0.001 (2)0.001 (3)
O40.042 (2)0.041 (2)0.0399 (19)0.0063 (18)0.0093 (16)0.0023 (18)
C40.042 (3)0.040 (3)0.035 (3)0.001 (3)0.002 (2)0.002 (3)
C50.061 (4)0.046 (3)0.047 (3)0.001 (3)0.017 (3)0.003 (3)
C60.064 (4)0.070 (5)0.045 (4)0.000 (4)0.014 (3)0.006 (3)
C70.063 (4)0.082 (5)0.054 (4)0.011 (4)0.023 (3)0.008 (4)
C80.077 (4)0.049 (4)0.055 (4)0.015 (3)0.023 (3)0.000 (3)
C90.059 (4)0.051 (4)0.039 (3)0.003 (3)0.016 (3)0.006 (3)
C100.035 (3)0.041 (3)0.042 (3)0.003 (3)0.006 (2)0.002 (3)
C110.044 (3)0.027 (3)0.041 (3)0.006 (3)0.012 (2)0.000 (2)
C120.037 (3)0.039 (3)0.051 (3)0.010 (3)0.004 (3)0.001 (3)
C130.044 (3)0.066 (5)0.086 (5)0.003 (3)0.004 (3)0.023 (4)
C140.052 (4)0.059 (4)0.080 (5)0.014 (3)0.009 (4)0.017 (4)
C150.079 (5)0.067 (5)0.071 (5)0.021 (4)0.004 (4)0.021 (4)
O50.079 (3)0.047 (3)0.054 (3)0.008 (2)0.024 (2)0.006 (2)
Geometric parameters (Å, º) top
S1—C21.807 (6)C5—H5C0.9300
S1—C31.838 (5)C6—C71.384 (10)
Cl—C61.733 (6)C7—C81.379 (9)
N1—C111.346 (6)C7—H7A0.9300
N1—C31.457 (6)C8—C91.390 (8)
N1—C11.466 (6)C8—H8A0.9300
O1—C101.192 (6)C9—H9A0.9300
C1—C21.513 (7)C12—C151.515 (8)
C1—C101.524 (7)C12—C141.516 (8)
C1—H1A0.9800C12—C131.527 (8)
O2—C101.309 (6)C13—H13A0.9600
O2—H2C0.8200C13—H13B0.9600
C2—H2A0.9700C13—H13C0.9600
C2—H2B0.9700C14—H14A0.9600
O3—C111.221 (6)C14—H14B0.9600
C3—C41.505 (7)C14—H14C0.9600
C3—H3A0.9800C15—H15A0.9600
O4—C111.332 (6)C15—H15B0.9600
O4—C121.483 (6)C15—H15C0.9600
C4—C51.383 (8)O5—H5B0.8499
C4—C91.398 (8)O5—H5A0.8500
C5—C61.382 (8)
C2—S1—C390.2 (3)C7—C8—H8A119.9
C11—N1—C3122.2 (4)C9—C8—H8A119.9
C11—N1—C1118.3 (4)C8—C9—C4120.5 (5)
C3—N1—C1118.0 (4)C8—C9—H9A119.7
N1—C1—C2105.2 (4)C4—C9—H9A119.7
N1—C1—C10111.4 (4)O1—C10—O2124.6 (5)
C2—C1—C10110.0 (5)O1—C10—C1123.3 (5)
N1—C1—H1A110.0O2—C10—C1112.1 (5)
C2—C1—H1A110.0O3—C11—O4126.3 (5)
C10—C1—H1A110.0O3—C11—N1122.6 (5)
C10—O2—H2C109.5O4—C11—N1111.1 (4)
C1—C2—S1105.6 (4)O4—C12—C15110.3 (5)
C1—C2—H2A110.6O4—C12—C14101.0 (4)
S1—C2—H2A110.6C15—C12—C14111.5 (5)
C1—C2—H2B110.6O4—C12—C13108.9 (4)
S1—C2—H2B110.6C15—C12—C13113.6 (5)
H2A—C2—H2B108.7C14—C12—C13110.9 (5)
N1—C3—C4114.5 (4)C12—C13—H13A109.5
N1—C3—S1103.9 (3)C12—C13—H13B109.5
C4—C3—S1113.2 (4)H13A—C13—H13B109.5
N1—C3—H3A108.3C12—C13—H13C109.5
C4—C3—H3A108.3H13A—C13—H13C109.5
S1—C3—H3A108.3H13B—C13—H13C109.5
C11—O4—C12121.7 (4)C12—C14—H14A109.5
C5—C4—C9119.1 (5)C12—C14—H14B109.5
C5—C4—C3118.2 (5)H14A—C14—H14B109.5
C9—C4—C3122.6 (5)C12—C14—H14C109.5
C6—C5—C4119.5 (6)H14A—C14—H14C109.5
C6—C5—H5C120.3H14B—C14—H14C109.5
C4—C5—H5C120.3C12—C15—H15A109.5
C5—C6—C7121.9 (6)C12—C15—H15B109.5
C5—C6—Cl118.6 (5)H15A—C15—H15B109.5
C7—C6—Cl119.4 (5)C12—C15—H15C109.5
C8—C7—C6118.6 (6)H15A—C15—H15C109.5
C8—C7—H7A120.7H15B—C15—H15C109.5
C6—C7—H7A120.7H5B—O5—H5A120.0
C7—C8—C9120.3 (6)
C11—N1—C1—C2177.5 (5)C4—C5—C6—Cl178.7 (5)
C3—N1—C1—C216.0 (6)C5—C6—C7—C80.9 (11)
C11—N1—C1—C1058.3 (6)Cl—C6—C7—C8178.4 (5)
C3—N1—C1—C10135.3 (5)C6—C7—C8—C90.8 (10)
N1—C1—C2—S137.1 (5)C7—C8—C9—C41.1 (10)
C10—C1—C2—S1157.2 (4)C5—C4—C9—C81.5 (9)
C3—S1—C2—C139.2 (4)C3—C4—C9—C8177.9 (5)
C11—N1—C3—C482.2 (6)N1—C1—C10—O151.4 (7)
C1—N1—C3—C4111.8 (5)C2—C1—C10—O164.9 (7)
C11—N1—C3—S1153.8 (4)N1—C1—C10—O2130.8 (5)
C1—N1—C3—S112.1 (5)C2—C1—C10—O2112.9 (5)
C2—S1—C3—N129.0 (4)C12—O4—C11—O33.2 (8)
C2—S1—C3—C495.7 (4)C12—O4—C11—N1174.5 (4)
N1—C3—C4—C5161.1 (5)C3—N1—C11—O3169.7 (5)
S1—C3—C4—C580.0 (6)C1—N1—C11—O33.9 (7)
N1—C3—C4—C915.4 (8)C3—N1—C11—O412.4 (6)
S1—C3—C4—C9103.5 (6)C1—N1—C11—O4178.3 (4)
C9—C4—C5—C61.5 (9)C11—O4—C12—C1562.5 (6)
C3—C4—C5—C6178.1 (5)C11—O4—C12—C14179.5 (5)
C4—C5—C6—C71.2 (10)C11—O4—C12—C1362.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O5i0.821.802.620 (6)177
O5—H5A···O3ii0.852.202.890 (5)139
O5—H5B···O3iii0.852.372.827 (5)114
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z; (iii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC15H18ClNO4S·H2O
Mr361.83
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.2460 (16), 5.9660 (12), 18.132 (4)
β (°) 99.81 (3)
V3)879.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.932, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
3417, 3182, 2169
Rint0.080
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.167, 1.03
No. of reflections3182
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28
Absolute structureFlack (1983), 1451 Friedel pairs
Absolute structure parameter0.11 (16)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O5i0.821.802.620 (6)176.5
O5—H5A···O3ii0.852.202.890 (5)138.5
O5—H5B···O3iii0.852.372.827 (5)114.3
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z; (iii) x+1, y+1/2, z+2.
 

Acknowledgements

This work was supported by Zhejiang Traditional Chinese Medicine University (Project 2009ZY06) and the Education Department of Zhejiang Province, China (Project 20071211).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKallen, R. G. (1971). J. Am. Chem. Soc. 93, 6236–6248.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSeki, M., Hatsuda, M., Mori, Y., Yoshida, S. I., Yamada, S. I. & Shimizu, T. (2004). Chem. Eur. J. 10, 6102–6110.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Z.-C., Ma, G.-Y., Lv, P.-C., Li, H.-Q., Xiao, Z.-P. & Zhu, H.-L. (2009). Eur. J. Med. Chem. 44, 3903-3908.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds