metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[penta­aquaeuropium(III)]-μ-5-sulfonatoisophthalato-κ4O1,O1′:O3,O3′] 4,4'-bi­pyridine N,N′-dioxide hemisolvate trihydrate]

aSchool of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 October 2010; accepted 15 October 2010; online 23 October 2010)

In the crystal structure of the title compound, {[Eu(C8H3O7S)(H2O)5]·0.5C10H8N2O2·3H2O}n, the EuIII coordination polymer displays a ribbon motif as the 5-sulfoisopthalate anion uses one of carboxyl –CO2 units to chelate to a Eu atom and the other to bind to other two Eu atoms; the sulfonyl –SO3 unit is not involved in coordination. Adjacent ribbons are linked by O—H⋯O hydrogen bonds, generating a three-dimensional network. The 4,4′-bipyridine-N,N′-dioxide mol­ecule lies on an inversion centre and is hydrogen-bonded to the complex network. The coordination geometry of the Eu atom is a monocapped square anti­prism.

Related literature

For a related structure, see: Hu et al. (2005[Hu, M.-L., Cai, X.-Q., Miao, Q. & Xiao, H.-P. (2005). Russ. J. Coord. Chem. 31, 368-378.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(C8H3O7S)(H2O)5]·0.5C10H8N2O2·3H2O

  • Mr = 633.34

  • Triclinic, [P \overline 1]

  • a = 10.7800 (4) Å

  • b = 10.8978 (3) Å

  • c = 11.4048 (3) Å

  • α = 89.383 (2)°

  • β = 62.989 (1)°

  • γ = 62.678 (6)°

  • V = 1026.90 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.631, Tmax = 1.000

  • 10108 measured reflections

  • 4658 independent reflections

  • 4509 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.20

  • 4658 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 3.40 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O8 0.84 1.87 2.673 (4) 159
O1w—H12⋯O6w 0.84 1.91 2.710 (4) 160
O2w—H22⋯O1i 0.84 2.11 2.804 (4) 140
O2w—H21⋯O3wi 0.84 2.46 3.148 (5) 140
O3w—H31⋯O7w 0.84 1.91 2.742 (4) 175
O3w—H32⋯O8w 0.84 1.87 2.704 (4) 172
O4w—H41⋯O8ii 0.83 1.82 2.648 (4) 171
O4w—H42⋯O5iii 0.83 2.02 2.840 (4) 166
O5w—H51⋯O7w 0.83 2.30 3.026 (5) 146
O6w—H62⋯O6iv 0.85 2.18 2.955 (5) 151
O6w—H61⋯O6v 0.85 2.18 2.807 (5) 130
O7w—H71⋯O1i 0.84 2.49 3.191 (4) 142
O7w—H72⋯O7vi 0.84 2.03 2.860 (5) 169
O8w—H81⋯O2vii 0.85 2.17 2.867 (4) 140
O8w—H82⋯O5viii 0.85 2.07 2.879 (5) 159
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+2, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+2, -z+1; (v) x-1, y+1, z; (vi) x, y, z-1; (vii) -x+1, -y+1, -z; (viii) -x+2, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the crystal structure of pentaqua(5-sulfoisophthalato)europium monohydrate sesqui-4,4'-bipyridine, the 5-sulfoisophthalate trianion O,O'-chelates to two metal atoms to furnish a polymeric chain structure. The chains are linked by hydrogen bonds into a three-dimensional network, and the N-heterocycles occupy the cavities of the network. The geometry of the metal atom is a monocapped square-antiprism (Hu et al., 2005). A similar hydrothermal synthesis with 4,4'-bipyridine N-oxide in place of 4,4'-bipyridine affords the corresponding co-crystal, but the co-crystal is a trihydrated1:0.5 co-crystal. In Eu(H2O)5(C8H3O7S).3H2O.0.5C10H8N2O2 (Scheme I), the 5-sulfoisopthalate group uses one of carboxyl –CO2 units to chelate to a Eu(III) atom and uses the other to bind to two other metal atoms; the sulfonyl –SO3 unit is not involved in coordination (Fig. 1). The geometry of the europium atom is a monocapped square-antiprism (Fig. 2). Adjacent ribbons (Fig. 3) are linked by O–H···O hydrogen bonds to generate a three-dimensional network (Table 3). The 4,4'-bipyridine N-oxide molecule, which lies on a center-of-inversion, is hydrogen-bonded to the network.

Related literature top

For a related structure, see: Hu et al. (2005).

Experimental top

Europium nitrate hexahydrate (0.22 g, 0.5 mmol), monosodium 5-sulfoisophthalate (0.16 g, 0.5 mmol) and 4,4'-bipyridine-N,N'-dioxide (0.095 g, 0.5 mmol) were placed in a 25-ml Teflon-lined, stainless-steel Parr bomb along with water (15 ml). The bomb was heated to 433 K for 72 h. It was then cooled down to room temperature at a rate of 5 K an hour. Colorless crystals were collected and washed with water (0.195 g, yield 55% based on Eu). The product is stable in air and and is insoluble in water and common organic solvents. CH&N elemental analysis. Calc. for C18H25N2EuO16S (709.42): C 34.45, H 3.55, N 3.97%. Found: C 34.24, H 3.50, N 4.08%.

Refinement top

Carbon-bound hydrogen atoms were placed in calculated positions (C–H 0.93 Å, Uiso(H) 1.2 times Ueq(C), and were included in the refinement in the riding model approximation. The water H-atoms were placed placed in calculated positions (O–H 0.84 Å and H···H 1.37 Å) on the basis of hydrogen bonding; their temperature factors were tied by a factor of 1.5.

The final difference Fourier map had a peak and a hole in the vicinity of Eu1, but was otherwise featureless. Attempts to decrease their magnitudes by lowering the 2-theta limit did not lower these values, and the structure did not exhibit any signs of twinning.

Structure description top

In the crystal structure of pentaqua(5-sulfoisophthalato)europium monohydrate sesqui-4,4'-bipyridine, the 5-sulfoisophthalate trianion O,O'-chelates to two metal atoms to furnish a polymeric chain structure. The chains are linked by hydrogen bonds into a three-dimensional network, and the N-heterocycles occupy the cavities of the network. The geometry of the metal atom is a monocapped square-antiprism (Hu et al., 2005). A similar hydrothermal synthesis with 4,4'-bipyridine N-oxide in place of 4,4'-bipyridine affords the corresponding co-crystal, but the co-crystal is a trihydrated1:0.5 co-crystal. In Eu(H2O)5(C8H3O7S).3H2O.0.5C10H8N2O2 (Scheme I), the 5-sulfoisopthalate group uses one of carboxyl –CO2 units to chelate to a Eu(III) atom and uses the other to bind to two other metal atoms; the sulfonyl –SO3 unit is not involved in coordination (Fig. 1). The geometry of the europium atom is a monocapped square-antiprism (Fig. 2). Adjacent ribbons (Fig. 3) are linked by O–H···O hydrogen bonds to generate a three-dimensional network (Table 3). The 4,4'-bipyridine N-oxide molecule, which lies on a center-of-inversion, is hydrogen-bonded to the network.

For a related structure, see: Hu et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric structure of Eu(H2O)5(C8H3O7S).3H2O.0.5C10H8N2O2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The 4,4'-bipyridine N-oxide molecule lies on a center-of-inversion.
[Figure 2] Fig. 2. Nine-coordinate geometry of Eu.
[Figure 3] Fig. 3. Ribbon structure.
catena-Poly[[[pentaaquaeuropium(III)]\-m-5-sulfonatoisophthalato- κ4O1,O1':O3,O3'] 4,4'-bipyridine N,N'-dioxide hemisolvate trihydrate] top
Crystal data top
[Eu(C8H3O7S)(H2O)5]·0.5C10H8N2O2·3H2OZ = 2
Mr = 633.34F(000) = 630
Triclinic, P1Dx = 2.048 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7800 (4) ÅCell parameters from 9807 reflections
b = 10.8978 (3) Åθ = 3.5–27.5°
c = 11.4048 (3) ŵ = 3.24 mm1
α = 89.383 (2)°T = 293 K
β = 62.989 (1)°Prism, colorless
γ = 62.678 (6)°0.25 × 0.20 × 0.15 mm
V = 1026.90 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4658 independent reflections
Radiation source: fine-focus sealed tube4509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.631, Tmax = 1.000l = 1414
10108 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.4859P]
where P = (Fo2 + 2Fc2)/3
4658 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 3.40 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[Eu(C8H3O7S)(H2O)5]·0.5C10H8N2O2·3H2Oγ = 62.678 (6)°
Mr = 633.34V = 1026.90 (9) Å3
Triclinic, P1Z = 2
a = 10.7800 (4) ÅMo Kα radiation
b = 10.8978 (3) ŵ = 3.24 mm1
c = 11.4048 (3) ÅT = 293 K
α = 89.383 (2)°0.25 × 0.20 × 0.15 mm
β = 62.989 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4658 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4509 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 1.000Rint = 0.033
10108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.20Δρmax = 3.40 e Å3
4658 reflectionsΔρmin = 1.13 e Å3
289 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.222361 (16)0.944055 (13)0.073400 (13)0.01756 (8)
S10.84263 (11)0.67200 (9)0.32120 (9)0.02471 (18)
O10.4314 (3)0.8569 (3)0.1429 (3)0.0305 (6)
O20.3992 (3)0.6830 (3)0.0953 (3)0.0285 (5)
O30.8412 (4)0.1844 (3)0.0243 (3)0.0346 (6)
O40.9706 (3)0.1556 (3)0.1368 (3)0.0295 (6)
O51.0036 (4)0.6411 (4)0.2226 (3)0.0418 (7)
O60.8400 (4)0.6030 (3)0.4321 (3)0.0396 (7)
O70.7229 (4)0.8236 (3)0.3736 (3)0.0375 (6)
O80.1731 (4)0.9846 (3)0.4955 (3)0.0329 (6)
O1W0.1051 (3)1.0804 (3)0.3032 (3)0.0310 (6)
H110.14531.03180.34740.047*
H120.08011.16500.32580.047*
O2W0.3042 (4)1.1235 (3)0.0498 (4)0.0410 (7)
H210.33871.12300.10280.061*
H220.37711.10450.03060.061*
O3W0.4909 (4)0.8044 (3)0.1330 (3)0.0506 (9)
H310.52160.84290.19570.076*
H320.55980.71700.15710.076*
O4W0.0462 (4)0.8763 (3)0.2470 (3)0.0410 (7)
H410.03060.92370.32540.061*
H420.04470.80440.22510.061*
O5W0.2265 (4)1.0292 (4)0.1370 (3)0.0441 (8)
H510.30141.03880.19530.066*
H520.14511.07080.14560.066*
O6W0.1006 (6)1.3246 (4)0.3568 (5)0.0661 (12)
H610.00071.38020.41410.099*
H620.15131.31860.39800.099*
O7W0.5761 (4)0.9318 (4)0.3410 (3)0.0442 (8)
H710.61770.97310.32460.066*
H720.61130.91140.42450.066*
O8W0.6904 (4)0.5181 (3)0.2118 (3)0.0423 (7)
H810.63270.49680.14550.064*
H820.77680.49290.21100.064*
N10.2607 (4)0.8511 (3)0.4986 (3)0.0260 (6)
C10.4710 (4)0.7263 (4)0.1275 (3)0.0211 (6)
C20.6071 (4)0.6265 (3)0.1492 (3)0.0182 (6)
C30.6773 (4)0.4793 (3)0.1120 (3)0.0199 (6)
H30.64270.44020.06980.024*
C40.7996 (4)0.3904 (3)0.1383 (3)0.0185 (6)
C50.8531 (4)0.4479 (3)0.1990 (3)0.0216 (6)
H50.93660.38820.21420.026*
C60.7815 (4)0.5957 (3)0.2375 (4)0.0217 (6)
C70.6609 (4)0.6842 (3)0.2107 (3)0.0203 (6)
H70.61570.78250.23380.024*
C80.8774 (4)0.2302 (3)0.0962 (3)0.0201 (6)
C90.3563 (5)0.8243 (4)0.5518 (4)0.0305 (8)
H90.35920.89880.58720.037*
C100.4495 (5)0.6877 (4)0.5543 (4)0.0320 (8)
H100.51500.67050.59160.038*
C110.4475 (4)0.5746 (4)0.5022 (3)0.0248 (7)
C120.3437 (5)0.6074 (4)0.4505 (4)0.0292 (7)
H12A0.33610.53510.41740.035*
C130.2525 (5)0.7454 (4)0.4480 (4)0.0311 (8)
H130.18560.76570.41160.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01783 (11)0.01261 (11)0.02442 (12)0.00607 (8)0.01399 (8)0.00504 (7)
S10.0289 (4)0.0182 (4)0.0365 (4)0.0127 (3)0.0228 (4)0.0062 (3)
O10.0349 (14)0.0155 (11)0.0467 (15)0.0070 (11)0.0306 (13)0.0079 (11)
O20.0316 (14)0.0250 (12)0.0428 (14)0.0151 (11)0.0283 (12)0.0145 (11)
O30.0466 (17)0.0176 (11)0.0531 (17)0.0123 (12)0.0389 (14)0.0047 (11)
O40.0291 (13)0.0154 (10)0.0412 (14)0.0024 (10)0.0248 (12)0.0052 (10)
O50.0353 (16)0.0459 (17)0.0472 (17)0.0255 (14)0.0181 (14)0.0017 (14)
O60.063 (2)0.0370 (15)0.0425 (15)0.0283 (15)0.0416 (15)0.0158 (13)
O70.0460 (17)0.0197 (12)0.0515 (17)0.0116 (12)0.0333 (15)0.0025 (12)
O80.0399 (15)0.0218 (12)0.0321 (13)0.0094 (12)0.0210 (12)0.0075 (11)
O1W0.0447 (16)0.0234 (12)0.0295 (12)0.0136 (11)0.0260 (12)0.0065 (10)
O2W0.0412 (17)0.0359 (15)0.064 (2)0.0283 (14)0.0311 (16)0.0240 (15)
O3W0.0385 (17)0.0373 (16)0.0340 (15)0.0015 (14)0.0059 (13)0.0146 (13)
O4W0.0450 (17)0.0279 (13)0.0320 (13)0.0247 (13)0.0001 (12)0.0031 (11)
O5W0.0452 (18)0.0478 (18)0.0304 (14)0.0162 (15)0.0202 (13)0.0166 (14)
O6W0.085 (3)0.0321 (17)0.117 (4)0.0247 (19)0.082 (3)0.021 (2)
O7W0.0430 (18)0.0456 (18)0.0454 (18)0.0269 (16)0.0190 (15)0.0187 (15)
O8W0.0333 (15)0.0390 (16)0.0533 (18)0.0186 (13)0.0208 (14)0.0149 (14)
N10.0280 (15)0.0233 (14)0.0203 (12)0.0103 (12)0.0103 (11)0.0060 (11)
C10.0186 (15)0.0184 (15)0.0246 (15)0.0064 (13)0.0130 (13)0.0089 (13)
C20.0204 (14)0.0155 (14)0.0199 (13)0.0065 (12)0.0139 (12)0.0065 (11)
C30.0219 (15)0.0166 (13)0.0249 (14)0.0090 (12)0.0153 (13)0.0064 (13)
C40.0199 (14)0.0122 (12)0.0233 (14)0.0060 (11)0.0131 (12)0.0038 (11)
C50.0213 (15)0.0163 (14)0.0290 (15)0.0057 (12)0.0180 (13)0.0046 (12)
C60.0234 (16)0.0157 (14)0.0314 (16)0.0099 (13)0.0179 (14)0.0051 (12)
C70.0231 (15)0.0134 (13)0.0269 (15)0.0080 (12)0.0157 (13)0.0054 (12)
C80.0193 (14)0.0132 (13)0.0257 (15)0.0051 (12)0.0131 (12)0.0030 (12)
C90.035 (2)0.0258 (17)0.0312 (17)0.0146 (16)0.0185 (16)0.0045 (15)
C100.036 (2)0.0304 (18)0.0378 (19)0.0156 (16)0.0256 (17)0.0089 (16)
C110.0223 (16)0.0251 (17)0.0244 (15)0.0126 (14)0.0095 (13)0.0096 (13)
C120.0340 (19)0.0270 (17)0.0312 (17)0.0159 (16)0.0194 (16)0.0062 (15)
C130.0314 (19)0.0312 (18)0.0351 (18)0.0151 (16)0.0210 (16)0.0075 (15)
Geometric parameters (Å, º) top
Eu1—O12.500 (2)O6W—H610.8513
Eu1—O22.688 (2)O6W—H620.8503
Eu1—O3i2.298 (3)O7W—H710.8376
Eu1—O4ii2.390 (2)O7W—H720.8365
Eu1—O1W2.455 (2)O8W—H810.8459
Eu1—O2W2.456 (3)O8W—H820.8457
Eu1—O3W2.466 (3)N1—C91.343 (5)
Eu1—O4W2.431 (3)N1—C131.350 (5)
Eu1—O5W2.552 (3)C1—C21.502 (4)
S1—O51.445 (3)C2—C71.391 (4)
S1—O71.454 (3)C2—C31.392 (4)
S1—O61.460 (3)C3—C41.395 (4)
S1—C61.769 (3)C3—H30.9300
O1—C11.273 (4)C4—C51.381 (4)
O2—C11.246 (4)C4—C81.513 (4)
O3—C81.245 (4)C5—C61.396 (4)
O4—C81.245 (4)C5—H50.9300
O8—N11.333 (4)C6—C71.385 (4)
O1W—H110.8386C7—H70.9300
O1W—H120.8384C9—C101.371 (5)
O2W—H210.8400C9—H90.9300
O2W—H220.8380C10—C111.387 (5)
O3W—H310.8383C10—H100.9300
O3W—H320.8396C11—C121.398 (5)
O4W—H410.8345C11—C11iii1.479 (7)
O4W—H420.8346C12—C131.378 (5)
O5W—H510.8333C12—H12A0.9300
O5W—H520.8349C13—H130.9300
O3i—Eu1—O4ii90.47 (9)Eu1—O3W—H32130.2
O3i—Eu1—O4W70.06 (11)H31—O3W—H32109.5
O4ii—Eu1—O4W82.34 (10)Eu1—O4W—H41129.1
O3i—Eu1—O2W144.73 (11)Eu1—O4W—H42119.2
O4ii—Eu1—O2W79.72 (10)H41—O4W—H42110.4
O4W—Eu1—O2W140.17 (11)Eu1—O5W—H51123.4
O3i—Eu1—O1W135.51 (11)Eu1—O5W—H52124.1
O4ii—Eu1—O1W70.13 (9)H51—O5W—H52110.6
O4W—Eu1—O1W67.97 (10)H61—O6W—H62106.3
O2W—Eu1—O1W72.54 (11)H71—O7W—H72110.2
O3i—Eu1—O3W82.80 (13)H81—O8W—H82107.4
O4ii—Eu1—O3W137.24 (10)O8—N1—C9119.1 (3)
O4W—Eu1—O3W132.75 (10)O8—N1—C13119.7 (3)
O2W—Eu1—O3W81.93 (12)C9—N1—C13121.2 (3)
O1W—Eu1—O3W138.25 (12)O2—C1—O1121.0 (3)
O3i—Eu1—O1129.26 (8)O2—C1—C2121.4 (3)
O4ii—Eu1—O1137.26 (9)O1—C1—C2117.6 (3)
O4W—Eu1—O195.95 (11)C7—C2—C3119.8 (3)
O2W—Eu1—O174.72 (9)C7—C2—C1118.7 (3)
O1W—Eu1—O169.79 (9)C3—C2—C1121.5 (3)
O3W—Eu1—O171.94 (11)C2—C3—C4119.8 (3)
O3i—Eu1—O5W72.39 (11)C2—C3—H3120.1
O4ii—Eu1—O5W69.93 (10)C4—C3—H3120.1
O4W—Eu1—O5W132.53 (12)C5—C4—C3120.3 (3)
O2W—Eu1—O5W72.42 (11)C5—C4—C8119.9 (3)
O1W—Eu1—O5W130.36 (10)C3—C4—C8119.8 (3)
O3W—Eu1—O5W67.78 (10)C4—C5—C6119.9 (3)
O1—Eu1—O5W130.58 (11)C4—C5—H5120.1
O3i—Eu1—O280.16 (8)C6—C5—H5120.1
O4ii—Eu1—O2152.27 (9)C7—C6—C5120.0 (3)
O4W—Eu1—O269.93 (10)C7—C6—S1119.3 (2)
O2W—Eu1—O2122.10 (9)C5—C6—S1120.7 (3)
O1W—Eu1—O298.56 (8)C6—C7—C2120.2 (3)
O3W—Eu1—O267.78 (9)C6—C7—H7119.9
O1—Eu1—O249.82 (8)C2—C7—H7119.9
O5W—Eu1—O2129.85 (10)O3—C8—O4125.6 (3)
O5—S1—O7113.70 (19)O3—C8—C4116.8 (3)
O5—S1—O6112.2 (2)O4—C8—C4117.7 (3)
O7—S1—O6110.88 (19)N1—C9—C10120.3 (4)
O5—S1—C6107.16 (17)N1—C9—H9119.8
O7—S1—C6106.77 (16)C10—C9—H9119.8
O6—S1—C6105.62 (16)C9—C10—C11121.0 (3)
C1—O1—Eu198.7 (2)C9—C10—H10119.5
C1—O2—Eu190.40 (19)C11—C10—H10119.5
C8—O3—Eu1i164.5 (2)C10—C11—C12116.8 (3)
C8—O4—Eu1iv144.6 (2)C10—C11—C11iii122.1 (4)
Eu1—O1W—H11113.1C12—C11—C11iii121.0 (4)
Eu1—O1W—H12126.6C13—C12—C11120.9 (3)
H11—O1W—H12109.5C13—C12—H12A119.5
Eu1—O2W—H21109.7C11—C12—H12A119.5
Eu1—O2W—H22109.1N1—C13—C12119.6 (3)
H21—O2W—H22109.8N1—C13—H13120.2
Eu1—O3W—H31120.1C12—C13—H13120.2
O3i—Eu1—O1—C19.5 (3)C4—C5—C6—C72.2 (5)
O4ii—Eu1—O1—C1144.7 (2)C4—C5—C6—S1177.6 (3)
O4W—Eu1—O1—C159.5 (2)O5—S1—C6—C7109.9 (3)
O2W—Eu1—O1—C1160.0 (2)O7—S1—C6—C712.3 (3)
O1W—Eu1—O1—C1123.4 (2)O6—S1—C6—C7130.4 (3)
O3W—Eu1—O1—C173.6 (2)O5—S1—C6—C570.4 (3)
O5W—Eu1—O1—C1110.2 (2)O7—S1—C6—C5167.5 (3)
O2—Eu1—O1—C12.17 (19)O6—S1—C6—C549.4 (3)
O3i—Eu1—O2—C1168.6 (2)C5—C6—C7—C22.0 (5)
O4ii—Eu1—O2—C1119.5 (2)S1—C6—C7—C2177.8 (3)
O4W—Eu1—O2—C1119.1 (2)C3—C2—C7—C61.3 (5)
O2W—Eu1—O2—C118.3 (2)C1—C2—C7—C6177.3 (3)
O1W—Eu1—O2—C156.4 (2)Eu1i—O3—C8—O436.9 (12)
O3W—Eu1—O2—C182.5 (2)Eu1i—O3—C8—C4142.6 (8)
O1—Eu1—O2—C12.2 (2)Eu1iv—O4—C8—O342.7 (7)
O5W—Eu1—O2—C1111.6 (2)Eu1iv—O4—C8—C4137.8 (3)
Eu1—O2—C1—O13.8 (3)C5—C4—C8—O3169.6 (3)
Eu1—O2—C1—C2176.0 (3)C3—C4—C8—O38.6 (5)
Eu1—O1—C1—O24.2 (4)C5—C4—C8—O410.9 (5)
Eu1—O1—C1—C2175.7 (2)C3—C4—C8—O4170.9 (3)
O2—C1—C2—C7167.3 (3)O8—N1—C9—C10179.0 (3)
O1—C1—C2—C712.8 (5)C13—N1—C9—C100.8 (6)
O2—C1—C2—C311.2 (5)N1—C9—C10—C110.1 (6)
O1—C1—C2—C3168.6 (3)C9—C10—C11—C121.5 (6)
C7—C2—C3—C40.8 (5)C9—C10—C11—C11iii177.1 (4)
C1—C2—C3—C4177.7 (3)C10—C11—C12—C132.2 (6)
C2—C3—C4—C51.0 (5)C11iii—C11—C12—C13176.5 (4)
C2—C3—C4—C8179.2 (3)O8—N1—C13—C12179.6 (3)
C3—C4—C5—C61.7 (5)C9—N1—C13—C120.1 (6)
C8—C4—C5—C6179.9 (3)C11—C12—C13—N11.4 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O80.841.872.673 (4)159
O1w—H12···O6w0.841.912.710 (4)160
O2w—H22···O1v0.842.112.804 (4)140
O2w—H21···O3wv0.842.463.148 (5)140
O3w—H31···O7w0.841.912.742 (4)175
O3w—H32···O8w0.841.872.704 (4)172
O4w—H41···O8vi0.831.822.648 (4)171
O4w—H42···O5vii0.832.022.840 (4)166
O5w—H51···O7w0.832.303.026 (5)146
O6w—H62···O6viii0.852.182.955 (5)151
O6w—H61···O6ii0.852.182.807 (5)130
O7w—H71···O1v0.842.493.191 (4)142
O7w—H72···O7ix0.842.032.860 (5)169
O8w—H81···O2i0.852.172.867 (4)140
O8w—H82···O5x0.852.072.879 (5)159
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (v) x+1, y+2, z; (vi) x, y+2, z+1; (vii) x1, y, z; (viii) x+1, y+2, z+1; (ix) x, y, z1; (x) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Eu(C8H3O7S)(H2O)5]·0.5C10H8N2O2·3H2O
Mr633.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.7800 (4), 10.8978 (3), 11.4048 (3)
α, β, γ (°)89.383 (2), 62.989 (1), 62.678 (6)
V3)1026.90 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.631, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10108, 4658, 4509
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.20
No. of reflections4658
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.40, 1.13

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O80.841.872.673 (4)159
O1w—H12···O6w0.841.912.710 (4)160
O2w—H22···O1i0.842.112.804 (4)140
O2w—H21···O3wi0.842.463.148 (5)140
O3w—H31···O7w0.841.912.742 (4)175
O3w—H32···O8w0.841.872.704 (4)172
O4w—H41···O8ii0.831.822.648 (4)171
O4w—H42···O5iii0.832.022.840 (4)166
O5w—H51···O7w0.832.303.026 (5)146
O6w—H62···O6iv0.852.182.955 (5)151
O6w—H61···O6v0.852.182.807 (5)130
O7w—H71···O1i0.842.493.191 (4)142
O7w—H72···O7vi0.842.032.860 (5)169
O8w—H81···O2vii0.852.172.867 (4)140
O8w—H82···O5viii0.852.072.879 (5)159
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z+1; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x1, y+1, z; (vi) x, y, z1; (vii) x+1, y+1, z; (viii) x+2, y+1, z.
 

Acknowledgements

We thank Guangzhou University of Chinese Medicine and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, M.-L., Cai, X.-Q., Miao, Q. & Xiao, H.-P. (2005). Russ. J. Coord. Chem. 31, 368–378.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds