organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-[2-(p-tolyl­carbamo­thio­yl)hydrazinyl­­idene]butano­ate

aCollege of Chemistry and Chemical Engineering, Xuchang University, Henan 461000, People's Republic of China
*Correspondence e-mail: zhangyanling315@126.com

(Received 20 October 2010; accepted 21 October 2010; online 30 October 2010)

The title compound, C14H19N3O2S, was obtained from a condensation reaction of N-(p-tol­yl)hydrazinecarbothio­amide and ethyl acetoacetate. The mol­ecule assumes an E configuration; the thio­semicarbazide and ester groups are located on the opposite sides of the C=N bond. The almost planar thio­semicarbazide unit (r.m.s. deviation = 0.0130 Å) is tilted at a dihedral angle of 49.54 (12)° with respect to the benzene ring. Inter­molecular N—H⋯N and N—H⋯S hydrogen bonding stabilizes the crystal structure. The eth­oxy group of the ester unit is disordered over two positions, with a site-occupancy ratio of 0.680 (10):0.320 (10).

Related literature

For biological applications of thio­semicarbazones, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Hu et al. (2006[Hu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]). For related structures, see: Zhang et al. (2005[Zhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173-o1175.]); Shan & Zhang (2006[Shan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051-o2052.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19N3O2S

  • Mr = 293.38

  • Orthorhombic, I b c a

  • a = 14.1747 (3) Å

  • b = 25.1439 (4) Å

  • c = 17.4381 (2) Å

  • V = 6215.08 (17) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 1.90 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.703, Tmax = 0.726

  • 6852 measured reflections

  • 2775 independent reflections

  • 2380 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.175

  • S = 1.07

  • 2775 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3i 0.81 (3) 2.54 (3) 3.300 (3) 155 (2)
N2—H2B⋯S1ii 0.86 2.85 3.5572 (18) 141
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, -z+1]; (ii) [x, -y+1, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones have attracted much attention as they show potential application in the biological field (Okabe et al., 1993; Hu et al., 2006). There are a few single-crystal reports about them (Zhang et al., 2005; Shan et al., 2006). Detailed information on their molecular and crystal structures is necessary to understand their anticancer activity. The molecular structure of (I) is shown in Fig 1. The molecule of (I) exhibits an E configuration. The thiosemicarbazide and Ethyl acetoacetate unit are located on opposite sides of the N3=C9 bond. The thiosemicarbazide unit has a planar configuration and is tilted with respect to the p-methylphenyl mean plane, forming a dihedral angle of 49.54 (12)°.In the crystal structure of the title compound, there are N(1)—H(1 N)···N(3)#1, N(1)—H(1 N)···N(1)#1 and N(2)—H(2B)···S(1)#2 hydrogen-bond interactions in molecules (Fig. 2).

Related literature top

For biological applications of thiosemicarbazones, see: Okabe et al. (1993); Hu et al. (2006). For related structures, see: Zhang et al. (2005); Shan & Zhang (2006).

Experimental top

N-(p-Tolyl)thiosemicarbazide (1.8 g,10 mmol) and ethyl acetoacetate (1.3 g, 10 mmol) was dissolved in 95% ethanol (15 ml) and the solution was refluxed for 2 h. Fine colorless crystals appeared on cooling. They were filtered and washed by 95% ethanol to give 2.13 g of the title compound in 71.7% yield. Single crystals suitable for X-ray measurements were obtained from mother liquid by slow evaporation at room temperature.

Refinement top

The H1N atom was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93-0.97 and N—H = 0.86 Å, and refined using a riding model, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others. The ethoxy part of the ester unit is disordered over two positions with site occupancies ratio of 0.680 (10):0.320 (10).

Structure description top

Thiosemicarbazones have attracted much attention as they show potential application in the biological field (Okabe et al., 1993; Hu et al., 2006). There are a few single-crystal reports about them (Zhang et al., 2005; Shan et al., 2006). Detailed information on their molecular and crystal structures is necessary to understand their anticancer activity. The molecular structure of (I) is shown in Fig 1. The molecule of (I) exhibits an E configuration. The thiosemicarbazide and Ethyl acetoacetate unit are located on opposite sides of the N3=C9 bond. The thiosemicarbazide unit has a planar configuration and is tilted with respect to the p-methylphenyl mean plane, forming a dihedral angle of 49.54 (12)°.In the crystal structure of the title compound, there are N(1)—H(1 N)···N(3)#1, N(1)—H(1 N)···N(1)#1 and N(2)—H(2B)···S(1)#2 hydrogen-bond interactions in molecules (Fig. 2).

For biological applications of thiosemicarbazones, see: Okabe et al. (1993); Hu et al. (2006). For related structures, see: Zhang et al. (2005); Shan & Zhang (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed line.
Ethyl 3-[2-(p-tolylcarbamothioyl)hydrazinylidene]butanoate top
Crystal data top
C14H19N3O2SF(000) = 2496
Mr = 293.38Dx = 1.254 Mg m3
Orthorhombic, IbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -I 2b 2cCell parameters from 4042 reflections
a = 14.1747 (3) Åθ = 3.1–72.2°
b = 25.1439 (4) ŵ = 1.90 mm1
c = 17.4381 (2) ÅT = 293 K
V = 6215.08 (17) Å3Prismatic, colorless
Z = 160.20 × 0.18 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2775 independent reflections
Radiation source: fine-focus sealed tube2380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 67.0°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1613
Tmin = 0.703, Tmax = 0.726k = 3029
6852 measured reflectionsl = 2010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.111P)2 + 3.488P]
where P = (Fo2 + 2Fc2)/3
2775 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H19N3O2SV = 6215.08 (17) Å3
Mr = 293.38Z = 16
Orthorhombic, IbcaCu Kα radiation
a = 14.1747 (3) ŵ = 1.90 mm1
b = 25.1439 (4) ÅT = 293 K
c = 17.4381 (2) Å0.20 × 0.18 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2775 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2380 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.726Rint = 0.018
6852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
2775 reflectionsΔρmin = 0.37 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.89584 (5)0.56086 (3)0.67758 (3)0.0567 (3)
N10.84677 (12)0.51980 (8)0.54081 (10)0.0426 (4)
N20.78883 (13)0.47864 (8)0.64691 (10)0.0468 (5)
H2B0.78530.47420.69570.056*
N30.74049 (14)0.44509 (7)0.59763 (10)0.0456 (5)
C10.88957 (13)0.55867 (8)0.49298 (12)0.0405 (5)
C20.93995 (16)0.54086 (9)0.42997 (11)0.0449 (5)
H2A0.94610.50460.42100.054*
C30.98110 (17)0.57697 (10)0.38031 (13)0.0521 (6)
H3A1.01460.56460.33810.063*
C40.97320 (18)0.63105 (10)0.39238 (14)0.0569 (6)
C50.9206 (2)0.64823 (10)0.45486 (15)0.0595 (6)
H5A0.91370.68450.46360.071*
C60.87831 (18)0.61255 (10)0.50432 (14)0.0513 (5)
H6A0.84230.62490.54520.062*
C71.0220 (3)0.66988 (14)0.33947 (19)0.0859 (10)
H7A1.01140.70550.35730.129*
H7B0.99700.66620.28860.129*
H7C1.08850.66270.33890.129*
C80.84189 (14)0.51858 (9)0.61720 (11)0.0420 (5)
C90.68544 (16)0.41050 (9)0.62652 (13)0.0479 (5)
C100.6300 (2)0.37820 (11)0.56998 (17)0.0627 (7)
H10A0.64240.39240.51930.075*
H10B0.56360.38380.58050.075*
C110.6470 (3)0.31894 (13)0.56713 (19)0.0735 (8)
C120.6676 (2)0.40351 (14)0.71046 (17)0.0765 (9)
H12A0.72420.39130.73500.115*
H12B0.61830.37780.71780.115*
H12C0.64890.43690.73240.115*
O10.6285 (3)0.29160 (13)0.5138 (2)0.1299 (13)
C130.7213 (7)0.2436 (2)0.6246 (4)0.113 (3)0.680 (10)
H13A0.72120.22990.57260.135*0.680 (10)
H13B0.78310.23720.64660.135*0.680 (10)
C140.6501 (10)0.2163 (3)0.6696 (5)0.143 (4)0.680 (10)
H14A0.66320.17890.67010.214*0.680 (10)
H14B0.58910.22240.64730.214*0.680 (10)
H14C0.65090.22970.72110.214*0.680 (10)
O20.7016 (4)0.30089 (13)0.6237 (2)0.0891 (18)0.680 (10)
C13'0.6327 (18)0.2371 (11)0.6442 (15)0.138 (8)*0.320 (10)
H13C0.60330.22000.60050.165*0.320 (10)
H13D0.59730.22720.68960.165*0.320 (10)
C14'0.7322 (16)0.2172 (10)0.6520 (14)0.137 (7)*0.320 (10)
H14D0.73180.17920.65610.206*0.320 (10)
H14E0.76030.23220.69720.206*0.320 (10)
H14F0.76800.22760.60780.206*0.320 (10)
O2'0.6275 (10)0.2960 (5)0.6341 (7)0.115 (4)*0.320 (10)
H1N0.8246 (18)0.4946 (12)0.5181 (15)0.046 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0723 (5)0.0606 (4)0.0371 (4)0.0171 (3)0.0054 (2)0.0039 (2)
N10.0470 (9)0.0466 (10)0.0342 (9)0.0067 (8)0.0016 (7)0.0005 (7)
N20.0538 (10)0.0543 (11)0.0322 (8)0.0077 (8)0.0016 (7)0.0029 (7)
N30.0515 (10)0.0467 (10)0.0386 (9)0.0045 (8)0.0002 (8)0.0017 (7)
C10.0393 (10)0.0482 (11)0.0341 (10)0.0022 (8)0.0036 (7)0.0046 (8)
C20.0517 (11)0.0466 (11)0.0365 (10)0.0001 (9)0.0001 (9)0.0009 (8)
C30.0532 (12)0.0639 (14)0.0392 (11)0.0003 (11)0.0042 (9)0.0060 (10)
C40.0628 (14)0.0594 (14)0.0486 (12)0.0090 (12)0.0029 (11)0.0148 (10)
C50.0755 (15)0.0432 (12)0.0599 (14)0.0016 (11)0.0050 (12)0.0069 (10)
C60.0582 (12)0.0512 (12)0.0447 (11)0.0072 (10)0.0020 (10)0.0012 (10)
C70.105 (3)0.080 (2)0.0724 (18)0.0259 (19)0.0066 (18)0.0257 (16)
C80.0431 (10)0.0485 (11)0.0343 (10)0.0003 (8)0.0005 (8)0.0004 (8)
C90.0478 (11)0.0475 (11)0.0483 (12)0.0010 (9)0.0000 (9)0.0068 (9)
C100.0680 (15)0.0528 (14)0.0674 (16)0.0119 (12)0.0098 (13)0.0079 (12)
C110.087 (2)0.0642 (17)0.0695 (17)0.0118 (15)0.0066 (15)0.0055 (14)
C120.0829 (19)0.090 (2)0.0560 (15)0.0268 (17)0.0156 (14)0.0096 (14)
O10.172 (3)0.098 (2)0.120 (2)0.027 (2)0.048 (2)0.0389 (19)
C130.166 (7)0.061 (3)0.111 (5)0.016 (4)0.012 (5)0.013 (3)
C140.250 (13)0.073 (4)0.106 (5)0.010 (6)0.047 (7)0.013 (4)
O20.130 (4)0.0540 (18)0.083 (2)0.0084 (19)0.021 (2)0.0044 (15)
Geometric parameters (Å, º) top
S1—C81.680 (2)C10—C111.510 (4)
N1—C81.334 (3)C10—H10A0.9700
N1—C11.421 (3)C10—H10B0.9700
N1—H1N0.81 (3)C11—O11.186 (4)
N2—C81.357 (3)C11—O2'1.332 (12)
N2—N31.386 (3)C11—O21.333 (5)
N2—H2B0.8600C12—H12A0.9600
N3—C91.272 (3)C12—H12B0.9600
C1—C61.378 (3)C12—H12C0.9600
C1—C21.385 (3)C13—C141.450 (13)
C2—C31.384 (3)C13—O21.468 (7)
C2—H2A0.9300C13—H13A0.9700
C3—C41.381 (4)C13—H13B0.9700
C3—H3A0.9300C14—H14A0.9600
C4—C51.389 (4)C14—H14B0.9600
C4—C71.511 (3)C14—H14C0.9600
C5—C61.381 (4)C13'—O2'1.49 (3)
C5—H5A0.9300C13'—C14'1.50 (4)
C6—H6A0.9300C13'—H13C0.9700
C7—H7A0.9600C13'—H13D0.9700
C7—H7B0.9600C14'—H14D0.9600
C7—H7C0.9600C14'—H14E0.9600
C9—C121.496 (3)C14'—H14F0.9600
C9—C101.500 (4)
C8—N1—C1128.61 (19)C11—C10—H10B107.8
C8—N1—H1N116.7 (18)H10A—C10—H10B107.1
C1—N1—H1N114.7 (18)O1—C11—O2'113.0 (6)
C8—N2—N3119.19 (16)O1—C11—O2120.8 (4)
C8—N2—H2B120.4O2'—C11—O247.5 (6)
N3—N2—H2B120.4O1—C11—C10124.2 (3)
C9—N3—N2118.29 (19)O2'—C11—C10111.4 (6)
C6—C1—C2119.4 (2)O2—C11—C10113.8 (3)
C6—C1—N1122.8 (2)C9—C12—H12A109.5
C2—C1—N1117.6 (2)C9—C12—H12B109.5
C3—C2—C1120.1 (2)H12A—C12—H12B109.5
C3—C2—H2A119.9C9—C12—H12C109.5
C1—C2—H2A119.9H12A—C12—H12C109.5
C4—C3—C2121.1 (2)H12B—C12—H12C109.5
C4—C3—H3A119.4C14—C13—O2109.7 (8)
C2—C3—H3A119.4C14—C13—H13A109.7
C3—C4—C5118.0 (2)O2—C13—H13A109.7
C3—C4—C7120.4 (3)C14—C13—H13B109.7
C5—C4—C7121.6 (3)O2—C13—H13B109.7
C6—C5—C4121.4 (2)H13A—C13—H13B108.2
C6—C5—H5A119.3C13—C14—H14A109.5
C4—C5—H5A119.3C13—C14—H14B109.5
C1—C6—C5119.9 (2)H14A—C14—H14B109.5
C1—C6—H6A120.0C13—C14—H14C109.5
C5—C6—H6A120.0H14A—C14—H14C109.5
C4—C7—H7A109.5H14B—C14—H14C109.5
C4—C7—H7B109.5C11—O2—C13116.9 (5)
H7A—C7—H7B109.5O2'—C13'—C14'113 (2)
C4—C7—H7C109.5O2'—C13'—H13C109.0
H7A—C7—H7C109.5C14'—C13'—H13C109.0
H7B—C7—H7C109.5O2'—C13'—H13D109.0
N1—C8—N2115.26 (19)C14'—C13'—H13D109.0
N1—C8—S1125.98 (17)H13C—C13'—H13D107.8
N2—C8—S1118.75 (15)C13'—C14'—H14D109.5
N3—C9—C12124.8 (2)C13'—C14'—H14E109.5
N3—C9—C10115.5 (2)H14D—C14'—H14E109.5
C12—C9—C10119.4 (2)C13'—C14'—H14F109.5
C9—C10—C11118.2 (2)H14D—C14'—H14F109.5
C9—C10—H10A107.8H14E—C14'—H14F109.5
C11—C10—H10A107.8C11—O2'—C13'121.6 (14)
C9—C10—H10B107.8
C8—N2—N3—C9174.7 (2)N3—N2—C8—S1176.99 (15)
C8—N1—C1—C644.9 (3)N2—N3—C9—C120.8 (4)
C8—N1—C1—C2138.9 (2)N2—N3—C9—C10175.7 (2)
C6—C1—C2—C32.1 (3)N3—C9—C10—C11116.9 (3)
N1—C1—C2—C3178.3 (2)C12—C9—C10—C1167.9 (4)
C1—C2—C3—C40.2 (3)C9—C10—C11—O1158.9 (4)
C2—C3—C4—C51.6 (4)C9—C10—C11—O2'60.4 (7)
C2—C3—C4—C7177.4 (2)C9—C10—C11—O28.7 (5)
C3—C4—C5—C60.9 (4)O1—C11—O2—C1311.8 (7)
C7—C4—C5—C6178.2 (3)O2'—C11—O2—C1382.2 (9)
C2—C1—C6—C52.8 (3)C10—C11—O2—C13180.0 (5)
N1—C1—C6—C5178.9 (2)C14—C13—O2—C1190.3 (9)
C4—C5—C6—C11.3 (4)O1—C11—O2'—C13'30.6 (18)
C1—N1—C8—N2174.30 (19)O2—C11—O2'—C13'80.9 (16)
C1—N1—C8—S16.5 (3)C10—C11—O2'—C13'175.9 (14)
N3—N2—C8—N13.8 (3)C14'—C13'—O2'—C1177 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N3i0.81 (3)2.54 (3)3.300 (3)155 (2)
N2—H2B···S1ii0.862.853.5572 (18)141
Symmetry codes: (i) x+3/2, y, z+1; (ii) x, y+1, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H19N3O2S
Mr293.38
Crystal system, space groupOrthorhombic, Ibca
Temperature (K)293
a, b, c (Å)14.1747 (3), 25.1439 (4), 17.4381 (2)
V3)6215.08 (17)
Z16
Radiation typeCu Kα
µ (mm1)1.90
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.703, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
6852, 2775, 2380
Rint0.018
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.175, 1.07
No. of reflections2775
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N3i0.81 (3)2.54 (3)3.300 (3)155 (2)
N2—H2B···S1ii0.862.853.5572 (18)141
Symmetry codes: (i) x+3/2, y, z+1; (ii) x, y+1, z+3/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of the Education Department of Henan Province, China (2010B150029) and the Science and Technique Foundation of Henan Province, China (0624290013, 082300420110) for supporting this work.

References

First citationHu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051–o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173–o1175.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds