organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Cyano­phen­yl)-N-phenyl­oxirane-2-carboxamide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 20 October 2010; accepted 22 October 2010; online 30 October 2010)

The asymmetric unit of the crystal structure of the title compound, C16H12N2O2, contains two independent mol­ecules. In each mol­ecule, the two aromatic rings adopt a cis configuration about the central epoxide ring, and are oriented at dihedral angles of 61.5 (5) and 74.4 (5)°with respect to the epoxide ring in one mol­ecule, and 60.1 (5) and 72.1 (5)° in the other one. Inter­molecular classical N—H⋯O and weak C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For the use of epoxide-containing compounds as building blocks in synthesis, see: Diez et al. (2008[Diez, D., Nunez, M. G., Anton, A. B., Moro, G. R. F., Garrido, M. N. M., Marcos, I. S., Basabe, P. & Urones, J. G. (2008). Curr. Org. Synth. 5, 186-216.]); Porter & Skidmore (2000[Porter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215-1225.]); Shing et al. (2006[Shing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621-6629.]); Zhu & Espenson (1995[Zhu, Z.-L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090-7091.]). For related structures, see: He (2009[He, L. (2009). Acta Cryst. E65, o2052.]); He & Chen (2009[He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O2

  • Mr = 264.28

  • Monoclinic, P 21

  • a = 5.1332 (1) Å

  • b = 18.0803 (6) Å

  • c = 15.0202 (4) Å

  • β = 90.449 (2)°

  • V = 1393.98 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 293 K

  • 0.36 × 0.34 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.790, Tmax = 0.820

  • 14057 measured reflections

  • 2843 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.178

  • S = 1.02

  • 2843 reflections

  • 322 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6⋯O1i 0.90 (4) 2.21 (3) 2.960 (6) 141 (4)
N3—H22⋯O4ii 0.89 (3) 2.09 (3) 2.923 (5) 157 (4)
C8—H8⋯O3iii 0.98 2.49 3.287 (8) 138
C15—H15⋯O1i 0.93 2.58 3.505 (6) 171
C24—H24⋯O2iv 0.98 2.54 3.370 (7) 142
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iv) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Epoxides are particularly versatile synthetic intermediates which can readily be converted into a wide range of polyfunctional compounds (Diez et al., 2008; Porter et al., 2000; Shing et al., 2006). A useful method for the synthesis of α, β-epoxy carbonyl compounds and related compounds is the Darzens condensation (Zhu et al., 1995). We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1), each of which adopts a cis configuration about the epoxides ring. The dihedral angle between the C1—C6 and C10—C15 ring is 44.80 (21)° and that between C17—C22 and C26–31 phenyl ring is 47.93 (18)°. Epoxide ring O2—C8/C9 makes dihedral angles of 61.48 (35)° and 74.38 (27)° with phenyl rings C1—C6 and C10—C15, respectively. Epoxide ring O3—C24/C25 makes dihedral angles of 60.09 (36)° and 72.09 (31)° with phenyl rings C17—C22 and C26—C31, respectively. The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

Related literature top

For the use of epoxide-containing compounds as building blocks in synthesis, see: Diez et al. (2008); Porter et al. (2000); Shing et al. (2006); Zhu et al. (1995). For related structures, see: He (2009); He & Chen (2009).

Experimental top

2-Chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and potassium hydroxide (0.112 g, 2.0 mmol) were dissolved in acetonitrile (2 ml). To the solution was added 4-cyanophenylaldehyde (0.131 g, 1.0 mmol) at 298 K, the solution was stirred for 60 min and removal of solvent under reduced pressure, the residue was purified through column chromatography. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature for 1 d.

Refinement top

H atoms on N atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). As no significant anomalous scatterings, Friedel pairs were merged.

Structure description top

Epoxides are particularly versatile synthetic intermediates which can readily be converted into a wide range of polyfunctional compounds (Diez et al., 2008; Porter et al., 2000; Shing et al., 2006). A useful method for the synthesis of α, β-epoxy carbonyl compounds and related compounds is the Darzens condensation (Zhu et al., 1995). We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1), each of which adopts a cis configuration about the epoxides ring. The dihedral angle between the C1—C6 and C10—C15 ring is 44.80 (21)° and that between C17—C22 and C26–31 phenyl ring is 47.93 (18)°. Epoxide ring O2—C8/C9 makes dihedral angles of 61.48 (35)° and 74.38 (27)° with phenyl rings C1—C6 and C10—C15, respectively. Epoxide ring O3—C24/C25 makes dihedral angles of 60.09 (36)° and 72.09 (31)° with phenyl rings C17—C22 and C26—C31, respectively. The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

For the use of epoxide-containing compounds as building blocks in synthesis, see: Diez et al. (2008); Porter et al. (2000); Shing et al. (2006); Zhu et al. (1995). For related structures, see: He (2009); He & Chen (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
3-(4-Cyanophenyl)-N-phenyloxirane-2-carboxamide top
Crystal data top
C16H12N2O2F(000) = 552
Mr = 264.28Dx = 1.259 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 8634 reflections
a = 5.1332 (1) Åθ = 2.4–72.1°
b = 18.0803 (6) ŵ = 0.69 mm1
c = 15.0202 (4) ÅT = 293 K
β = 90.449 (2)°Block, colorless
V = 1393.98 (7) Å30.36 × 0.34 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2843 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 15.9149 pixels mm-1θmax = 73.4°, θmin = 2.9°
ω scansh = 46
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2221
Tmin = 0.790, Tmax = 0.820l = 1818
14057 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.019P)2 + 2.850P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2843 reflectionsΔρmax = 0.23 e Å3
322 parametersΔρmin = 0.21 e Å3
13 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (3)
Crystal data top
C16H12N2O2V = 1393.98 (7) Å3
Mr = 264.28Z = 4
Monoclinic, P21Cu Kα radiation
a = 5.1332 (1) ŵ = 0.69 mm1
b = 18.0803 (6) ÅT = 293 K
c = 15.0202 (4) Å0.36 × 0.34 × 0.30 mm
β = 90.449 (2)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2843 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2534 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.820Rint = 0.027
14057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08313 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
2843 reflectionsΔρmin = 0.21 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.6391 (8)0.2940 (3)1.1787 (3)0.0789 (13)
O30.9368 (8)0.7460 (3)0.6402 (3)0.0897 (15)
O40.4072 (7)0.8269 (3)0.5190 (3)0.0903 (16)
N30.8436 (8)0.8319 (3)0.4904 (3)0.0638 (13)
C100.7910 (7)0.41180 (18)1.1080 (2)0.0678 (16)
C110.9688 (7)0.4697 (2)1.1039 (3)0.086 (2)
H111.09930.47381.14690.103*
C120.9516 (9)0.5213 (2)1.0355 (3)0.095 (2)
H121.07050.56001.03280.114*
C130.7566 (11)0.5150 (2)0.9712 (3)0.084 (2)
C140.5788 (9)0.4571 (3)0.9753 (3)0.090 (2)
H140.44830.45290.93230.108*
C150.5960 (7)0.4055 (2)1.0437 (3)0.080 (2)
H150.47700.36681.04650.095*
O11.1682 (7)0.2549 (3)1.0279 (3)0.0840 (14)
N10.7379 (8)0.2356 (3)1.0097 (3)0.0624 (12)
C10.5444 (6)0.1679 (2)0.8919 (2)0.0757 (19)
H10.43070.14790.93330.091*
C20.5285 (8)0.1465 (2)0.8031 (2)0.092 (2)
H20.40420.11210.78510.111*
C30.6986 (9)0.1765 (3)0.7412 (2)0.090 (2)
H30.68790.16210.68190.108*
C50.8845 (8)0.2279 (3)0.7681 (2)0.106 (3)
H50.99820.24790.72670.128*
C40.9004 (8)0.2493 (3)0.8568 (3)0.090 (2)
H41.02480.28370.87480.108*
C60.7304 (7)0.2194 (2)0.9187 (2)0.0599 (15)
C230.6321 (11)0.8126 (4)0.5387 (4)0.0669 (16)
C70.9480 (10)0.2563 (4)1.0554 (4)0.0646 (15)
C90.8289 (13)0.3528 (3)1.1764 (4)0.078 (2)
H90.89460.36951.23440.093*
C80.8993 (12)0.2764 (3)1.1510 (4)0.0728 (18)
H81.00500.24951.19490.087*
C250.6995 (13)0.7002 (3)0.6400 (4)0.0759 (19)
H250.64630.68260.69890.091*
C240.6896 (12)0.7803 (4)0.6287 (4)0.077 (2)
H240.62550.80850.67980.092*
C320.5095 (19)0.4971 (4)0.3637 (5)0.112 (3)
C310.7737 (7)0.5940 (2)0.4233 (2)0.086 (2)
H310.87600.59390.37250.104*
C260.8234 (7)0.6446 (2)0.4910 (3)0.0772 (19)
H260.95910.67840.48550.093*
C300.6705 (9)0.6448 (3)0.5670 (2)0.0753 (19)
C270.4677 (9)0.5943 (3)0.5752 (3)0.086 (2)
H270.36540.59440.62600.104*
C290.4180 (8)0.5438 (3)0.5075 (3)0.099 (2)
H290.28230.51000.51300.118*
C280.5709 (9)0.5436 (2)0.4316 (3)0.085 (2)
C170.6504 (6)0.8529 (2)0.3446 (2)0.0733 (19)
H170.52330.81780.35690.088*
C220.8404 (7)0.8694 (2)0.40799 (19)0.0563 (14)
C181.0305 (7)0.9219 (2)0.3896 (3)0.0715 (18)
H181.15760.93290.43210.086*
C191.0306 (8)0.9579 (2)0.3079 (3)0.089 (2)
H191.15780.99300.29560.107*
C200.8407 (9)0.9414 (3)0.2444 (2)0.102 (3)
H200.84070.96550.18970.122*
C210.6506 (7)0.8889 (3)0.2628 (2)0.100 (3)
H210.52350.87790.22040.120*
C160.736 (2)0.5652 (4)0.9039 (5)0.131 (4)
N40.451 (2)0.4589 (5)0.3060 (6)0.147 (3)
N20.723 (3)0.6062 (5)0.8458 (6)0.184 (5)
H60.598 (6)0.261 (3)1.028 (3)0.071 (18)*
H221.001 (5)0.833 (3)0.515 (3)0.058 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.079 (3)0.099 (3)0.058 (2)0.004 (3)0.0072 (19)0.001 (2)
O30.084 (3)0.123 (4)0.062 (2)0.001 (3)0.016 (2)0.011 (3)
O40.051 (2)0.139 (4)0.081 (3)0.003 (3)0.0005 (19)0.030 (3)
N30.047 (2)0.091 (3)0.054 (2)0.005 (2)0.0022 (19)0.010 (2)
C100.073 (3)0.069 (4)0.062 (3)0.007 (3)0.001 (3)0.014 (3)
C110.080 (4)0.085 (5)0.094 (5)0.013 (4)0.012 (4)0.016 (4)
C120.115 (6)0.071 (4)0.100 (5)0.013 (4)0.003 (5)0.003 (4)
C130.106 (5)0.070 (4)0.078 (4)0.008 (4)0.008 (4)0.004 (3)
C140.128 (6)0.066 (4)0.075 (4)0.016 (4)0.025 (4)0.009 (3)
C150.087 (4)0.081 (4)0.071 (4)0.009 (4)0.016 (3)0.009 (4)
O10.0504 (19)0.129 (4)0.072 (2)0.011 (2)0.0029 (18)0.015 (3)
N10.050 (2)0.079 (3)0.059 (2)0.001 (2)0.0008 (19)0.005 (2)
C10.065 (3)0.089 (4)0.074 (4)0.011 (3)0.004 (3)0.021 (4)
C20.095 (5)0.100 (5)0.083 (4)0.012 (4)0.008 (4)0.032 (4)
C30.089 (4)0.115 (6)0.065 (4)0.006 (4)0.002 (3)0.020 (4)
C50.099 (5)0.165 (8)0.055 (3)0.029 (5)0.001 (3)0.013 (5)
C40.079 (4)0.128 (6)0.062 (3)0.032 (4)0.002 (3)0.005 (4)
C60.048 (2)0.070 (4)0.062 (3)0.005 (3)0.002 (2)0.004 (3)
C230.058 (3)0.078 (4)0.066 (3)0.006 (3)0.004 (3)0.008 (3)
C70.048 (3)0.069 (3)0.076 (3)0.005 (3)0.011 (2)0.000 (3)
C90.084 (4)0.100 (5)0.050 (3)0.003 (4)0.003 (3)0.001 (3)
C80.070 (3)0.096 (5)0.052 (3)0.009 (3)0.010 (3)0.003 (3)
C250.080 (4)0.091 (5)0.057 (3)0.012 (4)0.001 (3)0.019 (3)
C240.070 (3)0.113 (5)0.048 (3)0.013 (4)0.002 (3)0.011 (3)
C320.159 (8)0.061 (4)0.116 (5)0.003 (5)0.014 (6)0.004 (4)
C310.087 (4)0.091 (5)0.082 (5)0.003 (4)0.011 (4)0.001 (4)
C260.077 (4)0.087 (5)0.067 (4)0.004 (4)0.006 (3)0.011 (4)
C300.077 (4)0.090 (5)0.058 (3)0.002 (4)0.011 (3)0.018 (3)
C270.098 (5)0.080 (4)0.082 (4)0.004 (4)0.014 (4)0.026 (4)
C290.103 (5)0.076 (5)0.116 (5)0.012 (4)0.004 (4)0.020 (4)
C280.109 (5)0.067 (4)0.080 (4)0.016 (4)0.009 (3)0.018 (3)
C170.065 (3)0.100 (5)0.055 (3)0.008 (3)0.004 (3)0.000 (3)
C220.051 (3)0.069 (3)0.049 (3)0.009 (3)0.004 (2)0.001 (2)
C180.060 (3)0.089 (4)0.066 (3)0.005 (3)0.002 (3)0.003 (3)
C190.071 (4)0.105 (5)0.091 (5)0.009 (4)0.007 (3)0.034 (4)
C200.081 (4)0.160 (8)0.066 (4)0.022 (5)0.009 (3)0.039 (5)
C210.075 (4)0.165 (8)0.059 (4)0.009 (5)0.015 (3)0.020 (5)
C160.219 (10)0.093 (6)0.082 (5)0.028 (7)0.018 (6)0.008 (4)
N40.215 (9)0.093 (5)0.134 (6)0.017 (6)0.018 (6)0.008 (4)
N20.358 (15)0.095 (6)0.100 (6)0.006 (9)0.011 (8)0.019 (5)
Geometric parameters (Å, º) top
O2—C81.437 (7)C4—H40.9300
O2—C91.442 (8)C23—C241.501 (8)
O3—C241.421 (7)C7—C81.504 (8)
O3—C251.473 (8)C9—C81.477 (7)
O4—C231.218 (7)C9—H90.9800
N3—C231.356 (7)C8—H80.9800
N3—C221.412 (5)C25—C241.459 (8)
N3—H220.88 (2)C25—C301.493 (7)
C10—C111.3900C25—H250.9800
C10—C151.3900C24—H240.9800
C10—C91.493 (7)C32—N41.147 (10)
C11—C121.3900C32—C281.356 (7)
C11—H110.9300C31—C261.3900
C12—C131.3900C31—C281.3900
C12—H120.9300C31—H310.9300
C13—C161.362 (7)C26—C301.3900
C13—C141.3900C26—H260.9300
C14—C151.3900C30—C271.3900
C14—H140.9300C27—C291.3900
C15—H150.9300C27—H270.9300
O1—C71.207 (6)C29—C281.3900
N1—C71.328 (7)C29—H290.9300
N1—C61.398 (5)C17—C221.3900
N1—H60.90 (3)C17—C211.3900
C1—C21.3900C17—H170.9300
C1—C61.3900C22—C181.3900
C1—H10.9300C18—C191.3900
C2—C31.3900C18—H180.9300
C2—H20.9300C19—C201.3900
C3—C51.3900C19—H190.9300
C3—H30.9300C20—C211.3900
C5—C41.3900C20—H200.9300
C5—H50.9300C21—H210.9300
C4—C61.3900C16—N21.147 (10)
C8—O2—C961.7 (4)O2—C8—C959.3 (4)
C24—O3—C2560.5 (4)O2—C8—C7119.4 (5)
C23—N3—C22126.1 (4)C9—C8—C7121.0 (5)
C23—N3—H22121 (3)O2—C8—H8115.2
C22—N3—H22111 (3)C9—C8—H8115.2
C11—C10—C15120.0C7—C8—H8115.2
C11—C10—C9119.1 (3)C24—C25—O358.0 (4)
C15—C10—C9120.6 (3)C24—C25—C30125.3 (5)
C10—C11—C12120.0O3—C25—C30117.2 (5)
C10—C11—H11120.0C24—C25—H25114.7
C12—C11—H11120.0O3—C25—H25114.7
C13—C12—C11120.0C30—C25—H25114.7
C13—C12—H12120.0O3—C24—C2561.5 (4)
C11—C12—H12120.0O3—C24—C23116.6 (5)
C16—C13—C14119.2 (6)C25—C24—C23119.9 (6)
C16—C13—C12120.8 (6)O3—C24—H24115.9
C14—C13—C12120.0C25—C24—H24115.9
C15—C14—C13120.0C23—C24—H24115.9
C15—C14—H14120.0N4—C32—C28178.0 (11)
C13—C14—H14120.0C26—C31—C28120.0
C14—C15—C10120.0C26—C31—H31120.0
C14—C15—H15120.0C28—C31—H31120.0
C10—C15—H15120.0C31—C26—C30120.0
C7—N1—C6125.5 (4)C31—C26—H26120.0
C7—N1—H6110 (3)C30—C26—H26120.0
C6—N1—H6113 (3)C26—C30—C27120.0
C2—C1—C6120.0C26—C30—C25123.4 (4)
C2—C1—H1120.0C27—C30—C25116.5 (4)
C6—C1—H1120.0C29—C27—C30120.0
C1—C2—C3120.0C29—C27—H27120.0
C1—C2—H2120.0C30—C27—H27120.0
C3—C2—H2120.0C27—C29—C28120.0
C5—C3—C2120.0C27—C29—H29120.0
C5—C3—H3120.0C28—C29—H29120.0
C2—C3—H3120.0C32—C28—C29119.2 (5)
C3—C5—C4120.0C32—C28—C31120.6 (5)
C3—C5—H5120.0C29—C28—C31120.0
C4—C5—H5120.0C22—C17—C21120.0
C6—C4—C5120.0C22—C17—H17120.0
C6—C4—H4120.0C21—C17—H17120.0
C5—C4—H4120.0C18—C22—C17120.0
C4—C6—C1120.0C18—C22—N3119.9 (3)
C4—C6—N1124.0 (3)C17—C22—N3120.1 (3)
C1—C6—N1116.0 (3)C19—C18—C22120.0
O4—C23—N3125.2 (6)C19—C18—H18120.0
O4—C23—C24118.8 (5)C22—C18—H18120.0
N3—C23—C24115.4 (5)C20—C19—C18120.0
O1—C7—N1125.2 (5)C20—C19—H19120.0
O1—C7—C8119.7 (5)C18—C19—H19120.0
N1—C7—C8114.9 (5)C19—C20—C21120.0
O2—C9—C859.0 (4)C19—C20—H20120.0
O2—C9—C10117.3 (5)C21—C20—H20120.0
C8—C9—C10121.4 (5)C20—C21—C17120.0
O2—C9—H9115.7C20—C21—H21120.0
C8—C9—H9115.7C17—C21—H21120.0
C10—C9—H9115.7N2—C16—C13178.2 (11)
C15—C10—C11—C120.0C24—O3—C25—C30116.4 (6)
C9—C10—C11—C12173.8 (4)C25—O3—C24—C23111.2 (6)
C10—C11—C12—C130.0C30—C25—C24—O3102.6 (7)
C11—C12—C13—C16179.8 (6)O3—C25—C24—C23106.0 (6)
C11—C12—C13—C140.0C30—C25—C24—C233.5 (10)
C16—C13—C14—C15179.8 (6)O4—C23—C24—O3163.3 (6)
C12—C13—C14—C150.0N3—C23—C24—O324.7 (9)
C13—C14—C15—C100.0O4—C23—C24—C2592.4 (8)
C11—C10—C15—C140.0N3—C23—C24—C2595.6 (7)
C9—C10—C15—C14173.7 (4)C28—C31—C26—C300.0
C6—C1—C2—C30.0C31—C26—C30—C270.0
C1—C2—C3—C50.0C31—C26—C30—C25175.9 (4)
C2—C3—C5—C40.0C24—C25—C30—C2654.8 (8)
C3—C5—C4—C60.0O3—C25—C30—C2613.7 (7)
C5—C4—C6—C10.0C24—C25—C30—C27121.2 (6)
C5—C4—C6—N1177.7 (4)O3—C25—C30—C27170.3 (4)
C2—C1—C6—C40.0C26—C30—C27—C290.0
C2—C1—C6—N1177.8 (4)C25—C30—C27—C29176.2 (4)
C7—N1—C6—C427.2 (7)C30—C27—C29—C280.0
C7—N1—C6—C1150.6 (5)N4—C32—C28—C2966 (29)
C22—N3—C23—O42.3 (10)N4—C32—C28—C31110 (29)
C22—N3—C23—C24173.7 (5)C27—C29—C28—C32175.8 (5)
C6—N1—C7—O110.1 (10)C27—C29—C28—C310.0
C6—N1—C7—C8175.3 (5)C26—C31—C28—C32175.8 (6)
C8—O2—C9—C10111.9 (5)C26—C31—C28—C290.0
C11—C10—C9—O2179.7 (4)C21—C17—C22—C180.0
C15—C10—C9—O26.5 (6)C21—C17—C22—N3178.8 (4)
C11—C10—C9—C8111.7 (5)C23—N3—C22—C18142.3 (5)
C15—C10—C9—C862.1 (7)C23—N3—C22—C1738.9 (7)
C9—O2—C8—C7110.7 (6)C17—C22—C18—C190.0
C10—C9—C8—O2105.1 (6)N3—C22—C18—C19178.8 (4)
O2—C9—C8—C7108.0 (6)C22—C18—C19—C200.0
C10—C9—C8—C72.9 (9)C18—C19—C20—C210.0
O1—C7—C8—O2166.4 (6)C19—C20—C21—C170.0
N1—C7—C8—O218.7 (8)C22—C17—C21—C200.0
O1—C7—C8—C996.6 (8)C14—C13—C16—N282 (44)
N1—C7—C8—C988.5 (7)C12—C13—C16—N298 (44)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O1i0.90 (4)2.21 (3)2.960 (6)141 (4)
N3—H22···O4ii0.89 (3)2.09 (3)2.923 (5)157 (4)
C8—H8···O3iii0.982.493.287 (8)138
C15—H15···O1i0.932.583.505 (6)171
C24—H24···O2iv0.982.543.370 (7)142
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+2, y1/2, z+2; (iv) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC16H12N2O2
Mr264.28
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.1332 (1), 18.0803 (6), 15.0202 (4)
β (°) 90.449 (2)
V3)1393.98 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.36 × 0.34 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.790, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
14057, 2843, 2534
Rint0.027
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.178, 1.02
No. of reflections2843
No. of parameters322
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O1i0.90 (4)2.21 (3)2.960 (6)141 (4)
N3—H22···O4ii0.89 (3)2.09 (3)2.923 (5)157 (4)
C8—H8···O3iii0.982.493.287 (8)137.9
C15—H15···O1i0.932.583.505 (6)170.6
C24—H24···O2iv0.982.543.370 (7)141.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+2, y1/2, z+2; (iv) x+1, y+1/2, z+2.
 

Acknowledgements

The diffraction measurements were made at the Centre for Testing and Analysis, Sichuan University. I acknowledge financial support from China West Normal University.

References

First citationDiez, D., Nunez, M. G., Anton, A. B., Moro, G. R. F., Garrido, M. N. M., Marcos, I. S., Basabe, P. & Urones, J. G. (2008). Curr. Org. Synth. 5, 186–216.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, L. (2009). Acta Cryst. E65, o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPorter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215–1225.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621–6629.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Z.-L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090–7091.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds