metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3-nitro­phthalato-κ2O1:O2)bis­­[aqua­(2,2′-bi­pyridine-κ2N,N′)copper(II)] dihydrate

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Science, Baoji 721013, People's Republic of China, bDepartment of Biotechnology, Wulanchabu Vocational College, Wulanchabu 012000, Inner Mongolia, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 October 2010; accepted 23 October 2010; online 30 October 2010)

Two 3-nitro­phthalate dianions bridge two water-coordinated 2,2′-bipyridine-chelated CuII atoms about a center of inversion to generate the title dinuclear compound, [Cu2(C8H3NO6)2(C10H8N2)2(H2O)2]·2H2O. The geometry of the CuII atom is a distorted square pyramid. Adjacent mol­ecules are linked through the coordinated and solvent water mol­ecules to form a linear ribbon running along the a axis of the monoclinic unit cell.

Related literature

For the isostructural zinc analog, see: Song et al. (2007[Song, Y.-S., Yan, B. & Chen, Z.-X. (2007). Appl. Organomet. Chem. 21, 150-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H3NO6)2(C10H8N2)2(H2O)2]·2H2O

  • Mr = 929.74

  • Triclinic, [P \overline 1]

  • a = 7.534 (2) Å

  • b = 10.467 (3) Å

  • c = 12.044 (3) Å

  • α = 87.835 (2)°

  • β = 74.911 (3)°

  • γ = 77.437 (3)°

  • V = 894.9 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 295 K

  • 0.45 × 0.45 × 0.40 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.591, Tmax = 0.629

  • 4675 measured reflections

  • 3092 independent reflections

  • 2732 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.01

  • 3092 reflections

  • 284 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.967 (2)
Cu1—O3i 2.172 (2)
Cu1—O1w 1.994 (2)
Cu1—N2 2.029 (2)
Cu1—N3 2.013 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2w 0.83 (3) 1.85 (1) 2.660 (3) 166 (3)
O1w—H12⋯O4ii 0.83 (3) 1.90 (1) 2.718 (3) 168 (3)
O2w—H21⋯O4 0.84 (3) 2.04 (2) 2.830 (3) 158 (3)
O2w—H22⋯O1i 0.84 (3) 2.25 (2) 2.985 (3) 146 (3)
O2w—H22⋯O3i 0.84 (3) 2.35 (3) 2.977 (3) 132 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dinuclear Zn2(H2O)2(C10H8N2)2(C8H3NO6)2.2H2O is reported to exhibit intense fluorescence. In its crystal structure, the 3-nitrophthalate dianion bridges two water-coordinated, 2,2'-bipyridine-chelated zinc atoms about a center-of-inversion; the geometry of the zinc atom is a square pyramid (Song et al., 2007). The present copper analog (Scheme I, Fig. 1) is isostructural, the two compounds crystallizing with matching cell dimensions. Adjacent molecules are connected to the lattice water molecule by hydrogen bonds to form a linear ribbon running along the a-axis of the monoclinic unit cell (Fig. 2).

Related literature top

For the isostructural zinc analog, see: Song et al. (2007).

Experimental top

3-Nitrophthalic acid (0.105 g), 2,2'-bipyridine (0.078 g), copper chloride dihydrate (0.085 g) and water (2 ml) were heated at 393 K in a 25 ml, Teflon-lined, stainless-steel Parr bomb for 3 days. Blue crystal were isolated. CH&N elemental analysis. Found: C 46.32, H 3.17, N 9.11%. Calc.: C 46.51, H 3.25, N 9.04%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and H···H 1.37±0.01 Å; their temperature factors were refined.

Structure description top

Dinuclear Zn2(H2O)2(C10H8N2)2(C8H3NO6)2.2H2O is reported to exhibit intense fluorescence. In its crystal structure, the 3-nitrophthalate dianion bridges two water-coordinated, 2,2'-bipyridine-chelated zinc atoms about a center-of-inversion; the geometry of the zinc atom is a square pyramid (Song et al., 2007). The present copper analog (Scheme I, Fig. 1) is isostructural, the two compounds crystallizing with matching cell dimensions. Adjacent molecules are connected to the lattice water molecule by hydrogen bonds to form a linear ribbon running along the a-axis of the monoclinic unit cell (Fig. 2).

For the isostructural zinc analog, see: Song et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of dinuclear Cu2(H2O)2(C10H8N2)2(C8H3NO6)2.2H2O at the 50% probability evel; hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain.
Bis(µ-3-nitrophthalato-κ2O1:O2)bis[aqua(2,2'- bipyridine-κ2N,N')copper(II)] dihydrate top
Crystal data top
[Cu2(C8H3NO6)2(C10H8N2)2(H2O)2]·2H2OZ = 1
Mr = 929.74F(000) = 474
Triclinic, P1Dx = 1.725 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.534 (2) ÅCell parameters from 3039 reflections
b = 10.467 (3) Åθ = 2.6–28.1°
c = 12.044 (3) ŵ = 1.28 mm1
α = 87.835 (2)°T = 295 K
β = 74.911 (3)°Block, blue
γ = 77.437 (3)°0.45 × 0.45 × 0.40 mm
V = 894.9 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
3092 independent reflections
Radiation source: fine-focus sealed tube2732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 68
Tmin = 0.591, Tmax = 0.629k = 1112
4675 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.6587P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3092 reflectionsΔρmax = 0.54 e Å3
284 parametersΔρmin = 0.55 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (3)
Crystal data top
[Cu2(C8H3NO6)2(C10H8N2)2(H2O)2]·2H2Oγ = 77.437 (3)°
Mr = 929.74V = 894.9 (4) Å3
Triclinic, P1Z = 1
a = 7.534 (2) ÅMo Kα radiation
b = 10.467 (3) ŵ = 1.28 mm1
c = 12.044 (3) ÅT = 295 K
α = 87.835 (2)°0.45 × 0.45 × 0.40 mm
β = 74.911 (3)°
Data collection top
Bruker SMART APEX
diffractometer
3092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2732 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.629Rint = 0.023
4675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0336 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.54 e Å3
3092 reflectionsΔρmin = 0.55 e Å3
284 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.21328 (4)0.56513 (3)0.71332 (2)0.02412 (15)
N10.4799 (3)0.0616 (2)0.2658 (2)0.0343 (6)
N20.2998 (3)0.4783 (2)0.84926 (18)0.0257 (5)
N30.0759 (3)0.7029 (2)0.83612 (19)0.0281 (5)
O10.3115 (3)0.41035 (18)0.61015 (15)0.0280 (4)
O20.0466 (3)0.3577 (2)0.71082 (17)0.0409 (5)
O30.5866 (2)0.32313 (18)0.38170 (15)0.0288 (4)
O40.3075 (3)0.39837 (18)0.34247 (16)0.0305 (4)
O50.5574 (4)0.1439 (2)0.2160 (2)0.0633 (8)
O60.4884 (5)0.0410 (3)0.2191 (2)0.0874 (11)
O1W0.0433 (3)0.6507 (2)0.61730 (16)0.0332 (5)
H110.105 (4)0.646 (3)0.5489 (12)0.050*
H120.056 (3)0.625 (3)0.626 (2)0.050*
O2W0.2753 (3)0.6602 (2)0.41019 (18)0.0385 (5)
H210.279 (4)0.593 (2)0.374 (3)0.058*
H220.372 (3)0.650 (3)0.435 (3)0.058*
C10.1932 (4)0.3366 (3)0.6318 (2)0.0256 (6)
C20.2383 (4)0.2132 (2)0.5588 (2)0.0230 (5)
C30.1636 (4)0.1084 (3)0.6101 (2)0.0333 (7)
H30.08900.11790.68540.040*
C40.1973 (4)0.0096 (3)0.5522 (3)0.0389 (7)
H40.15050.07950.58920.047*
C50.3010 (4)0.0224 (3)0.4391 (3)0.0350 (7)
H50.32230.10020.39810.042*
C60.3725 (4)0.0823 (3)0.3879 (2)0.0257 (6)
C70.3471 (3)0.2024 (2)0.4442 (2)0.0210 (5)
C80.4222 (4)0.3186 (2)0.3836 (2)0.0213 (5)
C90.4136 (4)0.3603 (3)0.8485 (2)0.0330 (6)
H90.46840.31470.77890.040*
C100.4522 (4)0.3043 (3)0.9478 (3)0.0379 (7)
H100.53330.22290.94450.045*
C110.3696 (4)0.3698 (3)1.0513 (3)0.0383 (7)
H11A0.39340.33321.11890.046*
C120.2507 (4)0.4911 (3)1.0534 (2)0.0340 (7)
H12A0.19210.53691.12250.041*
C130.2199 (4)0.5435 (3)0.9505 (2)0.0266 (6)
C140.0971 (4)0.6732 (3)0.9424 (2)0.0281 (6)
C150.0074 (4)0.7584 (3)1.0353 (3)0.0395 (7)
H150.02440.73681.10800.047*
C160.1067 (5)0.8752 (3)1.0185 (3)0.0474 (8)
H160.16910.93321.07990.057*
C170.1276 (5)0.9055 (3)0.9093 (3)0.0483 (8)
H170.20300.98450.89610.058*
C180.0351 (5)0.8171 (3)0.8207 (3)0.0396 (7)
H180.05010.83740.74740.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0282 (2)0.0265 (2)0.01756 (19)0.00328 (14)0.00774 (13)0.00078 (12)
N10.0379 (14)0.0317 (14)0.0318 (13)0.0003 (11)0.0108 (11)0.0096 (11)
N20.0292 (12)0.0285 (12)0.0210 (11)0.0074 (10)0.0082 (9)0.0014 (9)
N30.0317 (13)0.0270 (12)0.0242 (11)0.0058 (10)0.0051 (10)0.0004 (9)
O10.0316 (10)0.0304 (10)0.0225 (9)0.0080 (8)0.0057 (8)0.0061 (8)
O20.0400 (12)0.0493 (13)0.0274 (11)0.0112 (10)0.0044 (9)0.0098 (9)
O30.0236 (10)0.0363 (11)0.0288 (10)0.0104 (8)0.0080 (8)0.0044 (8)
O40.0328 (10)0.0280 (10)0.0334 (10)0.0040 (8)0.0167 (9)0.0093 (8)
O50.101 (2)0.0467 (15)0.0320 (12)0.0231 (15)0.0086 (13)0.0070 (11)
O60.125 (3)0.0627 (18)0.0617 (18)0.0406 (19)0.0202 (18)0.0405 (15)
O1W0.0281 (11)0.0455 (12)0.0278 (10)0.0052 (9)0.0125 (9)0.0023 (9)
O2W0.0421 (12)0.0405 (12)0.0355 (12)0.0119 (10)0.0121 (10)0.0007 (9)
C10.0316 (15)0.0300 (14)0.0164 (12)0.0039 (12)0.0108 (11)0.0031 (10)
C20.0227 (13)0.0254 (13)0.0219 (13)0.0026 (11)0.0097 (11)0.0020 (10)
C30.0349 (16)0.0368 (16)0.0281 (14)0.0098 (13)0.0073 (12)0.0056 (12)
C40.0441 (18)0.0285 (16)0.0461 (18)0.0150 (14)0.0102 (15)0.0105 (13)
C50.0362 (16)0.0225 (14)0.0489 (18)0.0047 (12)0.0167 (14)0.0022 (13)
C60.0237 (13)0.0263 (14)0.0273 (14)0.0000 (11)0.0107 (11)0.0033 (11)
C70.0195 (12)0.0221 (13)0.0234 (13)0.0014 (10)0.0116 (10)0.0015 (10)
C80.0264 (14)0.0238 (13)0.0145 (11)0.0053 (11)0.0062 (10)0.0023 (10)
C90.0373 (16)0.0332 (16)0.0279 (14)0.0022 (13)0.0114 (12)0.0013 (12)
C100.0413 (17)0.0339 (16)0.0432 (17)0.0056 (13)0.0223 (14)0.0079 (13)
C110.0442 (18)0.0487 (19)0.0295 (15)0.0182 (15)0.0178 (14)0.0138 (13)
C120.0375 (16)0.0489 (18)0.0206 (13)0.0177 (14)0.0094 (12)0.0010 (12)
C130.0285 (14)0.0326 (15)0.0217 (13)0.0120 (12)0.0072 (11)0.0002 (11)
C140.0280 (14)0.0323 (15)0.0252 (14)0.0121 (12)0.0041 (11)0.0018 (11)
C150.0438 (18)0.0445 (18)0.0281 (15)0.0139 (15)0.0007 (13)0.0085 (13)
C160.049 (2)0.0407 (19)0.0447 (19)0.0076 (16)0.0027 (16)0.0164 (15)
C170.048 (2)0.0313 (17)0.058 (2)0.0008 (15)0.0065 (17)0.0074 (15)
C180.0457 (18)0.0313 (16)0.0382 (17)0.0026 (14)0.0096 (14)0.0018 (13)
Geometric parameters (Å, º) top
Cu1—O11.967 (2)C3—H30.9300
Cu1—O3i2.172 (2)C4—C51.378 (4)
Cu1—O1w1.994 (2)C4—H40.9300
Cu1—N22.029 (2)C5—C61.380 (4)
Cu1—N32.013 (2)C5—H50.9300
N1—O51.199 (3)C6—C71.403 (4)
N1—O61.213 (3)C7—C81.533 (3)
N1—C61.480 (4)C9—C101.383 (4)
N2—C131.348 (3)C9—H90.9300
N2—C91.340 (4)C10—C111.373 (4)
N3—C181.339 (4)C10—H100.9300
N3—C141.347 (4)C11—C121.382 (4)
O1—C11.274 (3)C11—H11A0.9300
O2—C11.240 (3)C12—C131.390 (4)
O3—C81.244 (3)C12—H12A0.9300
O3—Cu1i2.1722 (18)C13—C141.483 (4)
O4—C81.252 (3)C14—C151.387 (4)
O1W—H110.83 (3)C15—C161.374 (5)
O1W—H120.83 (3)C15—H150.9300
O2W—H210.84 (3)C16—C171.381 (5)
O2W—H220.84 (3)C16—H160.9300
C1—C21.515 (4)C17—C181.374 (4)
C2—C31.393 (4)C17—H170.9300
C2—C71.404 (4)C18—H180.9300
C3—C41.382 (4)
O1—Cu1—O1W92.15 (8)C5—C6—C7124.0 (3)
O1—Cu1—N3168.62 (8)C5—C6—N1115.6 (2)
O1W—Cu1—N388.44 (9)C7—C6—N1120.5 (2)
O1—Cu1—N295.88 (8)C2—C7—C6116.0 (2)
O1W—Cu1—N2160.36 (9)C2—C7—C8121.2 (2)
N3—Cu1—N280.22 (9)C6—C7—C8122.7 (2)
O1—Cu1—O3i95.27 (8)O3—C8—O4128.0 (2)
O1W—Cu1—O3i86.74 (8)O3—C8—C7117.1 (2)
N3—Cu1—O3i96.11 (8)O4—C8—C7114.9 (2)
N2—Cu1—O3i110.24 (8)N2—C9—C10122.1 (3)
O5—N1—O6121.7 (3)N2—C9—H9119.0
O5—N1—C6120.4 (2)C10—C9—H9119.0
O6—N1—C6117.9 (3)C11—C10—C9119.5 (3)
C13—N2—C9118.6 (2)C11—C10—H10120.3
C13—N2—Cu1114.89 (18)C9—C10—H10120.3
C9—N2—Cu1126.25 (18)C10—C11—C12119.0 (3)
C18—N3—C14118.9 (2)C10—C11—H11A120.5
C18—N3—Cu1125.6 (2)C12—C11—H11A120.5
C14—N3—Cu1115.52 (18)C11—C12—C13118.9 (3)
C1—O1—Cu1108.99 (16)C11—C12—H12A120.5
C8—O3—Cu1i134.66 (17)C13—C12—H12A120.5
Cu1—O1W—H11109 (2)N2—C13—C12121.9 (3)
Cu1—O1W—H12116 (2)N2—C13—C14114.5 (2)
H11—O1W—H12112 (2)C12—C13—C14123.6 (2)
H21—O2W—H22109 (2)N3—C14—C15121.4 (3)
O2—C1—O1124.0 (2)N3—C14—C13114.6 (2)
O2—C1—C2118.2 (2)C15—C14—C13124.0 (3)
O1—C1—C2117.7 (2)C16—C15—C14119.2 (3)
C3—C2—C7120.2 (2)C16—C15—H15120.4
C3—C2—C1116.7 (2)C14—C15—H15120.4
C7—C2—C1123.1 (2)C15—C16—C17119.2 (3)
C4—C3—C2121.8 (3)C15—C16—H16120.4
C4—C3—H3119.1C17—C16—H16120.4
C2—C3—H3119.1C18—C17—C16118.9 (3)
C3—C4—C5119.3 (3)C18—C17—H17120.5
C3—C4—H4120.3C16—C17—H17120.5
C5—C4—H4120.3N3—C18—C17122.4 (3)
C6—C5—C4118.8 (3)N3—C18—H18118.8
C6—C5—H5120.6C17—C18—H18118.8
C4—C5—H5120.6
O1—Cu1—N2—C13164.61 (18)C3—C2—C7—C8176.7 (2)
O1W—Cu1—N2—C1351.0 (3)C1—C2—C7—C82.3 (4)
N3—Cu1—N2—C134.59 (18)C5—C6—C7—C21.3 (4)
O3i—Cu1—N2—C1397.54 (19)N1—C6—C7—C2178.2 (2)
O1—Cu1—N2—C99.4 (2)C5—C6—C7—C8177.7 (2)
O1W—Cu1—N2—C9123.1 (3)N1—C6—C7—C81.8 (4)
N3—Cu1—N2—C9178.6 (2)Cu1i—O3—C8—O414.3 (4)
O3i—Cu1—N2—C988.4 (2)Cu1i—O3—C8—C7166.26 (16)
O1—Cu1—N3—C18110.3 (4)C2—C7—C8—O396.7 (3)
O1W—Cu1—N3—C1817.1 (2)C6—C7—C8—O387.1 (3)
N2—Cu1—N3—C18179.0 (3)C2—C7—C8—O482.8 (3)
O3i—Cu1—N3—C1869.4 (2)C6—C7—C8—O493.3 (3)
O1—Cu1—N3—C1468.2 (5)C13—N2—C9—C100.5 (4)
O1W—Cu1—N3—C14161.3 (2)Cu1—N2—C9—C10174.3 (2)
N2—Cu1—N3—C142.61 (19)N2—C9—C10—C111.1 (5)
O3i—Cu1—N3—C14112.15 (19)C9—C10—C11—C120.5 (5)
O1W—Cu1—O1—C179.31 (17)C10—C11—C12—C130.7 (4)
N3—Cu1—O1—C113.5 (5)C9—N2—C13—C120.7 (4)
N2—Cu1—O1—C182.74 (17)Cu1—N2—C13—C12173.8 (2)
O3i—Cu1—O1—C1166.23 (16)C9—N2—C13—C14179.8 (2)
Cu1—O1—C1—O24.2 (3)Cu1—N2—C13—C145.7 (3)
Cu1—O1—C1—C2177.93 (17)C11—C12—C13—N21.3 (4)
O2—C1—C2—C326.2 (4)C11—C12—C13—C14179.3 (3)
O1—C1—C2—C3151.8 (2)C18—N3—C14—C150.3 (4)
O2—C1—C2—C7152.9 (2)Cu1—N3—C14—C15178.9 (2)
O1—C1—C2—C729.2 (4)C18—N3—C14—C13178.9 (2)
C7—C2—C3—C41.7 (4)Cu1—N3—C14—C130.4 (3)
C1—C2—C3—C4179.2 (3)N2—C13—C14—N33.5 (3)
C2—C3—C4—C52.8 (5)C12—C13—C14—N3176.0 (3)
C3—C4—C5—C61.7 (5)N2—C13—C14—C15177.3 (3)
C4—C5—C6—C70.3 (4)C12—C13—C14—C153.3 (4)
C4—C5—C6—N1179.2 (3)N3—C14—C15—C160.6 (4)
O5—N1—C6—C5175.4 (3)C13—C14—C15—C16178.6 (3)
O6—N1—C6—C53.8 (4)C14—C15—C16—C170.8 (5)
O5—N1—C6—C75.1 (4)C15—C16—C17—C180.7 (5)
O6—N1—C6—C7175.7 (3)C14—N3—C18—C170.3 (5)
C3—C2—C7—C60.3 (4)Cu1—N3—C18—C17178.7 (2)
C1—C2—C7—C6178.7 (2)C16—C17—C18—N30.5 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2w0.83 (3)1.85 (1)2.660 (3)166 (3)
O1w—H12···O4ii0.83 (3)1.90 (1)2.718 (3)168 (3)
O2w—H21···O40.84 (3)2.04 (2)2.830 (3)158 (3)
O2w—H22···O1i0.84 (3)2.25 (2)2.985 (3)146 (3)
O2w—H22···O3i0.84 (3)2.35 (3)2.977 (3)132 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H3NO6)2(C10H8N2)2(H2O)2]·2H2O
Mr929.74
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.534 (2), 10.467 (3), 12.044 (3)
α, β, γ (°)87.835 (2), 74.911 (3), 77.437 (3)
V3)894.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.45 × 0.45 × 0.40
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.591, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
4675, 3092, 2732
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.01
No. of reflections3092
No. of parameters284
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.55

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O11.967 (2)Cu1—N22.029 (2)
Cu1—O3i2.172 (2)Cu1—N32.013 (2)
Cu1—O1w1.994 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2w0.83 (3)1.85 (1)2.660 (3)166 (3)
O1w—H12···O4ii0.83 (3)1.90 (1)2.718 (3)168 (3)
O2w—H21···O40.84 (3)2.04 (2)2.830 (3)158 (3)
O2w—H22···O1i0.84 (3)2.25 (2)2.985 (3)146 (3)
O2w—H22···O3i0.84 (3)2.35 (3)2.977 (3)132 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

We thank the Key Research Project, Baoji University of Arts and Sciences (grant No. ZK08114), and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y.-S., Yan, B. & Chen, Z.-X. (2007). Appl. Organomet. Chem. 21, 150–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds