metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[bis­­(2-hy­dr­oxy­eth­yl)amino]­acetato-κ3O,N,O′}zinc(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 October 2010; accepted 23 October 2010; online 30 October 2010)

In the crystal structure of the zinc(II) complex of bicine, [Zn(C6H12NO4)2], the deprotonated amino acid O,N,O′-chelates to the metal atom through a carboxyl­ate O atom, a hy­droxy O atom and the N atom, the three atoms occupying fac positions of the distorted octa­hedron surrounding the metal atom. The metal atom lies on a center of inversion. The uncoordinated carboxyl­ate O atom is hydrogen bonded to the hy­droxy groups of adjacent mol­ecules, these two hydrogen bonds leading to the formation of a three-dimensional network.

Related literature

For the isostructural cobalt(II) analog, see: Zhao & Liu (2010[Zhao, J.-P. & Liu, F.-C. (2010). Acta Cryst. E66, m848.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H12NO4)2]

  • Mr = 389.70

  • Monoclinic, P 21 /c

  • a = 9.7863 (7) Å

  • b = 11.3715 (8) Å

  • c = 7.3462 (5) Å

  • β = 109.1495 (8)°

  • V = 772.28 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.685, Tmax = 0.792

  • 7174 measured reflections

  • 1773 independent reflections

  • 1634 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.062

  • S = 1.12

  • 1773 reflections

  • 114 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.84 (1) 1.85 (1) 2.651 (2) 161 (2)
O4—H4⋯O2ii 0.83 (1) 1.89 (1) 2.715 (2) 178 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the crystal structure of the cobalt(II) derivative of bicine, the deprotonated aminoacid N,O,O'-chelates to the metal atom through the nitrogen, carboxyl oxygen and hydroxyl oxygen atoms, the three atoms occupying fac positions of the octahedron (Zhao & Liu, 2010). The present zinc analog (Scheme I, Fig. 1) is isostructural. The double-bond carboxyl oxygen atom is hydrogen-bond acceptor to the coordinated as well as the free hydroxyl unit of adjacent molecules, these two hydrogen bonds leading to the formation of a three-dimensional network (Table 1).

Related literature top

For the isostructural cobalt(II) analog, see: Zhao & Liu (2010).

Experimental top

N,N-Bis(2-hydroxyethyl)glycine (0.94 g, 5.7 mmol) and zinc carbonate (0.36 g, 2.8 mmol) were heated in a 1:1 water:DMSO mixture (100 ml) for 1 h. The solution was filtered; colorless crystals were obtained upon slow evaporation of the filtrate.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined with the O–H distance restrained to 0.84±0.01 Å; its temperature factor was refined.

Structure description top

In the crystal structure of the cobalt(II) derivative of bicine, the deprotonated aminoacid N,O,O'-chelates to the metal atom through the nitrogen, carboxyl oxygen and hydroxyl oxygen atoms, the three atoms occupying fac positions of the octahedron (Zhao & Liu, 2010). The present zinc analog (Scheme I, Fig. 1) is isostructural. The double-bond carboxyl oxygen atom is hydrogen-bond acceptor to the coordinated as well as the free hydroxyl unit of adjacent molecules, these two hydrogen bonds leading to the formation of a three-dimensional network (Table 1).

For the isostructural cobalt(II) analog, see: Zhao & Liu (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Zn(C6H12NO4)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis{2-[bis(2-hydroxyethyl)amino]acetato- κ3O,N,O'}zinc(II) top
Crystal data top
[Zn(C6H12NO4)2]F(000) = 408
Mr = 389.70Dx = 1.676 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4608 reflections
a = 9.7863 (7) Åθ = 2.2–28.3°
b = 11.3715 (8) ŵ = 1.64 mm1
c = 7.3462 (5) ÅT = 100 K
β = 109.1495 (8)°Block, colorless
V = 772.28 (9) Å30.25 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1773 independent reflections
Radiation source: fine-focus sealed tube1634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.685, Tmax = 0.792k = 1414
7174 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.4612P]
where P = (Fo2 + 2Fc2)/3
1773 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Zn(C6H12NO4)2]V = 772.28 (9) Å3
Mr = 389.70Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.7863 (7) ŵ = 1.64 mm1
b = 11.3715 (8) ÅT = 100 K
c = 7.3462 (5) Å0.25 × 0.20 × 0.15 mm
β = 109.1495 (8)°
Data collection top
Bruker SMART APEX
diffractometer
1773 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1634 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.792Rint = 0.026
7174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0212 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.43 e Å3
1773 reflectionsΔρmin = 0.35 e Å3
114 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.00889 (9)
O10.45689 (11)0.33271 (9)0.56937 (15)0.0132 (2)
O20.28013 (11)0.21247 (9)0.57458 (17)0.0167 (2)
O30.51490 (11)0.55292 (9)0.78390 (15)0.0129 (2)
H30.564 (2)0.6126 (14)0.831 (3)0.030 (6)*
O40.00548 (11)0.66106 (11)0.01696 (15)0.0160 (2)
H40.0808 (12)0.678 (2)0.009 (3)0.040 (7)*
N10.27253 (13)0.52389 (11)0.44766 (18)0.0095 (2)
C10.32624 (16)0.31061 (13)0.5430 (2)0.0116 (3)
C20.21180 (15)0.40649 (12)0.4649 (2)0.0114 (3)
H2A0.14660.38210.33630.014*
H2B0.15280.41300.55110.014*
C30.26823 (16)0.60594 (13)0.6035 (2)0.0128 (3)
H3A0.16900.60820.61060.015*
H3B0.29350.68620.57320.015*
C40.37309 (16)0.56760 (14)0.7966 (2)0.0141 (3)
H4A0.37570.62750.89550.017*
H4B0.34000.49250.83600.017*
C50.20539 (15)0.57679 (13)0.2541 (2)0.0114 (3)
H5A0.21290.51970.15610.014*
H5B0.26200.64720.24420.014*
C60.04786 (16)0.61242 (13)0.2055 (2)0.0131 (3)
H6A0.01250.54310.20910.016*
H6B0.03700.67130.29900.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00708 (13)0.00885 (13)0.01018 (13)0.00067 (8)0.00204 (9)0.00051 (8)
O10.0092 (5)0.0119 (5)0.0173 (5)0.0003 (4)0.0026 (4)0.0023 (4)
O20.0106 (5)0.0123 (5)0.0236 (6)0.0021 (4)0.0008 (4)0.0057 (4)
O30.0102 (5)0.0136 (5)0.0133 (5)0.0013 (4)0.0019 (4)0.0020 (4)
O40.0111 (5)0.0223 (6)0.0127 (5)0.0045 (4)0.0014 (4)0.0056 (4)
N10.0094 (6)0.0089 (5)0.0098 (6)0.0002 (4)0.0026 (5)0.0004 (4)
C10.0120 (7)0.0118 (6)0.0100 (6)0.0003 (5)0.0021 (5)0.0005 (5)
C20.0091 (7)0.0114 (6)0.0131 (7)0.0011 (5)0.0029 (5)0.0013 (5)
C30.0125 (7)0.0127 (6)0.0129 (7)0.0015 (5)0.0037 (6)0.0013 (5)
C40.0124 (7)0.0184 (7)0.0117 (7)0.0001 (5)0.0042 (6)0.0013 (6)
C50.0092 (7)0.0133 (7)0.0109 (7)0.0007 (5)0.0021 (5)0.0016 (5)
C60.0106 (7)0.0151 (7)0.0118 (7)0.0022 (5)0.0012 (5)0.0016 (5)
Geometric parameters (Å, º) top
Zn1—O12.0488 (10)N1—C31.4882 (18)
Zn1—O1i2.0488 (10)C1—C21.533 (2)
Zn1—O3i2.1292 (11)C2—H2A0.9900
Zn1—O32.1292 (11)C2—H2B0.9900
Zn1—N1i2.1484 (13)C3—C41.516 (2)
Zn1—N12.1484 (13)C3—H3A0.9900
O1—C11.2542 (18)C3—H3B0.9900
O2—C11.2537 (18)C4—H4A0.9900
O3—C41.4308 (18)C4—H4B0.9900
O3—H30.84 (1)C5—C61.519 (2)
O4—C61.4212 (17)C5—H5A0.9900
O4—H40.83 (1)C5—H5B0.9900
N1—C21.4836 (18)C6—H6A0.9900
N1—C51.4839 (18)C6—H6B0.9900
O1—Zn1—O1i180.0N1—C2—H2A108.7
O1—Zn1—O3i91.59 (4)C1—C2—H2A108.7
O1i—Zn1—O3i88.41 (4)N1—C2—H2B108.7
O1—Zn1—O388.41 (4)C1—C2—H2B108.7
O1i—Zn1—O391.59 (4)H2A—C2—H2B107.6
O3i—Zn1—O3180.0N1—C3—C4110.98 (12)
O1—Zn1—N1i97.12 (4)N1—C3—H3A109.4
O1i—Zn1—N1i82.88 (4)C4—C3—H3A109.4
O3i—Zn1—N1i82.74 (4)N1—C3—H3B109.4
O3—Zn1—N1i97.26 (4)C4—C3—H3B109.4
O1—Zn1—N182.88 (4)H3A—C3—H3B108.0
O1i—Zn1—N197.12 (4)O3—C4—C3110.24 (12)
O3i—Zn1—N197.26 (4)O3—C4—H4A109.6
O3—Zn1—N182.74 (4)C3—C4—H4A109.6
N1i—Zn1—N1180.0O3—C4—H4B109.6
C1—O1—Zn1115.48 (9)C3—C4—H4B109.6
C4—O3—Zn1109.91 (8)H4A—C4—H4B108.1
C4—O3—H3108.3 (16)N1—C5—C6115.44 (12)
Zn1—O3—H3118.6 (16)N1—C5—H5A108.4
C6—O4—H4105.4 (17)C6—C5—H5A108.4
C2—N1—C5112.49 (11)N1—C5—H5B108.4
C2—N1—C3112.67 (11)C6—C5—H5B108.4
C5—N1—C3111.57 (11)H5A—C5—H5B107.5
C2—N1—Zn1106.95 (8)O4—C6—C5106.39 (12)
C5—N1—Zn1109.26 (9)O4—C6—H6A110.5
C3—N1—Zn1103.34 (9)C5—C6—H6A110.5
O2—C1—O1124.08 (13)O4—C6—H6B110.5
O2—C1—C2116.06 (13)C5—C6—H6B110.5
O1—C1—C2119.86 (13)H6A—C6—H6B108.6
N1—C2—C1114.08 (12)
O3i—Zn1—O1—C192.62 (10)O3i—Zn1—N1—C3157.45 (8)
O3—Zn1—O1—C187.38 (10)O3—Zn1—N1—C322.55 (8)
N1i—Zn1—O1—C1175.50 (10)Zn1—O1—C1—O2178.78 (12)
N1—Zn1—O1—C14.50 (10)Zn1—O1—C1—C20.37 (17)
O1—Zn1—O3—C478.86 (9)C5—N1—C2—C1128.95 (13)
O1i—Zn1—O3—C4101.14 (9)C3—N1—C2—C1103.88 (14)
N1i—Zn1—O3—C4175.83 (9)Zn1—N1—C2—C18.99 (14)
N1—Zn1—O3—C44.17 (9)O2—C1—C2—N1174.38 (12)
O1—Zn1—N1—C27.26 (9)O1—C1—C2—N16.4 (2)
O1i—Zn1—N1—C2172.74 (9)C2—N1—C3—C468.96 (15)
O3i—Zn1—N1—C283.44 (9)C5—N1—C3—C4163.38 (12)
O3—Zn1—N1—C296.56 (9)Zn1—N1—C3—C446.10 (13)
O1—Zn1—N1—C5129.27 (9)Zn1—O3—C4—C330.45 (14)
O1i—Zn1—N1—C550.73 (9)N1—C3—C4—O353.60 (16)
O3i—Zn1—N1—C538.57 (9)C2—N1—C5—C668.31 (16)
O3—Zn1—N1—C5141.43 (9)C3—N1—C5—C659.44 (16)
O1—Zn1—N1—C3111.84 (9)Zn1—N1—C5—C6173.08 (10)
O1i—Zn1—N1—C368.16 (9)N1—C5—C6—O4179.67 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.84 (1)1.85 (1)2.651 (2)161 (2)
O4—H4···O2iii0.83 (1)1.89 (1)2.715 (2)178 (3)
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H12NO4)2]
Mr389.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7863 (7), 11.3715 (8), 7.3462 (5)
β (°) 109.1495 (8)
V3)772.28 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.685, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
7174, 1773, 1634
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.062, 1.12
No. of reflections1773
No. of parameters114
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.84 (1)1.85 (1)2.651 (2)161 (2)
O4—H4···O2ii0.83 (1)1.89 (1)2.715 (2)178 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J.-P. & Liu, F.-C. (2010). Acta Cryst. E66, m848.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds