organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(2-methyl­phen­yl)-3-aza­bi­cyclo[3.3.1]nonan-9-one O-methyl­oxime

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 3 September 2010; accepted 25 October 2010; online 30 October 2010)

The mol­ecule of the title compound, C23H28N2O, exists in a twin-chair conformation, with equatorial orientation of the ortho-tolyl groups on both sides of the secondary amino group. The title oxime compound and its ketone precursor 2,4-bis­(2-methyl­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one exhibit similar stereochemistries, with the orientation of the o-tolyl rings almost identical in both compounds. In the title compound, the tolyl rings are at an angle of 23.77 (3)° with respect to one another; the angle in the precursor is 29.4 (1)° [Vijayalakshmi, Parthasarathi, Venkatraj & Jeyaraman (2000[Vijayalakshmi, L., Parthasarathi, V., Venkatraj, M. & Jeyaraman, R. (2000). Acta Cryst. C56, 1240-1241.]), Acta Cryst. C56, 1240–1241]. The cyclo­hexane ring and the oxime ether are disordered over two alternative orientations, with a refined site-occupancy ratio of 0.813 (2):0.186 (4). The crystal structure of the title compound is stabilized by inter­molecular N—H⋯π inter­actions.

Related literature

For the synthesis and biological activities of oxime derivatives of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Parthiban et al. (2009a[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981-6985.],b[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009b). Bioorg. Med. Chem. Lett. 19, 2981-2985.], 2010a[Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 1642-1647.],b[Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79-93.]); Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). For related structures with similar conformations, see: Vijayalakshmi et al. (2000[Vijayalakshmi, L., Parthasarathi, V., Venkatraj, M. & Jeyaraman, R. (2000). Acta Cryst. C56, 1240-1241.]); Parthiban et al. (2009c[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383.],d[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2009d). Acta Cryst. E65, o3103.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28N2O

  • Mr = 348.47

  • Monoclinic, P 21 /n

  • a = 6.9700 (9) Å

  • b = 15.3476 (16) Å

  • c = 18.354 (2) Å

  • β = 94.622 (4)°

  • V = 1957.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.32 × 0.27 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 12742 measured reflections

  • 4416 independent reflections

  • 2070 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.169

  • S = 1.01

  • 4416 reflections

  • 288 parameters

  • 38 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrogen containing heterocyclic oximes and oxime ethers are very important molecules in the field of medicinal chemistry due to their broad spectrum of biological activities viz. antifungal, antibacterial, antimycobacterial, analgesic, antagonistic, anticancer, antiinflammatory, local anesthetic and hypotensive activity (Parthiban et al., 2009a,b, 2010a,b; Jeyaraman & Avila, 1981). Since the stereochemistry of bio-active molecules is a major criterion for their biological response, it is of immense help to establish the stereochemistry of the newly synthesized molecules. Accordingly, we have synthesized the title oxime ether to examine its conformation and orientation of the substituents.

In the crystal structure, the oxime unit is partially flipped thus inducing disorder for the oxime (N2/O1/C22) and also for the piperidine ring N1/C1/C2/C8/C6/C7 and the cylcohexane ring C2–C6/C8 over two orientations. The site occupancy ratio refined to 0.813 (2) to 0.186 (4). The tolyl rings do not participate in the disorder (Fig. 3).

An analysis of the six-membered piperidine ring gave the following: According to Nardelli (Nardelli, 1983), the smallest displacement asymmetry parameters q2 and q3 are 0.052 (4) and -0.614 (4) Å, respectively. According to Cremer and Pople (Cremer & Pople, 1975), the ring puckering parameters such as total puckering amplitude QT and phase angle θ are 0.616 (4) Å and 175.5 (4)°. Thus, all parameters strongly support a near ideal chair conformation for the piperidine ring N1/C1/C2/C8/C6/C7. Similarly, the analysis of cyclohexane ring C2–C6/C8 indicates that it also adopts a chair conformation. It is, however, deviating more from the ideal chair with puckering parameters QT and θ of 0.553 (7) Å and 169.2 (9)°, and q2 and q3 of 0.108 (9) and -0.543 (8) Å, respectively.

The torsion angles C8—C6—C7—C15 and C8—C2—C1—C9 of the ortho-tolyl rings are -177.2 (3) and 179.2 (3)° and they are orientated at an angle of 23.77 (3)° with respect to one another, whereas in its ketone precursor, 2,4-bis(2-methylphenyl)-3-azabicyclo[3.3.1]nonan-9-one, they are oriented at an angle of 29.4 (1)° (Vijayalakshmi et al., 2000). The crystal structure of the title compound is stabilized by intermolecular N—H···π interactions with N1—H1···Cg1 = 2.633 Å, (Cg: C15–C20; symmetry operator = 1 - x, 2 - y, -z.)

Thus, the detailed crystallographic study of asymmetry parameters, ring puckering parameters and torsion angles calculated for the title compound proves that the bicyclic moiety exists in a twin-chair conformation with equatorial orientation of the ortho-tolyl rings on both sides of the secondary amino group.

Related literature top

For the synthesis and biological activities of oxime derivatives of 3-azabicyclo[3.3.1]nonan-9-ones, see: Parthiban et al. (2009a,b, 2010a,b); Jeyaraman & Avila (1981). For related structures with similar conformations, see: Vijayalakshmi et al. (2000); Parthiban et al. (2009c,d). For ring-puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was synthesized by adding 0.501 g O-methylhydroxylamine hydrochloride (0.006 mol) and 2.04 g sodium acetate trihydrate (0.015 mol) in a hot ethanolic solution of 1.597 g 2,4-bis(2-methylphenyl)-3-azabicyclo[3.3.1]nonan-9-one (0.005 mol) (Parthiban et al., 2010b). The content was refluxed at 345–350 K till completion of the reaction; the progress and completion of the reaction was monitored by TLC. After the consumption of starting material, the content of the flask was concentrated and water was added. Then, the precipitated oxime ether was separated by filtration, washed with an excess of water, and dried in vacuum. X-ray diffraction quality crystals of 2,4-bis(2-methylphenyl)-3-azabicyclo[3.3.1]nonan-9-one O-methyloxime were obtained by slow evaporation from ethanol.

Refinement top

The cyclohexane ring C2–C6/C8 and the oxime ether N2/O1/C22 are disordered over two orientations with a refined site occupancy ratio of 0.813 (2) to 0.186 (4). The two moieties were restrained to have similar geometries. The atoms N2b, O1b and C22b of the minor moiety were restrained to have similar anisotropic displacement parameters. The ADPs of all other disordered atoms in the minor moiety were constrained to be identical to those of their counterparts in the major moiety.

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other H atoms were fixed geometrically and allowed to ride on the parent C atoms with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å, methine C—H = 0.98 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C).

Structure description top

Nitrogen containing heterocyclic oximes and oxime ethers are very important molecules in the field of medicinal chemistry due to their broad spectrum of biological activities viz. antifungal, antibacterial, antimycobacterial, analgesic, antagonistic, anticancer, antiinflammatory, local anesthetic and hypotensive activity (Parthiban et al., 2009a,b, 2010a,b; Jeyaraman & Avila, 1981). Since the stereochemistry of bio-active molecules is a major criterion for their biological response, it is of immense help to establish the stereochemistry of the newly synthesized molecules. Accordingly, we have synthesized the title oxime ether to examine its conformation and orientation of the substituents.

In the crystal structure, the oxime unit is partially flipped thus inducing disorder for the oxime (N2/O1/C22) and also for the piperidine ring N1/C1/C2/C8/C6/C7 and the cylcohexane ring C2–C6/C8 over two orientations. The site occupancy ratio refined to 0.813 (2) to 0.186 (4). The tolyl rings do not participate in the disorder (Fig. 3).

An analysis of the six-membered piperidine ring gave the following: According to Nardelli (Nardelli, 1983), the smallest displacement asymmetry parameters q2 and q3 are 0.052 (4) and -0.614 (4) Å, respectively. According to Cremer and Pople (Cremer & Pople, 1975), the ring puckering parameters such as total puckering amplitude QT and phase angle θ are 0.616 (4) Å and 175.5 (4)°. Thus, all parameters strongly support a near ideal chair conformation for the piperidine ring N1/C1/C2/C8/C6/C7. Similarly, the analysis of cyclohexane ring C2–C6/C8 indicates that it also adopts a chair conformation. It is, however, deviating more from the ideal chair with puckering parameters QT and θ of 0.553 (7) Å and 169.2 (9)°, and q2 and q3 of 0.108 (9) and -0.543 (8) Å, respectively.

The torsion angles C8—C6—C7—C15 and C8—C2—C1—C9 of the ortho-tolyl rings are -177.2 (3) and 179.2 (3)° and they are orientated at an angle of 23.77 (3)° with respect to one another, whereas in its ketone precursor, 2,4-bis(2-methylphenyl)-3-azabicyclo[3.3.1]nonan-9-one, they are oriented at an angle of 29.4 (1)° (Vijayalakshmi et al., 2000). The crystal structure of the title compound is stabilized by intermolecular N—H···π interactions with N1—H1···Cg1 = 2.633 Å, (Cg: C15–C20; symmetry operator = 1 - x, 2 - y, -z.)

Thus, the detailed crystallographic study of asymmetry parameters, ring puckering parameters and torsion angles calculated for the title compound proves that the bicyclic moiety exists in a twin-chair conformation with equatorial orientation of the ortho-tolyl rings on both sides of the secondary amino group.

For the synthesis and biological activities of oxime derivatives of 3-azabicyclo[3.3.1]nonan-9-ones, see: Parthiban et al. (2009a,b, 2010a,b); Jeyaraman & Avila (1981). For related structures with similar conformations, see: Vijayalakshmi et al. (2000); Parthiban et al. (2009c,d). For ring-puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids. The minor moiety is omitted for clarity.
[Figure 2] Fig. 2. Packing diagram showing the N—H···π interaction. N1—H1···Cg1 = 2.633Å [Cg: C15–C20] and symmetry operator = 1 - x, 2 - y, -z.
[Figure 3] Fig. 3. ORTEP (H atoms are removed for clarity) showing the disorder in two orientations.
2,4-Bis(2-methylphenyl)-3-azabicyclo[3.3.1]nonan-9-one O-methyloxime top
Crystal data top
C23H28N2OF(000) = 752
Mr = 348.47Dx = 1.183 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2129 reflections
a = 6.9700 (9) Åθ = 2.2–20.4°
b = 15.3476 (16) ŵ = 0.07 mm1
c = 18.354 (2) ÅT = 298 K
β = 94.622 (4)°Block, colourless
V = 1957.0 (4) Å30.32 × 0.27 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4416 independent reflections
Radiation source: fine-focus sealed tube2070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.977, Tmax = 0.989k = 2013
12742 measured reflectionsl = 2420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.1996P]
where P = (Fo2 + 2Fc2)/3
4416 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.14 e Å3
38 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H28N2OV = 1957.0 (4) Å3
Mr = 348.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9700 (9) ŵ = 0.07 mm1
b = 15.3476 (16) ÅT = 298 K
c = 18.354 (2) Å0.32 × 0.27 × 0.15 mm
β = 94.622 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4416 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2070 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.043
12742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06038 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.14 e Å3
4416 reflectionsΔρmin = 0.19 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6085 (3)0.86925 (11)0.08349 (9)0.0470 (5)
C10.5497 (3)0.81766 (13)0.14551 (11)0.0461 (6)
H10.40870.81690.14280.055*
C70.5361 (3)0.83350 (13)0.01217 (12)0.0497 (6)
H70.39530.83170.01000.060*
C90.6212 (3)0.85822 (13)0.21810 (12)0.0462 (6)
C100.7833 (3)0.91132 (15)0.22295 (13)0.0563 (6)
H100.84570.92230.18100.068*
C110.8540 (4)0.94796 (17)0.28793 (14)0.0663 (7)
H110.96140.98400.28950.080*
C120.7663 (4)0.93131 (18)0.34982 (15)0.0704 (8)
H120.81400.95520.39420.084*
C130.6056 (4)0.87857 (17)0.34608 (14)0.0670 (8)
H130.54670.86700.38870.080*
C140.5287 (3)0.84220 (15)0.28101 (13)0.0533 (6)
C150.5949 (3)0.88982 (14)0.05005 (12)0.0485 (6)
C160.4936 (3)0.88717 (14)0.11942 (13)0.0554 (6)
C170.5643 (4)0.93407 (17)0.17588 (13)0.0654 (7)
H170.49870.93170.22200.078*
C180.7258 (4)0.98333 (18)0.16638 (15)0.0737 (8)
H180.77171.01310.20560.088*
C190.8199 (4)0.9886 (2)0.09852 (15)0.0850 (9)
H190.92771.02410.09070.102*
C200.7563 (4)0.94157 (17)0.04161 (14)0.0716 (8)
H200.82420.94480.00400.086*
C210.3492 (4)0.78778 (18)0.28148 (15)0.0799 (9)
H21A0.25700.80690.24310.120*
H21B0.29560.79400.32780.120*
H21C0.38040.72770.27380.120*
C230.3094 (4)0.8366 (2)0.13412 (16)0.0958 (11)
H23A0.33830.77570.13760.144*
H23B0.24390.85610.17920.144*
H23C0.22850.84590.09490.144*
C20.6198 (9)0.7228 (3)0.1364 (2)0.0452 (10)0.814 (5)
H20.56690.68710.17430.054*0.814 (5)
C30.8388 (9)0.7096 (8)0.1418 (3)0.0547 (14)0.814 (5)
H3A0.89370.73530.18710.066*0.814 (5)
H3B0.86610.64760.14390.066*0.814 (5)
C40.9363 (12)0.7491 (12)0.0785 (4)0.0608 (14)0.814 (5)
H4A1.06730.72750.07950.073*0.814 (5)
H4B0.94210.81190.08440.073*0.814 (5)
C50.8307 (10)0.7274 (7)0.0047 (3)0.0628 (12)0.814 (5)
H5A0.85820.66750.00750.075*0.814 (5)
H5B0.88040.76430.03230.075*0.814 (5)
C60.6115 (9)0.7394 (2)0.0025 (2)0.0491 (10)0.814 (5)
H60.55320.71580.04380.059*0.814 (5)
C80.5378 (8)0.6901 (3)0.0635 (2)0.0475 (11)0.814 (5)
C2B0.621 (4)0.7216 (11)0.1560 (11)0.0452 (10)0.186 (5)
H2B0.56910.69320.19800.054*0.186 (5)
C3B0.843 (4)0.715 (4)0.1583 (18)0.0547 (14)0.186 (5)
H3C0.89850.74590.20110.066*0.186 (5)
H3D0.87990.65430.16360.066*0.186 (5)
C4B0.928 (6)0.751 (6)0.091 (2)0.0608 (14)0.186 (5)
H4C1.05710.72790.08940.073*0.186 (5)
H4D0.94060.81410.09700.073*0.186 (5)
C5B0.814 (5)0.733 (4)0.0191 (17)0.0628 (12)0.186 (5)
H5C0.85080.67550.00230.075*0.186 (5)
H5D0.85040.77490.01670.075*0.186 (5)
C6B0.594 (5)0.7349 (11)0.0214 (12)0.0491 (10)0.186 (5)
H6B0.53850.70440.02230.059*0.186 (5)
C8B0.546 (4)0.6829 (17)0.0853 (12)0.0475 (11)0.186 (5)
N20.4164 (5)0.6292 (2)0.0473 (2)0.0555 (9)0.814 (5)
O10.3550 (4)0.59007 (17)0.11187 (14)0.0658 (9)0.814 (5)
C220.2246 (7)0.5220 (3)0.0898 (3)0.0928 (17)0.814 (5)
H22A0.12270.54490.05700.139*0.814 (5)
H22B0.17150.49780.13200.139*0.814 (5)
H22C0.29160.47730.06540.139*0.814 (5)
N2B0.427 (2)0.6218 (8)0.0948 (8)0.048 (4)0.186 (5)
O1B0.3413 (16)0.5918 (7)0.0264 (5)0.060 (3)0.186 (5)
C22B0.220 (3)0.5208 (13)0.0398 (10)0.087 (7)0.186 (5)
H22D0.29580.47350.06080.130*0.186 (5)
H22E0.15350.50210.00540.130*0.186 (5)
H22F0.12770.53840.07310.130*0.186 (5)
H1N0.563 (4)0.927 (2)0.0881 (15)0.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0589 (12)0.0416 (10)0.0405 (11)0.0091 (9)0.0041 (9)0.0006 (9)
C10.0432 (13)0.0455 (12)0.0500 (14)0.0055 (10)0.0066 (10)0.0049 (11)
C70.0505 (14)0.0450 (13)0.0526 (15)0.0115 (10)0.0024 (11)0.0044 (11)
C90.0466 (14)0.0456 (13)0.0471 (14)0.0057 (10)0.0077 (11)0.0050 (10)
C100.0569 (15)0.0651 (15)0.0479 (15)0.0076 (12)0.0104 (12)0.0052 (12)
C110.0605 (17)0.0771 (18)0.0612 (18)0.0052 (14)0.0041 (14)0.0142 (14)
C120.082 (2)0.0784 (19)0.0500 (17)0.0130 (16)0.0007 (15)0.0095 (14)
C130.080 (2)0.0710 (17)0.0530 (17)0.0211 (15)0.0244 (14)0.0091 (14)
C140.0569 (15)0.0541 (14)0.0503 (15)0.0102 (12)0.0142 (12)0.0102 (12)
C150.0528 (14)0.0475 (13)0.0445 (14)0.0041 (11)0.0006 (11)0.0035 (11)
C160.0612 (16)0.0500 (14)0.0529 (15)0.0001 (12)0.0074 (12)0.0072 (12)
C170.083 (2)0.0656 (17)0.0454 (15)0.0104 (15)0.0069 (14)0.0010 (13)
C180.077 (2)0.0842 (19)0.0602 (18)0.0015 (16)0.0084 (16)0.0196 (15)
C190.071 (2)0.105 (2)0.077 (2)0.0352 (17)0.0080 (16)0.0304 (18)
C200.0695 (19)0.0869 (19)0.0552 (16)0.0322 (15)0.0137 (14)0.0161 (14)
C210.074 (2)0.086 (2)0.084 (2)0.0038 (16)0.0332 (16)0.0165 (16)
C230.095 (2)0.102 (2)0.083 (2)0.0286 (19)0.0386 (18)0.0025 (17)
C20.0569 (16)0.0393 (12)0.040 (3)0.0069 (11)0.011 (2)0.0081 (16)
C30.0604 (17)0.051 (2)0.052 (4)0.0061 (13)0.002 (2)0.005 (3)
C40.0500 (17)0.0626 (19)0.071 (4)0.0018 (15)0.012 (2)0.005 (4)
C50.075 (2)0.057 (2)0.060 (3)0.0040 (18)0.025 (2)0.008 (3)
C60.067 (2)0.0449 (14)0.035 (3)0.0150 (13)0.007 (2)0.0068 (14)
C80.0547 (16)0.0316 (15)0.055 (3)0.0055 (13)0.001 (2)0.004 (2)
C2B0.0569 (16)0.0393 (12)0.040 (3)0.0069 (11)0.011 (2)0.0081 (16)
C3B0.0604 (17)0.051 (2)0.052 (4)0.0061 (13)0.002 (2)0.005 (3)
C4B0.0500 (17)0.0626 (19)0.071 (4)0.0018 (15)0.012 (2)0.005 (4)
C5B0.075 (2)0.057 (2)0.060 (3)0.0040 (18)0.025 (2)0.008 (3)
C6B0.067 (2)0.0449 (14)0.035 (3)0.0150 (13)0.007 (2)0.0068 (14)
C8B0.0547 (16)0.0316 (15)0.055 (3)0.0055 (13)0.001 (2)0.004 (2)
N20.069 (2)0.0400 (19)0.057 (2)0.0111 (15)0.003 (2)0.010 (2)
O10.074 (2)0.0531 (17)0.0686 (18)0.0232 (13)0.0030 (13)0.0137 (12)
C220.082 (3)0.066 (2)0.126 (4)0.041 (2)0.020 (3)0.017 (3)
N2B0.073 (10)0.029 (8)0.042 (8)0.011 (6)0.004 (8)0.008 (7)
O1B0.085 (8)0.045 (6)0.047 (6)0.028 (5)0.003 (5)0.002 (5)
C22B0.096 (13)0.070 (10)0.090 (14)0.050 (9)0.018 (13)0.000 (12)
Geometric parameters (Å, º) top
N1—C71.470 (3)C2—C31.536 (5)
N1—C11.472 (3)C2—H20.9800
N1—H1N0.94 (3)C3—C41.519 (5)
C1—C91.518 (3)C3—H3A0.9700
C1—C21.549 (4)C3—H3B0.9700
C1—C2B1.563 (15)C4—C51.525 (5)
C1—H10.9800C4—H4A0.9700
C7—C151.515 (3)C4—H4B0.9700
C7—C61.552 (4)C5—C61.536 (5)
C7—C6B1.570 (15)C5—H5A0.9700
C7—H70.9800C5—H5B0.9700
C9—C141.389 (3)C6—C81.477 (4)
C9—C101.390 (3)C6—H60.9800
C10—C111.374 (3)C8—N21.280 (5)
C10—H100.9300C2B—C8B1.483 (16)
C11—C121.357 (4)C2B—C3B1.548 (17)
C11—H110.9300C2B—H2B0.9800
C12—C131.380 (4)C3B—C4B1.513 (17)
C12—H120.9300C3B—H3C0.9700
C13—C141.386 (3)C3B—H3D0.9700
C13—H130.9300C4B—C5B1.520 (17)
C14—C211.505 (3)C4B—H4C0.9700
C15—C201.375 (3)C4B—H4D0.9700
C15—C161.406 (3)C5B—C6B1.543 (17)
C16—C171.385 (3)C5B—H5C0.9700
C16—C231.506 (3)C5B—H5D0.9700
C17—C181.355 (4)C6B—C8B1.478 (16)
C17—H170.9300C6B—H6B0.9800
C18—C191.362 (3)C8B—N2B1.275 (16)
C18—H180.9300N2—O11.424 (4)
C19—C201.372 (3)O1—C221.422 (4)
C19—H190.9300C22—H22A0.9600
C20—H200.9300C22—H22B0.9600
C21—H21A0.9600C22—H22C0.9600
C21—H21B0.9600N2B—O1B1.422 (13)
C21—H21C0.9600O1B—C22B1.414 (14)
C23—H23A0.9600C22B—H22D0.9600
C23—H23B0.9600C22B—H22E0.9600
C23—H23C0.9600C22B—H22F0.9600
C2—C81.499 (4)
C7—N1—C1113.01 (16)C3—C2—H2108.0
C7—N1—H1N109.5 (17)C1—C2—H2108.0
C1—N1—H1N108.5 (18)C4—C3—C2113.6 (5)
N1—C1—C9111.47 (17)C4—C3—H3A108.8
N1—C1—C2108.2 (2)C2—C3—H3A108.8
C9—C1—C2113.3 (2)C4—C3—H3B108.8
N1—C1—C2B119.8 (10)C2—C3—H3B108.8
C9—C1—C2B101.5 (8)H3A—C3—H3B107.7
N1—C1—H1107.9C3—C4—C5112.3 (5)
C9—C1—H1107.9C3—C4—H4A109.2
C2—C1—H1107.9C5—C4—H4A109.2
C2B—C1—H1107.7C3—C4—H4B109.2
N1—C7—C15111.35 (17)C5—C4—H4B109.2
N1—C7—C6110.8 (2)H4A—C4—H4B107.9
C15—C7—C6109.3 (2)C4—C5—C6113.9 (5)
N1—C7—C6B101.4 (9)C4—C5—H5A108.8
C15—C7—C6B123.3 (9)C6—C5—H5A108.8
N1—C7—H7108.5C4—C5—H5B108.8
C15—C7—H7108.5C6—C5—H5B108.8
C6—C7—H7108.5H5A—C5—H5B107.7
C6B—C7—H7102.9C8—C6—C5108.9 (4)
C14—C9—C10118.7 (2)C8—C6—C7104.3 (3)
C14—C9—C1121.0 (2)C5—C6—C7117.0 (5)
C10—C9—C1120.3 (2)C8—C6—H6108.8
C11—C10—C9121.9 (2)C5—C6—H6108.8
C11—C10—H10119.1C7—C6—H6108.8
C9—C10—H10119.1N2—C8—C6117.6 (4)
C12—C11—C10119.7 (3)N2—C8—C2130.4 (4)
C12—C11—H11120.1C6—C8—C2112.0 (3)
C10—C11—H11120.1C8B—C2B—C3B106.1 (18)
C11—C12—C13119.2 (3)C8B—C2B—C1100.6 (16)
C11—C12—H12120.4C3B—C2B—C1112 (3)
C13—C12—H12120.4C8B—C2B—H2B112.5
C12—C13—C14122.4 (2)C3B—C2B—H2B112.5
C12—C13—H13118.8C1—C2B—H2B112.5
C14—C13—H13118.8C4B—C3B—C2B114 (2)
C13—C14—C9118.1 (2)C4B—C3B—H3C108.7
C13—C14—C21118.8 (2)C2B—C3B—H3C108.7
C9—C14—C21123.0 (2)C4B—C3B—H3D108.7
C20—C15—C16117.7 (2)C2B—C3B—H3D108.7
C20—C15—C7120.9 (2)H3C—C3B—H3D107.6
C16—C15—C7121.3 (2)C3B—C4B—C5B115 (2)
C17—C16—C15118.7 (2)C3B—C4B—H4C108.5
C17—C16—C23118.9 (2)C5B—C4B—H4C108.5
C15—C16—C23122.4 (2)C3B—C4B—H4D108.5
C18—C17—C16122.4 (2)C5B—C4B—H4D108.5
C18—C17—H17118.8H4C—C4B—H4D107.5
C16—C17—H17118.8C4B—C5B—C6B115 (2)
C17—C18—C19119.0 (3)C4B—C5B—H5C108.5
C17—C18—H18120.5C6B—C5B—H5C108.5
C19—C18—H18120.5C4B—C5B—H5D108.5
C18—C19—C20120.2 (3)C6B—C5B—H5D108.5
C18—C19—H19119.9H5C—C5B—H5D107.5
C20—C19—H19119.9C8B—C6B—C5B107.3 (19)
C19—C20—C15122.0 (2)C8B—C6B—C7122.3 (19)
C19—C20—H20119.0C5B—C6B—C7105 (3)
C15—C20—H20119.0C8B—C6B—H6B107.0
C14—C21—H21A109.5C5B—C6B—H6B107.0
C14—C21—H21B109.5C7—C6B—H6B107.0
H21A—C21—H21B109.5N2B—C8B—C6B134 (2)
C14—C21—H21C109.5N2B—C8B—C2B111.2 (19)
H21A—C21—H21C109.5C6B—C8B—C2B113.1 (16)
H21B—C21—H21C109.5C8—N2—O1110.7 (4)
C16—C23—H23A109.5C22—O1—N2107.5 (3)
C16—C23—H23B109.5C8B—N2B—O1B110.5 (14)
H23A—C23—H23B109.5C22B—O1B—N2B108.2 (11)
C16—C23—H23C109.5O1B—C22B—H22D109.5
H23A—C23—H23C109.5O1B—C22B—H22E109.5
H23B—C23—H23C109.5H22D—C22B—H22E109.5
C8—C2—C3108.6 (4)O1B—C22B—H22F109.5
C8—C2—C1108.1 (3)H22D—C22B—H22F109.5
C3—C2—C1116.0 (6)H22E—C22B—H22F109.5
C8—C2—H2108.0
C7—N1—C1—C9178.06 (17)C17—C18—C19—C202.8 (5)
C7—N1—C1—C256.7 (3)C18—C19—C20—C151.6 (5)
C1—N1—C7—C15178.36 (18)C16—C15—C20—C190.9 (4)
C1—N1—C7—C659.8 (3)C7—C15—C20—C19175.5 (3)
N1—C1—C9—C14155.62 (19)N1—C1—C2—C856.6 (4)
C2—C1—C9—C1482.1 (3)C9—C1—C2—C8179.3 (3)
N1—C1—C9—C1025.4 (3)N1—C1—C2—C365.6 (4)
C2—C1—C9—C1097.0 (3)C9—C1—C2—C358.5 (4)
C14—C9—C10—C110.1 (3)C8—C2—C3—C453.6 (8)
C1—C9—C10—C11178.9 (2)C1—C2—C3—C468.4 (8)
C9—C10—C11—C121.1 (4)C2—C3—C4—C546.2 (12)
C10—C11—C12—C130.9 (4)C3—C4—C5—C645.7 (13)
C11—C12—C13—C140.5 (4)C4—C5—C6—C853.0 (9)
C12—C13—C14—C91.7 (4)C4—C5—C6—C764.9 (9)
C12—C13—C14—C21178.0 (2)N1—C7—C6—C859.8 (4)
C10—C9—C14—C131.4 (3)C15—C7—C6—C8177.2 (3)
C1—C9—C14—C13177.60 (19)N1—C7—C6—C560.6 (4)
C10—C9—C14—C21178.3 (2)C15—C7—C6—C562.4 (4)
C1—C9—C14—C212.7 (3)C5—C6—C8—N2119.0 (6)
N1—C7—C15—C2025.6 (3)C7—C6—C8—N2115.4 (6)
C6—C7—C15—C2097.1 (3)C5—C6—C8—C262.0 (6)
N1—C7—C15—C16158.2 (2)C7—C6—C8—C263.6 (5)
C6—C7—C15—C1679.1 (3)C3—C2—C8—N2118.8 (8)
C20—C15—C16—C172.1 (3)C1—C2—C8—N2114.6 (6)
C7—C15—C16—C17174.2 (2)C3—C2—C8—C662.4 (6)
C20—C15—C16—C23176.7 (3)C1—C2—C8—C664.2 (6)
C7—C15—C16—C237.0 (4)C6—C8—N2—O1178.2 (4)
C15—C16—C17—C181.0 (4)C2—C8—N2—O10.6 (8)
C23—C16—C17—C18177.9 (3)C8—N2—O1—C22178.6 (5)
C16—C17—C18—C191.5 (4)

Experimental details

Crystal data
Chemical formulaC23H28N2O
Mr348.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.9700 (9), 15.3476 (16), 18.354 (2)
β (°) 94.622 (4)
V3)1957.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.27 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
12742, 4416, 2070
Rint0.043
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.169, 1.01
No. of reflections4416
No. of parameters288
No. of restraints38
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This research was supported by the Corporate-affiliated Research Institute of Academic-Industrial-Institutional Cooperation Improvement (Business No. S7080008110). The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009b). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2009d). Acta Cryst. E65, o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 1642–1647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayalakshmi, L., Parthasarathi, V., Venkatraj, M. & Jeyaraman, R. (2000). Acta Cryst. C56, 1240–1241.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds