organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­fluoro­ethyl 4-methyl­benzene­sulfonate

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 6 September 2010; accepted 29 September 2010; online 9 October 2010)

In the crystal structure of the title compound, C9H9F3O3S, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules along the c-axis direction. Also present are slipped ππ stacking inter­actions between phenyl­ene rings, with perpendicular inter­planar distances of 3.55 (2) Å and centroid–centroid distances of 3.851 (2) Å.

Related literature

The title compound is a reactive electrophile and a useful inter­mediate in organic synthesis. For general background and the synthesis, see: Gøgsig et al. (2008[Gøgsig, T. M., Søbjerg, L. S., Lindhardt (neé Hansen), A. T., Jensen, K. L. & Skrydstrup, T. (2008). J. Org. Chem. 73, 3404-3410.]). For a similar structure, see: Asano et al. (2009[Asano, K. & Matsubara, S. (2009). Org. Lett. 11, 1757-1759.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9F3O3S

  • Mr = 254.22

  • Monoclinic, P 21 /c

  • a = 8.3760 (17) Å

  • b = 11.827 (2) Å

  • c = 11.145 (2) Å

  • β = 94.54 (3)°

  • V = 1100.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.909, Tmax = 0.968

  • 2149 measured reflections

  • 2005 independent reflections

  • 1355 reflections with I > 2σ(I)

  • Rint = 0.012

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.172

  • S = 1.00

  • 2005 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.51 3.225 (4) 131
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Electrophilic reagents play an important role in the synthesis of organic compounds and are often used in the synthesis of organic intermediates. (Asano et al. 2009). The title compound, 2,2,2-trifluoroethyl 4-methylbenzenesulfonate, is a electrophilic vinylation reagent commonly used for the synthesis of compounds such as vinyl styrenes that in turn find use as valuable intermediates in the synthesis of fine chemicals and as precursors to functionalized polymers (Gøgsig et al., 2008).

We report here in the crystal structure of the title compound, 2,2,2-trifluoroethyl 4-methylbenzenesulfonate. In the molecule of the title compound (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges. An intramolecular C-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring (C4/C5/S/O3/H4A). In the crystal structure, the weak intermolecular C8-H8···O1 hydrogen bond connects the molecules along the direction of the c axis (Fig. 2). Also present are slipped π-π stacking interactions between phenylene rings with perpendicular interplanar distances of 3.55 (2) Å and centroid to centroid distances of 3.851 (2) Å (symmetry operator for the second molecule: -x, 2-y, -z).

Related literature top

The title compound is an important reactive electrophile and a useful intermediate in organic synthesis. For general background and the synthesis, see: Gøgsig et al. (2008). For a similar structure, see: Asano et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, 2,2,2-trifluoroethyl 4-methylbenzenesulfonate was prepared on a literature procedure (Gøgsig et al., 2008). 2,2,2-Trifluoroethanol (19.90 mmol) and triethylamine (71.70 mmol) were dissolved in dry dichloromethane (20.0 mL). The solution was cooled to 273K and tosyl chloride (24.9 mmol) was added. The reaction was stirred at 273K for 1 h before being allowed to warm to room temperature. Hereafter the reaction was stirred at room temperature overnight. The organic phase was washed with brine (2 × 50 mL) and dried over sodium sulfate. After concentration in vacuo the crude product was purified by flash cromatography on silica gel using pentane/dichloromethane (4:1) and pentane/dichloromethane (3:1) as the eluents. This afforded of the title compound (96 % yield) as a colorless solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

Electrophilic reagents play an important role in the synthesis of organic compounds and are often used in the synthesis of organic intermediates. (Asano et al. 2009). The title compound, 2,2,2-trifluoroethyl 4-methylbenzenesulfonate, is a electrophilic vinylation reagent commonly used for the synthesis of compounds such as vinyl styrenes that in turn find use as valuable intermediates in the synthesis of fine chemicals and as precursors to functionalized polymers (Gøgsig et al., 2008).

We report here in the crystal structure of the title compound, 2,2,2-trifluoroethyl 4-methylbenzenesulfonate. In the molecule of the title compound (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges. An intramolecular C-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring (C4/C5/S/O3/H4A). In the crystal structure, the weak intermolecular C8-H8···O1 hydrogen bond connects the molecules along the direction of the c axis (Fig. 2). Also present are slipped π-π stacking interactions between phenylene rings with perpendicular interplanar distances of 3.55 (2) Å and centroid to centroid distances of 3.851 (2) Å (symmetry operator for the second molecule: -x, 2-y, -z).

The title compound is an important reactive electrophile and a useful intermediate in organic synthesis. For general background and the synthesis, see: Gøgsig et al. (2008). For a similar structure, see: Asano et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of 2,2,2-trifluoroethyl 4-methylbenzenesulfonate. Dashed lines indicate intermolecular C-H···O interactions.
2,2,2-Trifluoroethyl 4-methylbenzenesulfonate top
Crystal data top
C9H9F3O3SF(000) = 520
Mr = 254.22Dx = 1.534 Mg m3
Monoclinic, P21/cMelting point: 312 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.3760 (17) ÅCell parameters from 25 reflections
b = 11.827 (2) Åθ = 9–13°
c = 11.145 (2) ŵ = 0.33 mm1
β = 94.54 (3)°T = 293 K
V = 1100.6 (4) Å3Needle, colourless
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1355 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.909, Tmax = 0.968l = 1313
2149 measured reflections3 standard reflections every 200 reflections
2005 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.350P]
where P = (Fo2 + 2Fc2)/3
2005 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C9H9F3O3SV = 1100.6 (4) Å3
Mr = 254.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3760 (17) ŵ = 0.33 mm1
b = 11.827 (2) ÅT = 293 K
c = 11.145 (2) Å0.30 × 0.10 × 0.10 mm
β = 94.54 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1355 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.012
Tmin = 0.909, Tmax = 0.9683 standard reflections every 200 reflections
2149 measured reflections intensity decay: 1%
2005 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2005 reflectionsΔρmin = 0.29 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.22668 (10)0.81228 (8)0.14051 (7)0.0524 (3)
O10.2130 (3)0.8490 (2)0.2610 (2)0.0726 (8)
O20.2305 (3)0.6787 (2)0.15228 (18)0.0564 (7)
O30.3590 (3)0.8450 (2)0.0778 (2)0.0685 (8)
C10.3915 (5)0.8728 (4)0.1679 (4)0.0878 (14)
H1B0.36950.88620.24990.132*
H1C0.45310.93450.13990.132*
H1D0.45090.80380.16300.132*
C20.2361 (5)0.8634 (3)0.0908 (3)0.0590 (10)
C30.0892 (5)0.8731 (3)0.1392 (3)0.0569 (9)
H3B0.08700.88930.22070.068*
C40.0537 (4)0.8594 (3)0.0705 (3)0.0511 (8)
H4A0.15090.86500.10510.061*
C50.0493 (4)0.8369 (3)0.0522 (3)0.0442 (8)
C60.0958 (4)0.8308 (3)0.1034 (3)0.0517 (9)
H6A0.09810.81780.18560.062*
C70.2343 (5)0.8439 (3)0.0336 (3)0.0623 (10)
H7A0.33100.83990.06900.075*
C80.2628 (5)0.6142 (3)0.0482 (3)0.0662 (11)
H8A0.36790.63330.02340.079*
H8B0.18400.63160.01780.079*
C90.2565 (6)0.4960 (4)0.0770 (4)0.0717 (11)
F30.1153 (4)0.4632 (3)0.1101 (3)0.1040 (9)
F20.3549 (4)0.4617 (2)0.1673 (3)0.1064 (10)
F10.2812 (4)0.4335 (3)0.0197 (3)0.1119 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0482 (5)0.0686 (6)0.0399 (5)0.0007 (4)0.0000 (3)0.0052 (4)
O10.0794 (19)0.095 (2)0.0415 (14)0.0052 (15)0.0036 (12)0.0168 (14)
O20.0625 (16)0.0732 (17)0.0339 (12)0.0100 (12)0.0057 (10)0.0013 (11)
O30.0511 (15)0.0831 (19)0.0722 (17)0.0068 (13)0.0115 (13)0.0018 (15)
C10.075 (3)0.096 (3)0.087 (3)0.005 (3)0.027 (2)0.007 (3)
C20.063 (2)0.056 (2)0.055 (2)0.0001 (18)0.0071 (18)0.0006 (18)
C30.070 (2)0.070 (2)0.0309 (17)0.0066 (19)0.0043 (16)0.0094 (16)
C40.054 (2)0.061 (2)0.0397 (18)0.0017 (16)0.0090 (15)0.0023 (16)
C50.0430 (18)0.0482 (18)0.0411 (17)0.0026 (14)0.0024 (13)0.0028 (14)
C60.051 (2)0.063 (2)0.0421 (18)0.0018 (16)0.0120 (15)0.0010 (16)
C70.052 (2)0.069 (2)0.066 (2)0.0010 (18)0.0102 (18)0.005 (2)
C80.079 (3)0.070 (3)0.052 (2)0.007 (2)0.0204 (19)0.0014 (19)
C90.079 (3)0.068 (3)0.067 (3)0.003 (2)0.005 (2)0.004 (2)
F30.096 (2)0.110 (2)0.106 (2)0.0209 (17)0.0106 (16)0.0062 (17)
F20.106 (2)0.094 (2)0.116 (2)0.0091 (16)0.0117 (18)0.0086 (17)
F10.132 (3)0.096 (2)0.109 (2)0.0005 (18)0.0163 (19)0.0149 (17)
Geometric parameters (Å, º) top
S—O31.410 (3)C4—C51.397 (4)
S—O11.425 (2)C4—H4A0.9300
S—O21.585 (3)C5—C61.385 (4)
S—C51.740 (3)C6—C71.354 (5)
O2—C81.432 (4)C6—H6A0.9300
C1—C21.506 (5)C7—H7A0.9300
C1—H1B0.9600C8—C91.437 (6)
C1—H1C0.9600C8—H8A0.9700
C1—H1D0.9600C8—H8B0.9700
C2—C31.387 (5)C9—F21.314 (5)
C2—C71.404 (5)C9—F31.325 (5)
C3—C41.379 (5)C9—F11.336 (5)
C3—H3B0.9300
O3—S—O1120.54 (18)C6—C5—C4120.4 (3)
O3—S—O2107.64 (15)C6—C5—S119.7 (2)
O1—S—O2103.21 (15)C4—C5—S119.9 (3)
O3—S—C5110.08 (16)C7—C6—C5119.8 (3)
O1—S—C5110.68 (16)C7—C6—H6A120.1
O2—S—C5102.95 (15)C5—C6—H6A120.1
C8—O2—S117.9 (2)C6—C7—C2121.9 (3)
C2—C1—H1B109.5C6—C7—H7A119.1
C2—C1—H1C109.5C2—C7—H7A119.1
H1B—C1—H1C109.5O2—C8—C9109.0 (3)
C2—C1—H1D109.5O2—C8—H8A109.9
H1B—C1—H1D109.5C9—C8—H8A109.9
H1C—C1—H1D109.5O2—C8—H8B109.9
C3—C2—C7117.2 (3)C9—C8—H8B109.9
C3—C2—C1121.7 (4)H8A—C8—H8B108.3
C7—C2—C1121.1 (4)F2—C9—F3102.5 (4)
C4—C3—C2122.1 (3)F2—C9—F1108.7 (4)
C4—C3—H3B118.9F3—C9—F1105.1 (4)
C2—C3—H3B118.9F2—C9—C8116.1 (4)
C3—C4—C5118.5 (3)F3—C9—C8113.4 (4)
C3—C4—H4A120.7F1—C9—C8110.4 (4)
C5—C4—H4A120.7
O3—S—O2—C844.3 (3)O1—S—C5—C4149.6 (3)
O1—S—O2—C8172.8 (3)O2—S—C5—C4100.7 (3)
C5—S—O2—C872.0 (3)C4—C5—C6—C71.7 (5)
C7—C2—C3—C42.8 (6)S—C5—C6—C7176.5 (3)
C1—C2—C3—C4176.9 (4)C5—C6—C7—C20.2 (6)
C2—C3—C4—C51.1 (6)C3—C2—C7—C62.4 (6)
C3—C4—C5—C61.2 (5)C1—C2—C7—C6177.4 (4)
C3—C4—C5—S176.9 (3)S—O2—C8—C9178.5 (3)
O3—S—C5—C6168.1 (3)O2—C8—C9—F257.8 (5)
O1—S—C5—C632.3 (3)O2—C8—C9—F360.4 (5)
O2—S—C5—C677.4 (3)O2—C8—C9—F1178.0 (3)
O3—S—C5—C413.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.932.592.938 (4)103
C8—H8B···O1i0.972.513.225 (4)131
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H9F3O3S
Mr254.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3760 (17), 11.827 (2), 11.145 (2)
β (°) 94.54 (3)
V3)1100.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.909, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
2149, 2005, 1355
Rint0.012
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.172, 1.00
No. of reflections2005
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.93002.59002.938 (4)103.00
C8—H8B···O1i0.97002.51003.225 (4)131.00
Symmetry code: (i) x, y+3/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAsano, K. & Matsubara, S. (2009). Org. Lett. 11, 1757–1759.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGøgsig, T. M., Søbjerg, L. S., Lindhardt (neé Hansen), A. T., Jensen, K. L. & Skrydstrup, T. (2008). J. Org. Chem. 73, 3404–3410.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds