organic compounds
(1R,4S)-7,8-Dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine
aDepartment of Chemistry and Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu
The title compound, C16H16Cl2N2, was synthesized by the condensation reaction between 4,5-dichloro-o-phenylenediamine and (1R)-(-)-camphorquinone in boiling acetic acid. The two crystallographically independent molecules in the are related by a pseudo-inversion center.
Related literature
Steel & Fitchett (2000, 2006) illustrate the use of stereochemically active quinoxalines in extended metal–ligand networks.
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810044016/zl2314sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810044016/zl2314Isup2.hkl
To a 150 ml round bottom flask equipped with a reflux condenser was added 2.9 g (0.0120 mol) (1R)-(-)-camphorquinone, 2.77 g (0.0156 mol) 4,5-dichloro-o-phenylenediamine, and 50 ml glacial acetic acid. The mixture was heated to reflux for 3 h, and was then poured over ice to precipitate the crude product. After isolation via vacuum filtration, the crude product was recrystallized from methanol to yield 2.79 g (0.00908 mol) 3,4-dichlorocamphorquinoxaline (75% yield).
MP (K): 422.3-424.0; IR (CHCl3): 3086, 2051, 1521, 1404, 12635, 1166, 1118, 890, 876 cm-1; 1H NMR (300 MHz, CDCl3): δ 8.13 (s, 1H), 8.06 (s, 1H), 3.04 (d, 1H, J = 4.6 Hz), 2.31 (dtd, 1H, J = 4.6 Hz, J = 8 Hz, J = 12 Hz), 2.06 (dq, 1H, J = 8 Hz, J = 12 Hz), 1.40 (s, 3H), 1.39 (q, 2H, J = 10 Hz), 1.11 (s, 3H), 0.60 (s, 3H); 13C NMR (300 MHz, CDCl3): δ 166.8, 165.0, 140.4, 140.3, 132.2, 129.7, 129.5, 54.3, 54.0, 53.3, 31.8, 24.6, 20.4, 18.5, 10.0; UV/Vis (CH2Cl2; λmax) 260, 267, 365; MS (calculated for C16H16Cl2N2): M+: 306, measured: 306.
H atoms were included in calculated positions with C—H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.98 Å based upon type of carbon and were included in the
in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.Nitrogen-containing aromatic heterocycles have often been used as ligands in one-, two-, and three dimensional metal–organic coordination polymers. There has been interest in developing chiral nitrogen-containing aromatic heterocycles in order to have greater design control over the assembly of these extended networks in the solid state (Steel & Fitchett, 2000). As a subset of nitrogen-containing aromatic heterocycles, quinoxalines, pyrazino[2,3-g]quinoxalines, and phenazines have shown the ability to bind to a variety of metals and are, as ligands, easy to synthesize via condensation reactions between ethanediones/quinones and diamines/tetraamines (Steel & Fitchett, 2006). In this paper we report the synthesis and structure of the chiral (1R,4S)-7,8-dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine.
The title compound crystallizes in a chiral setting in the
P21 with two crystallographically independent molecules in the Fig. 1. The two molecules are closely related by a pseudo inversion center located near coordinates x = 0.263, y = 0.461, z = 0.252. All bond distances and angles fall within expected values and there are no classic hydrogen bonds; however as can be seen in Fig. 2, one of the molecules packs with a slight bend in the quinoxaline moiety. Fig. 3 shows the molecular overlay of the two molecules in the asymmetric unit.Steel & Fitchett (2000, 2006) illustrate the use of stereochemically active quinoxalines in extended metal–ligand networks.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H16Cl2N2 | F(000) = 640 |
Mr = 307.21 | Dx = 1.346 Mg m−3 |
Monoclinic, P21 | Melting point: 422 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9741 (3) Å | Cell parameters from 15315 reflections |
b = 13.0892 (5) Å | θ = 4.2–35.0° |
c = 16.9594 (5) Å | µ = 0.42 mm−1 |
β = 101.701 (3)° | T = 293 K |
V = 1515.97 (10) Å3 | Block, white |
Z = 4 | 0.32 × 0.18 × 0.11 mm |
Oxford Xcalibur Sapphire3 diffractometer | 12344 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 7343 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.1790 pixels mm-1 | θmax = 35.0°, θmin = 4.2° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −20→20 |
Tmin = 0.897, Tmax = 1.000 | l = −27→27 |
42674 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.0946P)2 + 0.0917P] where P = (Fo2 + 2Fc2)/3 |
S = 0.93 | (Δ/σ)max < 0.001 |
12344 reflections | Δρmax = 0.42 e Å−3 |
367 parameters | Δρmin = −0.18 e Å−3 |
1 restraint | Absolute structure: Flack (1983), with 5825 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (5) |
C16H16Cl2N2 | V = 1515.97 (10) Å3 |
Mr = 307.21 | Z = 4 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.9741 (3) Å | µ = 0.42 mm−1 |
b = 13.0892 (5) Å | T = 293 K |
c = 16.9594 (5) Å | 0.32 × 0.18 × 0.11 mm |
β = 101.701 (3)° |
Oxford Xcalibur Sapphire3 diffractometer | 12344 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 7343 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 1.000 | Rint = 0.032 |
42674 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.163 | Δρmax = 0.42 e Å−3 |
S = 0.93 | Δρmin = −0.18 e Å−3 |
12344 reflections | Absolute structure: Flack (1983), with 5825 Friedel pairs |
367 parameters | Absolute structure parameter: 0.03 (5) |
1 restraint |
Experimental. Absorption correction: CrysAlis Pro (Oxford Diffraction Ltd., 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Hydrogen atoms were included in calculated positions with a C—H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.98 Å based upon type of carbon. Hydrogen atoms were included in the refinement in riding motion approximation with a Uiso of either 1.2Ueq or 1.5Ueq of the carrier atom depending upon type of carbon. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1545 (3) | 0.45050 (16) | 0.49934 (12) | 0.0398 (4) | |
N1 | 0.2970 (3) | 0.42161 (16) | 0.46481 (11) | 0.0460 (4) | |
C2 | 0.2335 (3) | 0.38885 (17) | 0.38582 (12) | 0.0402 (4) | |
C3 | 0.3738 (3) | 0.35025 (19) | 0.34450 (14) | 0.0465 (5) | |
H3 | 0.5062 | 0.3515 | 0.3684 | 0.056* | |
C4 | 0.3134 (4) | 0.31076 (17) | 0.26865 (14) | 0.0442 (5) | |
Cl1 | 0.48375 (11) | 0.25649 (6) | 0.22037 (4) | 0.0677 (2) | |
C5 | 0.1167 (4) | 0.31228 (18) | 0.23080 (12) | 0.0451 (5) | |
Cl2 | 0.03974 (13) | 0.25733 (7) | 0.13693 (4) | 0.0764 (2) | |
C6 | −0.0217 (4) | 0.35345 (19) | 0.26854 (13) | 0.0471 (5) | |
H6 | −0.1519 | 0.3572 | 0.2418 | 0.057* | |
C7 | 0.0347 (3) | 0.39014 (16) | 0.34825 (12) | 0.0382 (4) | |
N2 | −0.1129 (3) | 0.42215 (15) | 0.38665 (11) | 0.0423 (4) | |
C8 | −0.0476 (3) | 0.45064 (16) | 0.46059 (12) | 0.0393 (4) | |
C9 | −0.1600 (4) | 0.48131 (19) | 0.52398 (14) | 0.0467 (5) | |
H9 | −0.2939 | 0.5059 | 0.5043 | 0.056* | |
C10 | −0.1369 (4) | 0.38915 (18) | 0.58179 (15) | 0.0521 (5) | |
H10A | −0.1703 | 0.3259 | 0.5524 | 0.063* | |
H10B | −0.2196 | 0.3966 | 0.6211 | 0.063* | |
C11 | 0.0802 (4) | 0.39084 (19) | 0.62275 (14) | 0.0534 (6) | |
H11A | 0.1447 | 0.3281 | 0.6122 | 0.064* | |
H11B | 0.0956 | 0.3994 | 0.6805 | 0.064* | |
C12 | 0.1656 (4) | 0.48392 (19) | 0.58474 (13) | 0.0467 (5) | |
C13 | 0.3638 (5) | 0.5211 (3) | 0.62876 (18) | 0.0753 (9) | |
H13A | 0.4578 | 0.4670 | 0.6314 | 0.113* | |
H13B | 0.3556 | 0.5416 | 0.6823 | 0.113* | |
H13C | 0.4038 | 0.5782 | 0.6005 | 0.113* | |
C14 | −0.0131 (4) | 0.55950 (18) | 0.57193 (13) | 0.0489 (5) | |
C15 | 0.0151 (6) | 0.6545 (2) | 0.52444 (19) | 0.0738 (9) | |
H15A | 0.0376 | 0.6351 | 0.4725 | 0.111* | |
H15B | 0.1258 | 0.6923 | 0.5529 | 0.111* | |
H15C | −0.1001 | 0.6963 | 0.5179 | 0.111* | |
C16 | −0.0675 (5) | 0.5936 (2) | 0.65206 (17) | 0.0650 (7) | |
H16A | 0.0376 | 0.6334 | 0.6826 | 0.097* | |
H16B | −0.0892 | 0.5344 | 0.6825 | 0.097* | |
H16C | −0.1846 | 0.6341 | 0.6407 | 0.097* | |
C17 | 0.3327 (3) | 0.43610 (18) | 0.00994 (12) | 0.0440 (5) | |
N3 | 0.1985 (3) | 0.47672 (17) | 0.04292 (11) | 0.0496 (5) | |
C18 | 0.2727 (3) | 0.52064 (17) | 0.11783 (12) | 0.0396 (4) | |
C19 | 0.1397 (3) | 0.56594 (19) | 0.15972 (13) | 0.0459 (5) | |
H19 | 0.0066 | 0.5669 | 0.1370 | 0.055* | |
C20 | 0.2070 (3) | 0.60867 (17) | 0.23410 (13) | 0.0426 (5) | |
Cl3 | 0.04203 (10) | 0.66515 (6) | 0.28452 (4) | 0.06479 (19) | |
C21 | 0.4066 (4) | 0.60690 (17) | 0.26942 (13) | 0.0445 (5) | |
Cl4 | 0.49046 (12) | 0.66082 (7) | 0.36273 (4) | 0.0725 (2) | |
C22 | 0.5387 (4) | 0.56247 (18) | 0.22961 (13) | 0.0456 (5) | |
H22 | 0.6712 | 0.5610 | 0.2534 | 0.055* | |
C23 | 0.4732 (3) | 0.51941 (16) | 0.15314 (12) | 0.0391 (4) | |
N4 | 0.6126 (3) | 0.47573 (15) | 0.11472 (11) | 0.0463 (4) | |
C24 | 0.5377 (3) | 0.43543 (16) | 0.04548 (12) | 0.0413 (4) | |
C25 | 0.6353 (4) | 0.37835 (19) | −0.01252 (13) | 0.0498 (5) | |
H25 | 0.7758 | 0.3907 | −0.0074 | 0.060* | |
C26 | 0.5749 (5) | 0.2668 (2) | −0.00338 (16) | 0.0633 (7) | |
H26A | 0.6464 | 0.2209 | −0.0319 | 0.076* | |
H26B | 0.5978 | 0.2470 | 0.0529 | 0.076* | |
C27 | 0.3554 (5) | 0.2660 (2) | −0.04104 (17) | 0.0693 (8) | |
H27A | 0.2791 | 0.2455 | −0.0018 | 0.083* | |
H27B | 0.3277 | 0.2197 | −0.0866 | 0.083* | |
C28 | 0.3087 (4) | 0.3782 (2) | −0.06852 (13) | 0.0540 (6) | |
C29 | 0.1155 (5) | 0.3946 (4) | −0.12606 (19) | 0.0893 (12) | |
H29A | 0.0101 | 0.3769 | −0.0999 | 0.134* | |
H29B | 0.1097 | 0.3523 | −0.1727 | 0.134* | |
H29C | 0.1037 | 0.4650 | −0.1421 | 0.134* | |
C30 | 0.5031 (4) | 0.40956 (18) | −0.09395 (13) | 0.0495 (5) | |
C31 | 0.5182 (6) | 0.5232 (2) | −0.11237 (17) | 0.0722 (9) | |
H31A | 0.6463 | 0.5377 | −0.1221 | 0.108* | |
H31B | 0.4964 | 0.5627 | −0.0673 | 0.108* | |
H31C | 0.4214 | 0.5405 | −0.1592 | 0.108* | |
C32 | 0.5429 (5) | 0.3497 (2) | −0.16611 (15) | 0.0638 (7) | |
H32A | 0.4404 | 0.3628 | −0.2121 | 0.096* | |
H32B | 0.5470 | 0.2780 | −0.1540 | 0.096* | |
H32C | 0.6662 | 0.3706 | −0.1777 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0469 (11) | 0.0376 (10) | 0.0361 (9) | −0.0027 (8) | 0.0115 (8) | −0.0006 (7) |
N1 | 0.0440 (10) | 0.0562 (11) | 0.0383 (8) | −0.0062 (8) | 0.0098 (7) | −0.0093 (8) |
C2 | 0.0465 (11) | 0.0411 (10) | 0.0354 (9) | −0.0067 (9) | 0.0142 (8) | −0.0013 (8) |
C3 | 0.0435 (12) | 0.0503 (13) | 0.0499 (12) | −0.0078 (10) | 0.0193 (9) | −0.0088 (10) |
C4 | 0.0569 (13) | 0.0377 (10) | 0.0449 (11) | −0.0050 (9) | 0.0270 (10) | 0.0006 (9) |
Cl1 | 0.0768 (4) | 0.0686 (4) | 0.0686 (4) | −0.0012 (3) | 0.0402 (3) | −0.0185 (4) |
C5 | 0.0673 (14) | 0.0421 (11) | 0.0277 (9) | −0.0043 (10) | 0.0141 (9) | 0.0011 (8) |
Cl2 | 0.0963 (5) | 0.0933 (5) | 0.0377 (3) | 0.0067 (5) | 0.0092 (3) | −0.0173 (3) |
C6 | 0.0516 (13) | 0.0508 (13) | 0.0364 (10) | 0.0011 (10) | 0.0028 (9) | 0.0022 (9) |
C7 | 0.0448 (11) | 0.0364 (10) | 0.0349 (9) | 0.0002 (8) | 0.0119 (8) | 0.0046 (8) |
N2 | 0.0438 (10) | 0.0466 (10) | 0.0364 (8) | 0.0065 (8) | 0.0076 (7) | −0.0009 (7) |
C8 | 0.0435 (11) | 0.0374 (10) | 0.0390 (9) | 0.0035 (8) | 0.0132 (8) | 0.0026 (8) |
C9 | 0.0513 (12) | 0.0463 (11) | 0.0464 (11) | 0.0062 (9) | 0.0193 (9) | −0.0040 (9) |
C10 | 0.0673 (15) | 0.0422 (11) | 0.0545 (12) | −0.0003 (10) | 0.0304 (11) | −0.0004 (10) |
C11 | 0.0784 (17) | 0.0469 (12) | 0.0384 (10) | 0.0112 (11) | 0.0205 (11) | 0.0076 (9) |
C12 | 0.0568 (13) | 0.0491 (12) | 0.0354 (9) | −0.0005 (10) | 0.0118 (9) | −0.0071 (9) |
C13 | 0.0713 (19) | 0.102 (2) | 0.0514 (15) | −0.0163 (17) | 0.0087 (13) | −0.0273 (16) |
C14 | 0.0688 (14) | 0.0381 (11) | 0.0431 (10) | 0.0026 (10) | 0.0185 (10) | −0.0035 (9) |
C15 | 0.122 (3) | 0.0364 (13) | 0.0670 (17) | −0.0035 (16) | 0.0291 (18) | 0.0021 (12) |
C16 | 0.091 (2) | 0.0517 (14) | 0.0576 (14) | 0.0095 (14) | 0.0271 (14) | −0.0129 (12) |
C17 | 0.0555 (12) | 0.0448 (11) | 0.0320 (9) | −0.0028 (10) | 0.0094 (8) | −0.0052 (8) |
N3 | 0.0462 (11) | 0.0618 (12) | 0.0403 (9) | 0.0016 (9) | 0.0078 (8) | −0.0121 (9) |
C18 | 0.0440 (11) | 0.0406 (10) | 0.0345 (9) | −0.0013 (8) | 0.0088 (8) | −0.0049 (8) |
C19 | 0.0445 (12) | 0.0550 (13) | 0.0389 (10) | 0.0013 (10) | 0.0104 (9) | −0.0075 (10) |
C20 | 0.0554 (12) | 0.0366 (10) | 0.0391 (10) | −0.0022 (9) | 0.0174 (9) | −0.0054 (8) |
Cl3 | 0.0682 (4) | 0.0729 (4) | 0.0587 (4) | 0.0040 (3) | 0.0257 (3) | −0.0225 (3) |
C21 | 0.0595 (13) | 0.0402 (11) | 0.0344 (9) | −0.0056 (10) | 0.0108 (9) | −0.0050 (8) |
Cl4 | 0.0801 (4) | 0.0897 (5) | 0.0448 (3) | −0.0031 (4) | 0.0059 (3) | −0.0286 (3) |
C22 | 0.0523 (13) | 0.0483 (12) | 0.0360 (10) | −0.0011 (10) | 0.0083 (9) | −0.0055 (9) |
C23 | 0.0496 (12) | 0.0366 (10) | 0.0316 (9) | −0.0007 (8) | 0.0094 (8) | 0.0002 (8) |
N4 | 0.0511 (11) | 0.0484 (10) | 0.0399 (9) | 0.0044 (9) | 0.0103 (8) | −0.0033 (8) |
C24 | 0.0527 (12) | 0.0368 (10) | 0.0358 (9) | 0.0050 (9) | 0.0126 (8) | −0.0002 (8) |
C25 | 0.0638 (15) | 0.0473 (12) | 0.0420 (10) | 0.0069 (11) | 0.0194 (10) | −0.0035 (9) |
C26 | 0.098 (2) | 0.0417 (12) | 0.0532 (13) | 0.0098 (13) | 0.0226 (13) | 0.0012 (10) |
C27 | 0.102 (2) | 0.0506 (15) | 0.0646 (15) | −0.0217 (15) | 0.0385 (15) | −0.0184 (12) |
C28 | 0.0587 (14) | 0.0658 (15) | 0.0387 (10) | −0.0009 (12) | 0.0130 (9) | −0.0165 (10) |
C29 | 0.073 (2) | 0.137 (3) | 0.0522 (16) | 0.011 (2) | −0.0005 (14) | −0.0383 (19) |
C30 | 0.0681 (15) | 0.0456 (12) | 0.0371 (9) | 0.0031 (10) | 0.0164 (9) | −0.0024 (8) |
C31 | 0.116 (3) | 0.0505 (15) | 0.0551 (15) | 0.0064 (15) | 0.0300 (16) | 0.0097 (12) |
C32 | 0.088 (2) | 0.0659 (17) | 0.0417 (11) | 0.0049 (14) | 0.0243 (12) | −0.0104 (11) |
C1—N1 | 1.307 (3) | C17—N3 | 1.297 (3) |
C1—C8 | 1.429 (3) | C17—C24 | 1.435 (3) |
C1—C12 | 1.500 (3) | C17—C28 | 1.511 (3) |
N1—C2 | 1.391 (3) | N3—C18 | 1.395 (3) |
C2—C3 | 1.408 (3) | C18—C19 | 1.409 (3) |
C2—C7 | 1.403 (3) | C18—C23 | 1.405 (3) |
C3—C4 | 1.371 (3) | C19—C20 | 1.373 (3) |
C3—H3 | 0.9300 | C19—H19 | 0.9300 |
C4—C5 | 1.392 (3) | C20—C21 | 1.399 (3) |
C4—Cl1 | 1.726 (2) | C20—Cl3 | 1.732 (2) |
C5—C6 | 1.372 (3) | C21—C22 | 1.377 (3) |
C5—Cl2 | 1.730 (2) | C21—Cl4 | 1.723 (2) |
C6—C7 | 1.413 (3) | C22—C23 | 1.403 (3) |
C6—H6 | 0.9300 | C22—H22 | 0.9300 |
C7—N2 | 1.390 (3) | C23—N4 | 1.398 (3) |
N2—C8 | 1.299 (3) | N4—C24 | 1.297 (3) |
C8—C9 | 1.508 (3) | C24—C25 | 1.503 (3) |
C9—C10 | 1.542 (3) | C25—C26 | 1.536 (4) |
C9—C14 | 1.556 (3) | C25—C30 | 1.551 (3) |
C9—H9 | 0.9800 | C25—H25 | 0.9800 |
C10—C11 | 1.533 (4) | C26—C27 | 1.534 (5) |
C10—H10A | 0.9700 | C26—H26A | 0.9700 |
C10—H10B | 0.9700 | C26—H26B | 0.9700 |
C11—C12 | 1.552 (3) | C27—C28 | 1.555 (4) |
C11—H11A | 0.9700 | C27—H27A | 0.9700 |
C11—H11B | 0.9700 | C27—H27B | 0.9700 |
C12—C13 | 1.512 (4) | C28—C29 | 1.510 (4) |
C12—C14 | 1.571 (3) | C28—C30 | 1.559 (3) |
C13—H13A | 0.9600 | C29—H29A | 0.9600 |
C13—H13B | 0.9600 | C29—H29B | 0.9600 |
C13—H13C | 0.9600 | C29—H29C | 0.9600 |
C14—C15 | 1.516 (4) | C30—C31 | 1.528 (4) |
C14—C16 | 1.549 (3) | C30—C32 | 1.525 (3) |
C15—H15A | 0.9600 | C31—H31A | 0.9600 |
C15—H15B | 0.9600 | C31—H31B | 0.9600 |
C15—H15C | 0.9600 | C31—H31C | 0.9600 |
C16—H16A | 0.9600 | C32—H32A | 0.9600 |
C16—H16B | 0.9600 | C32—H32B | 0.9600 |
C16—H16C | 0.9600 | C32—H32C | 0.9600 |
N1—C1—C8 | 124.23 (19) | N3—C17—C24 | 124.46 (19) |
N1—C1—C12 | 128.5 (2) | N3—C17—C28 | 128.6 (2) |
C8—C1—C12 | 107.24 (18) | C24—C17—C28 | 106.85 (19) |
C1—N1—C2 | 113.48 (18) | C17—N3—C18 | 113.25 (19) |
N1—C2—C3 | 118.2 (2) | N3—C18—C19 | 118.16 (19) |
N1—C2—C7 | 121.72 (19) | N3—C18—C23 | 122.47 (18) |
C3—C2—C7 | 120.05 (19) | C19—C18—C23 | 119.35 (19) |
C4—C3—C2 | 119.3 (2) | C20—C19—C18 | 119.8 (2) |
C4—C3—H3 | 120.3 | C20—C19—H19 | 120.1 |
C2—C3—H3 | 120.3 | C18—C19—H19 | 120.1 |
C3—C4—C5 | 120.9 (2) | C19—C20—C21 | 120.8 (2) |
C3—C4—Cl1 | 119.35 (19) | C19—C20—Cl3 | 119.33 (18) |
C5—C4—Cl1 | 119.72 (18) | C21—C20—Cl3 | 119.89 (17) |
C6—C5—C4 | 120.8 (2) | C22—C21—C20 | 120.2 (2) |
C6—C5—Cl2 | 118.45 (19) | C22—C21—Cl4 | 119.14 (18) |
C4—C5—Cl2 | 120.74 (18) | C20—C21—Cl4 | 120.62 (17) |
C5—C6—C7 | 119.6 (2) | C21—C22—C23 | 119.9 (2) |
C5—C6—H6 | 120.2 | C21—C22—H22 | 120.1 |
C7—C6—H6 | 120.2 | C23—C22—H22 | 120.1 |
N2—C7—C6 | 117.5 (2) | N4—C23—C22 | 117.9 (2) |
N2—C7—C2 | 123.25 (19) | N4—C23—C18 | 122.15 (18) |
C6—C7—C2 | 119.2 (2) | C22—C23—C18 | 119.9 (2) |
C8—N2—C7 | 113.00 (19) | C24—N4—C23 | 113.4 (2) |
N2—C8—C1 | 124.31 (19) | N4—C24—C17 | 124.2 (2) |
N2—C8—C9 | 129.3 (2) | N4—C24—C25 | 129.9 (2) |
C1—C8—C9 | 106.22 (18) | C17—C24—C25 | 105.84 (19) |
C8—C9—C10 | 104.05 (18) | C24—C25—C26 | 103.69 (19) |
C8—C9—C14 | 99.52 (18) | C24—C25—C30 | 100.70 (19) |
C10—C9—C14 | 102.10 (19) | C26—C25—C30 | 102.4 (2) |
C8—C9—H9 | 116.3 | C24—C25—H25 | 116.0 |
C10—C9—H9 | 116.3 | C26—C25—H25 | 116.0 |
C14—C9—H9 | 116.3 | C30—C25—H25 | 116.0 |
C9—C10—C11 | 104.06 (19) | C27—C26—C25 | 103.6 (2) |
C9—C10—H10A | 110.9 | C27—C26—H26A | 111.0 |
C11—C10—H10A | 110.9 | C25—C26—H26A | 111.0 |
C9—C10—H10B | 110.9 | C27—C26—H26B | 111.0 |
C11—C10—H10B | 110.9 | C25—C26—H26B | 111.0 |
H10A—C10—H10B | 109.0 | H26A—C26—H26B | 109.0 |
C10—C11—C12 | 104.48 (18) | C26—C27—C28 | 104.4 (2) |
C10—C11—H11A | 110.9 | C26—C27—H27A | 110.9 |
C12—C11—H11A | 110.9 | C28—C27—H27A | 110.9 |
C10—C11—H11B | 110.9 | C26—C27—H27B | 110.9 |
C12—C11—H11B | 110.9 | C28—C27—H27B | 110.9 |
H11A—C11—H11B | 108.9 | H27A—C27—H27B | 108.9 |
C1—C12—C13 | 115.7 (2) | C29—C28—C17 | 115.0 (2) |
C1—C12—C11 | 102.89 (18) | C29—C28—C30 | 119.7 (2) |
C13—C12—C11 | 115.9 (2) | C17—C28—C30 | 99.48 (19) |
C1—C12—C14 | 99.56 (18) | C29—C28—C27 | 115.7 (3) |
C13—C12—C14 | 119.1 (2) | C17—C28—C27 | 103.3 (2) |
C11—C12—C14 | 101.02 (19) | C30—C28—C27 | 100.9 (2) |
C12—C13—H13A | 109.5 | C28—C29—H29A | 109.5 |
C12—C13—H13B | 109.5 | C28—C29—H29B | 109.5 |
H13A—C13—H13B | 109.5 | H29A—C29—H29B | 109.5 |
C12—C13—H13C | 109.5 | C28—C29—H29C | 109.5 |
H13A—C13—H13C | 109.5 | H29A—C29—H29C | 109.5 |
H13B—C13—H13C | 109.5 | H29B—C29—H29C | 109.5 |
C15—C14—C16 | 108.1 (2) | C31—C30—C32 | 107.8 (2) |
C15—C14—C9 | 113.9 (2) | C31—C30—C25 | 112.7 (2) |
C16—C14—C9 | 113.3 (2) | C32—C30—C25 | 114.0 (2) |
C15—C14—C12 | 113.9 (2) | C31—C30—C28 | 114.4 (2) |
C16—C14—C12 | 112.9 (2) | C32—C30—C28 | 113.4 (2) |
C9—C14—C12 | 94.46 (17) | C25—C30—C28 | 94.44 (18) |
C14—C15—H15A | 109.5 | C30—C31—H31A | 109.5 |
C14—C15—H15B | 109.5 | C30—C31—H31B | 109.5 |
H15A—C15—H15B | 109.5 | H31A—C31—H31B | 109.5 |
C14—C15—H15C | 109.5 | C30—C31—H31C | 109.5 |
H15A—C15—H15C | 109.5 | H31A—C31—H31C | 109.5 |
H15B—C15—H15C | 109.5 | H31B—C31—H31C | 109.5 |
C14—C16—H16A | 109.5 | C30—C32—H32A | 109.5 |
C14—C16—H16B | 109.5 | C30—C32—H32B | 109.5 |
H16A—C16—H16B | 109.5 | H32A—C32—H32B | 109.5 |
C14—C16—H16C | 109.5 | C30—C32—H32C | 109.5 |
H16A—C16—H16C | 109.5 | H32A—C32—H32C | 109.5 |
H16B—C16—H16C | 109.5 | H32B—C32—H32C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | C16H16Cl2N2 |
Mr | 307.21 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 6.9741 (3), 13.0892 (5), 16.9594 (5) |
β (°) | 101.701 (3) |
V (Å3) | 1515.97 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.42 |
Crystal size (mm) | 0.32 × 0.18 × 0.11 |
Data collection | |
Diffractometer | Oxford Xcalibur Sapphire3 |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.897, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 42674, 12344, 7343 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.806 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.163, 0.93 |
No. of reflections | 12344 |
No. of parameters | 367 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.18 |
Absolute structure | Flack (1983), with 5825 Friedel pairs |
Absolute structure parameter | 0.03 (5) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
Acknowledgements
This research was funded by a CCSU-AAUP research grant.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steel, P. J. & Fitchett, C. M. (2000). New J. Chem. 24, 945–947. Google Scholar
Steel, P. J. & Fitchett, C. M. (2006). Dalton Trans. pp. 4886–4888. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrogen-containing aromatic heterocycles have often been used as ligands in one-, two-, and three dimensional metal–organic coordination polymers. There has been interest in developing chiral nitrogen-containing aromatic heterocycles in order to have greater design control over the assembly of these extended networks in the solid state (Steel & Fitchett, 2000). As a subset of nitrogen-containing aromatic heterocycles, quinoxalines, pyrazino[2,3-g]quinoxalines, and phenazines have shown the ability to bind to a variety of metals and are, as ligands, easy to synthesize via condensation reactions between ethanediones/quinones and diamines/tetraamines (Steel & Fitchett, 2006). In this paper we report the synthesis and structure of the chiral (1R,4S)-7,8-dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine.
The title compound crystallizes in a chiral setting in the space group P21 with two crystallographically independent molecules in the asymmetric unit, Fig. 1. The two molecules are closely related by a pseudo inversion center located near coordinates x = 0.263, y = 0.461, z = 0.252. All bond distances and angles fall within expected values and there are no classic hydrogen bonds; however as can be seen in Fig. 2, one of the molecules packs with a slight bend in the quinoxaline moiety. Fig. 3 shows the molecular overlay of the two molecules in the asymmetric unit.