organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,4S)-7,8-Di­chloro-1,2,3,4-tetra­hydro-1,11,11-tri­methyl-1,4-methano­phenazine

aDepartment of Chemistry and Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

(Received 8 October 2010; accepted 27 October 2010; online 31 October 2010)

The title compound, C16H16Cl2N2, was synthesized by the condensation reaction between 4,5-dichloro-o-phenyl­ene­diamine and (1R)-(-)-camphorquinone in boiling acetic acid. The two crystallographically independent mol­ecules in the unit cell are related by a pseudo-inversion center.

Related literature

Steel & Fitchett (2000[Steel, P. J. & Fitchett, C. M. (2000). New J. Chem. 24, 945-947.], 2006[Steel, P. J. & Fitchett, C. M. (2006). Dalton Trans. pp. 4886-4888.]) illustrate the use of stereochemically active quinoxalines in extended metal–ligand networks.

[Scheme 1]

Experimental

Crystal data
  • C16H16Cl2N2

  • Mr = 307.21

  • Monoclinic, P 21

  • a = 6.9741 (3) Å

  • b = 13.0892 (5) Å

  • c = 16.9594 (5) Å

  • β = 101.701 (3)°

  • V = 1515.97 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.32 × 0.18 × 0.11 mm

Data collection
  • Oxford Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.897, Tmax = 1.000

  • 42674 measured reflections

  • 12344 independent reflections

  • 7343 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.163

  • S = 0.93

  • 12344 reflections

  • 367 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 5825 Friedel pairs

  • Flack parameter: 0.03 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nitrogen-containing aromatic heterocycles have often been used as ligands in one-, two-, and three dimensional metal–organic coordination polymers. There has been interest in developing chiral nitrogen-containing aromatic heterocycles in order to have greater design control over the assembly of these extended networks in the solid state (Steel & Fitchett, 2000). As a subset of nitrogen-containing aromatic heterocycles, quinoxalines, pyrazino[2,3-g]quinoxalines, and phenazines have shown the ability to bind to a variety of metals and are, as ligands, easy to synthesize via condensation reactions between ethanediones/quinones and diamines/tetraamines (Steel & Fitchett, 2006). In this paper we report the synthesis and structure of the chiral (1R,4S)-7,8-dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine.

The title compound crystallizes in a chiral setting in the space group P21 with two crystallographically independent molecules in the asymmetric unit, Fig. 1. The two molecules are closely related by a pseudo inversion center located near coordinates x = 0.263, y = 0.461, z = 0.252. All bond distances and angles fall within expected values and there are no classic hydrogen bonds; however as can be seen in Fig. 2, one of the molecules packs with a slight bend in the quinoxaline moiety. Fig. 3 shows the molecular overlay of the two molecules in the asymmetric unit.

Related literature top

Steel & Fitchett (2000, 2006) illustrate the use of stereochemically active quinoxalines in extended metal–ligand networks.

Experimental top

To a 150 ml round bottom flask equipped with a reflux condenser was added 2.9 g (0.0120 mol) (1R)-(-)-camphorquinone, 2.77 g (0.0156 mol) 4,5-dichloro-o-phenylenediamine, and 50 ml glacial acetic acid. The mixture was heated to reflux for 3 h, and was then poured over ice to precipitate the crude product. After isolation via vacuum filtration, the crude product was recrystallized from methanol to yield 2.79 g (0.00908 mol) 3,4-dichlorocamphorquinoxaline (75% yield).

MP (K): 422.3-424.0; IR (CHCl3): 3086, 2051, 1521, 1404, 12635, 1166, 1118, 890, 876 cm-1; 1H NMR (300 MHz, CDCl3): δ 8.13 (s, 1H), 8.06 (s, 1H), 3.04 (d, 1H, J = 4.6 Hz), 2.31 (dtd, 1H, J = 4.6 Hz, J = 8 Hz, J = 12 Hz), 2.06 (dq, 1H, J = 8 Hz, J = 12 Hz), 1.40 (s, 3H), 1.39 (q, 2H, J = 10 Hz), 1.11 (s, 3H), 0.60 (s, 3H); 13C NMR (300 MHz, CDCl3): δ 166.8, 165.0, 140.4, 140.3, 132.2, 129.7, 129.5, 54.3, 54.0, 53.3, 31.8, 24.6, 20.4, 18.5, 10.0; UV/Vis (CH2Cl2; λmax) 260, 267, 365; MS (calculated for C16H16Cl2N2): M+: 306, measured: 306.

Refinement top

H atoms were included in calculated positions with C—H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.98 Å based upon type of carbon and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Structure description top

Nitrogen-containing aromatic heterocycles have often been used as ligands in one-, two-, and three dimensional metal–organic coordination polymers. There has been interest in developing chiral nitrogen-containing aromatic heterocycles in order to have greater design control over the assembly of these extended networks in the solid state (Steel & Fitchett, 2000). As a subset of nitrogen-containing aromatic heterocycles, quinoxalines, pyrazino[2,3-g]quinoxalines, and phenazines have shown the ability to bind to a variety of metals and are, as ligands, easy to synthesize via condensation reactions between ethanediones/quinones and diamines/tetraamines (Steel & Fitchett, 2006). In this paper we report the synthesis and structure of the chiral (1R,4S)-7,8-dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine.

The title compound crystallizes in a chiral setting in the space group P21 with two crystallographically independent molecules in the asymmetric unit, Fig. 1. The two molecules are closely related by a pseudo inversion center located near coordinates x = 0.263, y = 0.461, z = 0.252. All bond distances and angles fall within expected values and there are no classic hydrogen bonds; however as can be seen in Fig. 2, one of the molecules packs with a slight bend in the quinoxaline moiety. Fig. 3 shows the molecular overlay of the two molecules in the asymmetric unit.

Steel & Fitchett (2000, 2006) illustrate the use of stereochemically active quinoxalines in extended metal–ligand networks.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (1R,4S)-7,8-Dichloro-1,2,3,4-tetrahydro-1,11,11- trimethyl-1,4-methanophenazine (Farrugia, 1997). There are two molecules in the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. Labels for atoms C10 and C12 in the first molecule and atom C28 in the second molecule were omitted for clarity.
[Figure 2] Fig. 2. A view of the packing nearly along (100) showing both molecules as well as the slight quinoxaline plane bending in the first (Spek, 2009).
[Figure 3] Fig. 3. Molecular overlay of both molecules in the asymmetric unit showing the slight bend of molecule 1 [red] compared to molecule 2 [blue] (Macrae et al., 2008).
(1R,4S)-7,8-Dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl- 1,4-methanophenazine top
Crystal data top
C16H16Cl2N2F(000) = 640
Mr = 307.21Dx = 1.346 Mg m3
Monoclinic, P21Melting point: 422 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.9741 (3) ÅCell parameters from 15315 reflections
b = 13.0892 (5) Åθ = 4.2–35.0°
c = 16.9594 (5) ŵ = 0.42 mm1
β = 101.701 (3)°T = 293 K
V = 1515.97 (10) Å3Block, white
Z = 40.32 × 0.18 × 0.11 mm
Data collection top
Oxford Xcalibur Sapphire3
diffractometer
12344 independent reflections
Radiation source: Enhance (Mo) X-ray Source7343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1790 pixels mm-1θmax = 35.0°, θmin = 4.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2020
Tmin = 0.897, Tmax = 1.000l = 2727
42674 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0946P)2 + 0.0917P]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
12344 reflectionsΔρmax = 0.42 e Å3
367 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), with 5825 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Crystal data top
C16H16Cl2N2V = 1515.97 (10) Å3
Mr = 307.21Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.9741 (3) ŵ = 0.42 mm1
b = 13.0892 (5) ÅT = 293 K
c = 16.9594 (5) Å0.32 × 0.18 × 0.11 mm
β = 101.701 (3)°
Data collection top
Oxford Xcalibur Sapphire3
diffractometer
12344 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
7343 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 1.000Rint = 0.032
42674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.163Δρmax = 0.42 e Å3
S = 0.93Δρmin = 0.18 e Å3
12344 reflectionsAbsolute structure: Flack (1983), with 5825 Friedel pairs
367 parametersAbsolute structure parameter: 0.03 (5)
1 restraint
Special details top

Experimental. Absorption correction: CrysAlis Pro (Oxford Diffraction Ltd., 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Hydrogen atoms were included in calculated positions with a C—H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.98 Å based upon type of carbon. Hydrogen atoms were included in the refinement in riding motion approximation with a Uiso of either 1.2Ueq or 1.5Ueq of the carrier atom depending upon type of carbon.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1545 (3)0.45050 (16)0.49934 (12)0.0398 (4)
N10.2970 (3)0.42161 (16)0.46481 (11)0.0460 (4)
C20.2335 (3)0.38885 (17)0.38582 (12)0.0402 (4)
C30.3738 (3)0.35025 (19)0.34450 (14)0.0465 (5)
H30.50620.35150.36840.056*
C40.3134 (4)0.31076 (17)0.26865 (14)0.0442 (5)
Cl10.48375 (11)0.25649 (6)0.22037 (4)0.0677 (2)
C50.1167 (4)0.31228 (18)0.23080 (12)0.0451 (5)
Cl20.03974 (13)0.25733 (7)0.13693 (4)0.0764 (2)
C60.0217 (4)0.35345 (19)0.26854 (13)0.0471 (5)
H60.15190.35720.24180.057*
C70.0347 (3)0.39014 (16)0.34825 (12)0.0382 (4)
N20.1129 (3)0.42215 (15)0.38665 (11)0.0423 (4)
C80.0476 (3)0.45064 (16)0.46059 (12)0.0393 (4)
C90.1600 (4)0.48131 (19)0.52398 (14)0.0467 (5)
H90.29390.50590.50430.056*
C100.1369 (4)0.38915 (18)0.58179 (15)0.0521 (5)
H10A0.17030.32590.55240.063*
H10B0.21960.39660.62110.063*
C110.0802 (4)0.39084 (19)0.62275 (14)0.0534 (6)
H11A0.14470.32810.61220.064*
H11B0.09560.39940.68050.064*
C120.1656 (4)0.48392 (19)0.58474 (13)0.0467 (5)
C130.3638 (5)0.5211 (3)0.62876 (18)0.0753 (9)
H13A0.45780.46700.63140.113*
H13B0.35560.54160.68230.113*
H13C0.40380.57820.60050.113*
C140.0131 (4)0.55950 (18)0.57193 (13)0.0489 (5)
C150.0151 (6)0.6545 (2)0.52444 (19)0.0738 (9)
H15A0.03760.63510.47250.111*
H15B0.12580.69230.55290.111*
H15C0.10010.69630.51790.111*
C160.0675 (5)0.5936 (2)0.65206 (17)0.0650 (7)
H16A0.03760.63340.68260.097*
H16B0.08920.53440.68250.097*
H16C0.18460.63410.64070.097*
C170.3327 (3)0.43610 (18)0.00994 (12)0.0440 (5)
N30.1985 (3)0.47672 (17)0.04292 (11)0.0496 (5)
C180.2727 (3)0.52064 (17)0.11783 (12)0.0396 (4)
C190.1397 (3)0.56594 (19)0.15972 (13)0.0459 (5)
H190.00660.56690.13700.055*
C200.2070 (3)0.60867 (17)0.23410 (13)0.0426 (5)
Cl30.04203 (10)0.66515 (6)0.28452 (4)0.06479 (19)
C210.4066 (4)0.60690 (17)0.26942 (13)0.0445 (5)
Cl40.49046 (12)0.66082 (7)0.36273 (4)0.0725 (2)
C220.5387 (4)0.56247 (18)0.22961 (13)0.0456 (5)
H220.67120.56100.25340.055*
C230.4732 (3)0.51941 (16)0.15314 (12)0.0391 (4)
N40.6126 (3)0.47573 (15)0.11472 (11)0.0463 (4)
C240.5377 (3)0.43543 (16)0.04548 (12)0.0413 (4)
C250.6353 (4)0.37835 (19)0.01252 (13)0.0498 (5)
H250.77580.39070.00740.060*
C260.5749 (5)0.2668 (2)0.00338 (16)0.0633 (7)
H26A0.64640.22090.03190.076*
H26B0.59780.24700.05290.076*
C270.3554 (5)0.2660 (2)0.04104 (17)0.0693 (8)
H27A0.27910.24550.00180.083*
H27B0.32770.21970.08660.083*
C280.3087 (4)0.3782 (2)0.06852 (13)0.0540 (6)
C290.1155 (5)0.3946 (4)0.12606 (19)0.0893 (12)
H29A0.01010.37690.09990.134*
H29B0.10970.35230.17270.134*
H29C0.10370.46500.14210.134*
C300.5031 (4)0.40956 (18)0.09395 (13)0.0495 (5)
C310.5182 (6)0.5232 (2)0.11237 (17)0.0722 (9)
H31A0.64630.53770.12210.108*
H31B0.49640.56270.06730.108*
H31C0.42140.54050.15920.108*
C320.5429 (5)0.3497 (2)0.16611 (15)0.0638 (7)
H32A0.44040.36280.21210.096*
H32B0.54700.27800.15400.096*
H32C0.66620.37060.17770.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0469 (11)0.0376 (10)0.0361 (9)0.0027 (8)0.0115 (8)0.0006 (7)
N10.0440 (10)0.0562 (11)0.0383 (8)0.0062 (8)0.0098 (7)0.0093 (8)
C20.0465 (11)0.0411 (10)0.0354 (9)0.0067 (9)0.0142 (8)0.0013 (8)
C30.0435 (12)0.0503 (13)0.0499 (12)0.0078 (10)0.0193 (9)0.0088 (10)
C40.0569 (13)0.0377 (10)0.0449 (11)0.0050 (9)0.0270 (10)0.0006 (9)
Cl10.0768 (4)0.0686 (4)0.0686 (4)0.0012 (3)0.0402 (3)0.0185 (4)
C50.0673 (14)0.0421 (11)0.0277 (9)0.0043 (10)0.0141 (9)0.0011 (8)
Cl20.0963 (5)0.0933 (5)0.0377 (3)0.0067 (5)0.0092 (3)0.0173 (3)
C60.0516 (13)0.0508 (13)0.0364 (10)0.0011 (10)0.0028 (9)0.0022 (9)
C70.0448 (11)0.0364 (10)0.0349 (9)0.0002 (8)0.0119 (8)0.0046 (8)
N20.0438 (10)0.0466 (10)0.0364 (8)0.0065 (8)0.0076 (7)0.0009 (7)
C80.0435 (11)0.0374 (10)0.0390 (9)0.0035 (8)0.0132 (8)0.0026 (8)
C90.0513 (12)0.0463 (11)0.0464 (11)0.0062 (9)0.0193 (9)0.0040 (9)
C100.0673 (15)0.0422 (11)0.0545 (12)0.0003 (10)0.0304 (11)0.0004 (10)
C110.0784 (17)0.0469 (12)0.0384 (10)0.0112 (11)0.0205 (11)0.0076 (9)
C120.0568 (13)0.0491 (12)0.0354 (9)0.0005 (10)0.0118 (9)0.0071 (9)
C130.0713 (19)0.102 (2)0.0514 (15)0.0163 (17)0.0087 (13)0.0273 (16)
C140.0688 (14)0.0381 (11)0.0431 (10)0.0026 (10)0.0185 (10)0.0035 (9)
C150.122 (3)0.0364 (13)0.0670 (17)0.0035 (16)0.0291 (18)0.0021 (12)
C160.091 (2)0.0517 (14)0.0576 (14)0.0095 (14)0.0271 (14)0.0129 (12)
C170.0555 (12)0.0448 (11)0.0320 (9)0.0028 (10)0.0094 (8)0.0052 (8)
N30.0462 (11)0.0618 (12)0.0403 (9)0.0016 (9)0.0078 (8)0.0121 (9)
C180.0440 (11)0.0406 (10)0.0345 (9)0.0013 (8)0.0088 (8)0.0049 (8)
C190.0445 (12)0.0550 (13)0.0389 (10)0.0013 (10)0.0104 (9)0.0075 (10)
C200.0554 (12)0.0366 (10)0.0391 (10)0.0022 (9)0.0174 (9)0.0054 (8)
Cl30.0682 (4)0.0729 (4)0.0587 (4)0.0040 (3)0.0257 (3)0.0225 (3)
C210.0595 (13)0.0402 (11)0.0344 (9)0.0056 (10)0.0108 (9)0.0050 (8)
Cl40.0801 (4)0.0897 (5)0.0448 (3)0.0031 (4)0.0059 (3)0.0286 (3)
C220.0523 (13)0.0483 (12)0.0360 (10)0.0011 (10)0.0083 (9)0.0055 (9)
C230.0496 (12)0.0366 (10)0.0316 (9)0.0007 (8)0.0094 (8)0.0002 (8)
N40.0511 (11)0.0484 (10)0.0399 (9)0.0044 (9)0.0103 (8)0.0033 (8)
C240.0527 (12)0.0368 (10)0.0358 (9)0.0050 (9)0.0126 (8)0.0002 (8)
C250.0638 (15)0.0473 (12)0.0420 (10)0.0069 (11)0.0194 (10)0.0035 (9)
C260.098 (2)0.0417 (12)0.0532 (13)0.0098 (13)0.0226 (13)0.0012 (10)
C270.102 (2)0.0506 (15)0.0646 (15)0.0217 (15)0.0385 (15)0.0184 (12)
C280.0587 (14)0.0658 (15)0.0387 (10)0.0009 (12)0.0130 (9)0.0165 (10)
C290.073 (2)0.137 (3)0.0522 (16)0.011 (2)0.0005 (14)0.0383 (19)
C300.0681 (15)0.0456 (12)0.0371 (9)0.0031 (10)0.0164 (9)0.0024 (8)
C310.116 (3)0.0505 (15)0.0551 (15)0.0064 (15)0.0300 (16)0.0097 (12)
C320.088 (2)0.0659 (17)0.0417 (11)0.0049 (14)0.0243 (12)0.0104 (11)
Geometric parameters (Å, º) top
C1—N11.307 (3)C17—N31.297 (3)
C1—C81.429 (3)C17—C241.435 (3)
C1—C121.500 (3)C17—C281.511 (3)
N1—C21.391 (3)N3—C181.395 (3)
C2—C31.408 (3)C18—C191.409 (3)
C2—C71.403 (3)C18—C231.405 (3)
C3—C41.371 (3)C19—C201.373 (3)
C3—H30.9300C19—H190.9300
C4—C51.392 (3)C20—C211.399 (3)
C4—Cl11.726 (2)C20—Cl31.732 (2)
C5—C61.372 (3)C21—C221.377 (3)
C5—Cl21.730 (2)C21—Cl41.723 (2)
C6—C71.413 (3)C22—C231.403 (3)
C6—H60.9300C22—H220.9300
C7—N21.390 (3)C23—N41.398 (3)
N2—C81.299 (3)N4—C241.297 (3)
C8—C91.508 (3)C24—C251.503 (3)
C9—C101.542 (3)C25—C261.536 (4)
C9—C141.556 (3)C25—C301.551 (3)
C9—H90.9800C25—H250.9800
C10—C111.533 (4)C26—C271.534 (5)
C10—H10A0.9700C26—H26A0.9700
C10—H10B0.9700C26—H26B0.9700
C11—C121.552 (3)C27—C281.555 (4)
C11—H11A0.9700C27—H27A0.9700
C11—H11B0.9700C27—H27B0.9700
C12—C131.512 (4)C28—C291.510 (4)
C12—C141.571 (3)C28—C301.559 (3)
C13—H13A0.9600C29—H29A0.9600
C13—H13B0.9600C29—H29B0.9600
C13—H13C0.9600C29—H29C0.9600
C14—C151.516 (4)C30—C311.528 (4)
C14—C161.549 (3)C30—C321.525 (3)
C15—H15A0.9600C31—H31A0.9600
C15—H15B0.9600C31—H31B0.9600
C15—H15C0.9600C31—H31C0.9600
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
N1—C1—C8124.23 (19)N3—C17—C24124.46 (19)
N1—C1—C12128.5 (2)N3—C17—C28128.6 (2)
C8—C1—C12107.24 (18)C24—C17—C28106.85 (19)
C1—N1—C2113.48 (18)C17—N3—C18113.25 (19)
N1—C2—C3118.2 (2)N3—C18—C19118.16 (19)
N1—C2—C7121.72 (19)N3—C18—C23122.47 (18)
C3—C2—C7120.05 (19)C19—C18—C23119.35 (19)
C4—C3—C2119.3 (2)C20—C19—C18119.8 (2)
C4—C3—H3120.3C20—C19—H19120.1
C2—C3—H3120.3C18—C19—H19120.1
C3—C4—C5120.9 (2)C19—C20—C21120.8 (2)
C3—C4—Cl1119.35 (19)C19—C20—Cl3119.33 (18)
C5—C4—Cl1119.72 (18)C21—C20—Cl3119.89 (17)
C6—C5—C4120.8 (2)C22—C21—C20120.2 (2)
C6—C5—Cl2118.45 (19)C22—C21—Cl4119.14 (18)
C4—C5—Cl2120.74 (18)C20—C21—Cl4120.62 (17)
C5—C6—C7119.6 (2)C21—C22—C23119.9 (2)
C5—C6—H6120.2C21—C22—H22120.1
C7—C6—H6120.2C23—C22—H22120.1
N2—C7—C6117.5 (2)N4—C23—C22117.9 (2)
N2—C7—C2123.25 (19)N4—C23—C18122.15 (18)
C6—C7—C2119.2 (2)C22—C23—C18119.9 (2)
C8—N2—C7113.00 (19)C24—N4—C23113.4 (2)
N2—C8—C1124.31 (19)N4—C24—C17124.2 (2)
N2—C8—C9129.3 (2)N4—C24—C25129.9 (2)
C1—C8—C9106.22 (18)C17—C24—C25105.84 (19)
C8—C9—C10104.05 (18)C24—C25—C26103.69 (19)
C8—C9—C1499.52 (18)C24—C25—C30100.70 (19)
C10—C9—C14102.10 (19)C26—C25—C30102.4 (2)
C8—C9—H9116.3C24—C25—H25116.0
C10—C9—H9116.3C26—C25—H25116.0
C14—C9—H9116.3C30—C25—H25116.0
C9—C10—C11104.06 (19)C27—C26—C25103.6 (2)
C9—C10—H10A110.9C27—C26—H26A111.0
C11—C10—H10A110.9C25—C26—H26A111.0
C9—C10—H10B110.9C27—C26—H26B111.0
C11—C10—H10B110.9C25—C26—H26B111.0
H10A—C10—H10B109.0H26A—C26—H26B109.0
C10—C11—C12104.48 (18)C26—C27—C28104.4 (2)
C10—C11—H11A110.9C26—C27—H27A110.9
C12—C11—H11A110.9C28—C27—H27A110.9
C10—C11—H11B110.9C26—C27—H27B110.9
C12—C11—H11B110.9C28—C27—H27B110.9
H11A—C11—H11B108.9H27A—C27—H27B108.9
C1—C12—C13115.7 (2)C29—C28—C17115.0 (2)
C1—C12—C11102.89 (18)C29—C28—C30119.7 (2)
C13—C12—C11115.9 (2)C17—C28—C3099.48 (19)
C1—C12—C1499.56 (18)C29—C28—C27115.7 (3)
C13—C12—C14119.1 (2)C17—C28—C27103.3 (2)
C11—C12—C14101.02 (19)C30—C28—C27100.9 (2)
C12—C13—H13A109.5C28—C29—H29A109.5
C12—C13—H13B109.5C28—C29—H29B109.5
H13A—C13—H13B109.5H29A—C29—H29B109.5
C12—C13—H13C109.5C28—C29—H29C109.5
H13A—C13—H13C109.5H29A—C29—H29C109.5
H13B—C13—H13C109.5H29B—C29—H29C109.5
C15—C14—C16108.1 (2)C31—C30—C32107.8 (2)
C15—C14—C9113.9 (2)C31—C30—C25112.7 (2)
C16—C14—C9113.3 (2)C32—C30—C25114.0 (2)
C15—C14—C12113.9 (2)C31—C30—C28114.4 (2)
C16—C14—C12112.9 (2)C32—C30—C28113.4 (2)
C9—C14—C1294.46 (17)C25—C30—C2894.44 (18)
C14—C15—H15A109.5C30—C31—H31A109.5
C14—C15—H15B109.5C30—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C14—C15—H15C109.5C30—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5
C14—C16—H16A109.5C30—C32—H32A109.5
C14—C16—H16B109.5C30—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C14—C16—H16C109.5C30—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5

Experimental details

Crystal data
Chemical formulaC16H16Cl2N2
Mr307.21
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.9741 (3), 13.0892 (5), 16.9594 (5)
β (°) 101.701 (3)
V3)1515.97 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.32 × 0.18 × 0.11
Data collection
DiffractometerOxford Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.897, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
42674, 12344, 7343
Rint0.032
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 0.93
No. of reflections12344
No. of parameters367
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.18
Absolute structureFlack (1983), with 5825 Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was funded by a CCSU-AAUP research grant.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. & Fitchett, C. M. (2000). New J. Chem. 24, 945–947.  Google Scholar
First citationSteel, P. J. & Fitchett, C. M. (2006). Dalton Trans. pp. 4886–4888.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds