organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hy­dr­oxy-7-phenyl-5-(prop-2-yn-1-yl)-5,6-di­hydro-1-benzo­furan-2(4H)-one monohydrate

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería, 8, 33006 Oviedo, Spain, and bDepartamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 20 June 2010; accepted 15 July 2010; online 20 October 2010)

In the title compound, C17H14O3·H2O, the six-membered ring, which adopts a half-chair conformation, makes a dihedral angle of 24.3 (2)° with the phenyl ring. In the crystal, the components are linked by O—H⋯O hydrogen bonds involving the water mol­ecule, and the hy­droxy and carbonyl groups of the organic compound. These inter­actions form a square-like supra­molecular synthon unit which propagates as chains parallel to the crystallographic b axis. A C—H⋯O interaction also occurs.

Related literature

For related literature about the cited reactions, see: Bassetti et al. (2005[Bassetti, M., D'Annibale, A., Fanfoni, A. & Minissi, F. (2005). Org. Lett. 7, 1805-1808.]); Beck et al. (2001[Beck, B., Magnin-Lachaux, M., Herdtweck, E. & Domling, A. (2001). Org. Lett. 3, 2875-2878.]); Liu et al. (2006[Liu, Y., Song, F. & Guo, S. (2006). J. Am. Chem. Soc. 128, 11332-11333.]); Ma & Gu (2005[Ma, S. & Gu, Z. (2005). J. Am. Chem. Soc. 127, 6182-6183.]); Rudler et al. (2004[Rudler, H., Parlier, A., Certal, V., Lastennet, G., Audouin, M. & Vaissermann, J. (2004). Eur. J. Org. Chem. pp. 2471-2502.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O3·H2O

  • Mr = 284.30

  • Monoclinic, P 21 /c

  • a = 9.1585 (2) Å

  • b = 9.2160 (3) Å

  • c = 17.4628 (5) Å

  • β = 91.145 (2)°

  • V = 1473.65 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.982, Tmax = 0.983

  • 5821 measured reflections

  • 3360 independent reflections

  • 2251 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.191

  • S = 1.14

  • 3360 reflections

  • 195 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O21 0.82 1.94 2.735 (2) 163
O21—H21A⋯O10i 1.00 1.74 2.728 (2) 169
O21—H21B⋯O14ii 1.00 1.75 2.754 (2) 176
C13—H13⋯O21iii 0.93 2.47 3.236 (3) 139
Symmetry codes: (i) -x, -y-1, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y-1, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Butenolides are ubiquitous chemical moieties found in many natural products coming from plants, microorganisms and algae. A range of synthetic approaches to this class of compounds exists and includes among others, palladium-catalyzed cross-coupling reaction between allenoic acids and 2,3-allenols (Ma et al., 2005), gold-catalyzed Z-enynol cyclization (Liu et al., 2006) or ring-closing metathesis of methallyl acrylates (Bassetti et al., 2005). However, only a few multicomponent methods have been reported that include a Passerini reaction (Beck et al., 2001) and Fischer carbene complexes (Rudler et al., 2004) among others. In this context, a new multicomponent method for the synthesis of bicyclic 2-butenolides through the coupling of imide lithium enolates, propargylic organometallics and Fischer carbene complexes will be soon published elsewhere.

The molecular structure of the title compound is shown in Fig. 1. The molecular packing is dominated by three main hydrogen bonds O10—H10···O21, O21—H21A···O10i and O21—H21B···O14ii involving the water molecule, and the hydroxyl and carbonyl groups of the compound. These interactions involving two compounds and two water molecules form a square-like supramolecular synthon unit which propagates as linear chains parallel to the crystallographic b axis.

Related literature top

For related literature about the cited reactions, see: Bassetti et al. (2005); Beck et al. (2001); Liu et al. (2006); Ma & Gu (2005); Rudler et al. (2004).

Experimental top

n-Butyllithium (1.2 mmol, 1.6 M in hexane, 750 µL) was added to a stirred solution of diisopropylamine (1.2 mmol, 172 µL) in THF (2 ml) at 273 K. After stirring for 15 min at 273 K, the solution was cooled to 195 K and 3-acetyl-2-oxazolidinone (1.2 mmol, 155 mg) in THF (2 ml) was added dropwise over 5 min. The mixture was stirred at 195 K for a further 30 min period to complete the formation of the lithium enolate. Pentacarbonyl-(1-methoxy-1-phenylmethylene)chromium (1 mmol, 312 mg) in THF (20 ml) was added over the lithium enolate solution at 195 K and the resulting mixture was stirred for 15 min. After that, propargylmagnesium bromide (2.6 mmol, 0.5 M in Et2O, 5.2 ml) was added dropwise at 195 K. The mixture was stirred for 30 min at 195 K and then for 12 h at 218 K. Then it was allowed to reach 293 K slowly (8 h). The reaction was quenched with NH4Cl (20 ml, saturated aqueous solution), diluted with hexane/ethyl acetate, 10/1 (110 ml) and subjected to air oxidation under sunlight. After 24 h, the yellow suspension was filtered through Celite and extracted with diethyl ether (3 x 10 ml). The organic layers were combined, dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel using mixtures of hexane/ethyl acetate (20/1 to 9/1 to 3/1 to 1/1) to yield the title compound (0.68 mmol, 181 mg, 68%) as a pure compound.

Refinement top

All non-H atoms were anisotropically refined. All H atoms were placed in geometrically idealized positions with C—H = 0.93 Å for the aromatic H atoms and for the acetylenic H atom, with C—H = 0.97 Å for the methylene H atoms, with O—H = 0.82 Å for the hydroxy H atom, and with O—H = 1.0 Å for the water H atoms. All of them were constrained to ride on their parent atoms with Uiso(H) = 1.2*Ueq(C) and Uiso(H) = 1.5*Ueq(O), except for the water H atoms which were isotropically refined.

Structure description top

2-Butenolides are ubiquitous chemical moieties found in many natural products coming from plants, microorganisms and algae. A range of synthetic approaches to this class of compounds exists and includes among others, palladium-catalyzed cross-coupling reaction between allenoic acids and 2,3-allenols (Ma et al., 2005), gold-catalyzed Z-enynol cyclization (Liu et al., 2006) or ring-closing metathesis of methallyl acrylates (Bassetti et al., 2005). However, only a few multicomponent methods have been reported that include a Passerini reaction (Beck et al., 2001) and Fischer carbene complexes (Rudler et al., 2004) among others. In this context, a new multicomponent method for the synthesis of bicyclic 2-butenolides through the coupling of imide lithium enolates, propargylic organometallics and Fischer carbene complexes will be soon published elsewhere.

The molecular structure of the title compound is shown in Fig. 1. The molecular packing is dominated by three main hydrogen bonds O10—H10···O21, O21—H21A···O10i and O21—H21B···O14ii involving the water molecule, and the hydroxyl and carbonyl groups of the compound. These interactions involving two compounds and two water molecules form a square-like supramolecular synthon unit which propagates as linear chains parallel to the crystallographic b axis.

For related literature about the cited reactions, see: Bassetti et al. (2005); Beck et al. (2001); Liu et al. (2006); Ma & Gu (2005); Rudler et al. (2004).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
5-Hydroxy-7-phenyl-5-(prop-2-yn-1-yl)-5,6-dihydro-1-benzofuran-2(4H)-one monohydrate top
Crystal data top
C17H14O3·H2OF(000) = 600
Mr = 284.30Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3327 reflections
a = 9.1585 (2) Åθ = 1.0–27.5°
b = 9.2160 (3) ŵ = 0.09 mm1
c = 17.4628 (5) ÅT = 293 K
β = 91.145 (2)°Prismatic, colourless
V = 1473.65 (7) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3360 independent reflections
Radiation source: Enraf–Nonius FR5902251 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.2°
CCD rotation images, thick slices scansh = 1111
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
k = 1111
Tmin = 0.982, Tmax = 0.983l = 2222
5821 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1074P)2]
where P = (Fo2 + 2Fc2)/3
3360 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.69 e Å3
Crystal data top
C17H14O3·H2OV = 1473.65 (7) Å3
Mr = 284.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1585 (2) ŵ = 0.09 mm1
b = 9.2160 (3) ÅT = 293 K
c = 17.4628 (5) Å0.20 × 0.20 × 0.18 mm
β = 91.145 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3360 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
2251 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.983Rint = 0.028
5821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.14Δρmax = 0.50 e Å3
3360 reflectionsΔρmin = 0.69 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O100.09705 (15)0.35189 (15)0.55947 (8)0.0309 (4)
H100.09380.38900.51680.046*
O210.07886 (17)0.41878 (17)0.40700 (9)0.0371 (4)
H21A0.01060.50290.41270.108 (13)*
H21B0.03260.34870.36990.080 (10)*
O10.15674 (17)0.09639 (15)0.59615 (7)0.0299 (4)
O140.0447 (2)0.21621 (17)0.69040 (8)0.0424 (5)
C160.2016 (2)0.0987 (2)0.42937 (12)0.0332 (5)
H160.12810.12880.46170.040*
C50.2133 (2)0.0433 (2)0.58766 (11)0.0257 (5)
C90.2434 (2)0.2746 (2)0.66557 (11)0.0283 (5)
H9A0.17780.32830.69810.034*
H9B0.34030.27740.68890.034*
C110.3067 (2)0.4999 (2)0.58931 (12)0.0334 (5)
H11A0.24790.55660.62390.040*
H11B0.29650.54280.53880.040*
C80.2462 (2)0.3443 (2)0.58623 (11)0.0267 (5)
C20.1017 (3)0.1045 (2)0.66926 (11)0.0319 (5)
C120.4598 (3)0.5102 (2)0.61430 (12)0.0327 (5)
C40.1930 (2)0.1211 (2)0.65843 (10)0.0260 (5)
C60.2752 (2)0.0953 (2)0.52416 (11)0.0244 (5)
C170.2193 (3)0.1677 (3)0.35963 (12)0.0408 (6)
H170.15710.24320.34540.049*
C70.3324 (2)0.2498 (2)0.53073 (11)0.0281 (5)
H7A0.43380.24690.54780.034*
H7B0.32880.29450.48040.034*
C150.2936 (2)0.0165 (2)0.45162 (11)0.0264 (5)
C200.4029 (2)0.0591 (2)0.40115 (11)0.0325 (5)
H200.46450.13570.41430.039*
C30.1265 (2)0.0318 (2)0.70729 (11)0.0308 (5)
H30.10090.05420.75720.037*
C190.4203 (3)0.0118 (3)0.33181 (13)0.0391 (6)
H190.49380.01710.29910.047*
C180.3288 (3)0.1249 (3)0.31113 (12)0.0412 (6)
H180.34090.17230.26470.049*
C130.5838 (3)0.5168 (3)0.63321 (14)0.0429 (6)
H130.68180.52210.64810.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.0292 (9)0.0298 (8)0.0334 (8)0.0001 (6)0.0032 (6)0.0002 (6)
O210.0357 (9)0.0365 (9)0.0391 (9)0.0021 (7)0.0032 (7)0.0071 (7)
O10.0433 (9)0.0239 (8)0.0228 (7)0.0043 (7)0.0059 (6)0.0005 (6)
O140.0641 (12)0.0332 (10)0.0302 (8)0.0141 (8)0.0060 (7)0.0034 (7)
C160.0351 (13)0.0383 (13)0.0263 (11)0.0022 (10)0.0027 (9)0.0027 (9)
C50.0274 (11)0.0224 (11)0.0275 (10)0.0011 (8)0.0006 (8)0.0005 (8)
C90.0311 (12)0.0276 (11)0.0262 (10)0.0018 (9)0.0017 (8)0.0045 (9)
C110.0361 (13)0.0273 (11)0.0367 (12)0.0042 (10)0.0008 (9)0.0006 (9)
C80.0245 (11)0.0258 (11)0.0296 (10)0.0006 (9)0.0016 (8)0.0017 (8)
C20.0389 (13)0.0326 (12)0.0243 (10)0.0026 (10)0.0024 (9)0.0039 (9)
C120.0388 (15)0.0298 (12)0.0296 (11)0.0069 (10)0.0045 (9)0.0020 (9)
C40.0270 (11)0.0273 (11)0.0238 (10)0.0027 (9)0.0016 (8)0.0008 (8)
C60.0225 (10)0.0273 (11)0.0235 (10)0.0015 (8)0.0013 (8)0.0014 (8)
C170.0456 (15)0.0438 (14)0.0328 (12)0.0013 (12)0.0017 (10)0.0099 (10)
C70.0296 (12)0.0271 (11)0.0278 (10)0.0013 (9)0.0025 (8)0.0019 (8)
C150.0279 (12)0.0284 (11)0.0227 (10)0.0049 (9)0.0007 (8)0.0016 (8)
C200.0339 (13)0.0368 (13)0.0269 (11)0.0016 (10)0.0040 (9)0.0015 (9)
C30.0362 (13)0.0343 (12)0.0219 (10)0.0019 (10)0.0040 (9)0.0011 (8)
C190.0399 (14)0.0498 (15)0.0281 (11)0.0069 (11)0.0096 (9)0.0014 (10)
C180.0477 (15)0.0494 (15)0.0265 (11)0.0089 (12)0.0006 (10)0.0096 (10)
C130.0374 (15)0.0505 (16)0.0407 (13)0.0106 (12)0.0011 (11)0.0062 (11)
Geometric parameters (Å, º) top
O10—C81.436 (2)C11—H11B0.9700
O10—H100.8200C8—C71.533 (3)
O21—H21A1.0020C2—C31.437 (3)
O21—H21B1.0021C12—C131.179 (3)
O1—C21.384 (2)C4—C31.341 (3)
O1—C51.397 (2)C6—C151.473 (3)
O14—C21.215 (3)C6—C71.521 (3)
C16—C171.386 (3)C17—C181.383 (4)
C16—C151.405 (3)C17—H170.9300
C16—H160.9300C7—H7A0.9700
C5—C61.344 (3)C7—H7B0.9700
C5—C41.444 (3)C15—C201.403 (3)
C9—C41.492 (3)C20—C191.387 (3)
C9—C81.528 (3)C20—H200.9300
C9—H9A0.9700C3—H30.9300
C9—H9B0.9700C19—C181.381 (3)
C11—C121.463 (3)C19—H190.9300
C11—C81.538 (3)C18—H180.9300
C11—H11A0.9700C13—H130.9300
C8—O10—H10109.5C3—C4—C5107.93 (18)
H21A—O21—H21B107.9C3—C4—C9132.25 (18)
C2—O1—C5106.88 (15)C5—C4—C9119.83 (17)
C17—C16—C15120.6 (2)C5—C6—C15126.24 (19)
C17—C16—H16119.7C5—C6—C7114.96 (17)
C15—C16—H16119.7C15—C6—C7118.79 (16)
C6—C5—O1125.43 (18)C18—C17—C16120.4 (2)
C6—C5—C4126.35 (19)C18—C17—H17119.8
O1—C5—C4108.21 (16)C16—C17—H17119.8
C4—C9—C8109.49 (16)C6—C7—C8113.49 (16)
C4—C9—H9A109.8C6—C7—H7A108.9
C8—C9—H9A109.8C8—C7—H7A108.9
C4—C9—H9B109.8C6—C7—H7B108.9
C8—C9—H9B109.8C8—C7—H7B108.9
H9A—C9—H9B108.2H7A—C7—H7B107.7
C12—C11—C8114.41 (18)C20—C15—C16117.96 (19)
C12—C11—H11A108.7C20—C15—C6119.86 (19)
C8—C11—H11A108.7C16—C15—C6122.15 (19)
C12—C11—H11B108.7C19—C20—C15120.8 (2)
C8—C11—H11B108.7C19—C20—H20119.6
H11A—C11—H11B107.6C15—C20—H20119.6
O10—C8—C9106.40 (16)C4—C3—C2108.20 (18)
O10—C8—C7108.67 (15)C4—C3—H3125.9
C9—C8—C7110.64 (17)C2—C3—H3125.9
O10—C8—C11107.82 (16)C18—C19—C20120.3 (2)
C9—C8—C11111.90 (16)C18—C19—H19119.9
C7—C8—C11111.21 (17)C20—C19—H19119.9
O14—C2—O1119.52 (19)C19—C18—C17119.9 (2)
O14—C2—C3131.7 (2)C19—C18—H18120.0
O1—C2—C3108.78 (17)C17—C18—H18120.0
C13—C12—C11178.7 (2)C12—C13—H13180.0
C2—O1—C5—C6179.1 (2)C5—C6—C7—C830.3 (3)
C2—O1—C5—C40.7 (2)C15—C6—C7—C8150.71 (18)
C4—C9—C8—O1066.2 (2)O10—C8—C7—C660.3 (2)
C4—C9—C8—C751.7 (2)C9—C8—C7—C656.2 (2)
C4—C9—C8—C11176.32 (17)C11—C8—C7—C6178.83 (16)
C12—C11—C8—O10178.87 (16)C17—C16—C15—C200.2 (3)
C12—C11—C8—C964.5 (2)C17—C16—C15—C6178.1 (2)
C12—C11—C8—C759.8 (2)C5—C6—C15—C20156.6 (2)
C5—O1—C2—O14179.3 (2)C7—C6—C15—C2022.3 (3)
C5—O1—C2—C30.9 (2)C5—C6—C15—C1625.5 (3)
C6—C5—C4—C3179.6 (2)C7—C6—C15—C16155.6 (2)
O1—C5—C4—C30.2 (2)C16—C15—C20—C190.7 (3)
C6—C5—C4—C90.0 (3)C6—C15—C20—C19178.67 (19)
O1—C5—C4—C9179.82 (17)C5—C4—C3—C20.3 (2)
C8—C9—C4—C3154.0 (2)C9—C4—C3—C2179.2 (2)
C8—C9—C4—C525.5 (3)O14—C2—C3—C4179.5 (2)
O1—C5—C6—C150.8 (3)O1—C2—C3—C40.8 (2)
C4—C5—C6—C15179.0 (2)C15—C20—C19—C180.6 (3)
O1—C5—C6—C7178.16 (18)C20—C19—C18—C170.1 (4)
C4—C5—C6—C72.1 (3)C16—C17—C18—C190.7 (4)
C15—C16—C17—C180.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O210.821.942.735 (2)163
O21—H21A···O10i1.001.742.728 (2)169
O21—H21B···O14ii1.001.752.754 (2)176
C13—H13···O21iii0.932.473.236 (3)139
Symmetry codes: (i) x, y1, z+1; (ii) x, y, z+1; (iii) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC17H14O3·H2O
Mr284.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1585 (2), 9.2160 (3), 17.4628 (5)
β (°) 91.145 (2)
V3)1473.65 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD
Absorption correctionPart of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
Tmin, Tmax0.982, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5821, 3360, 2251
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.191, 1.14
No. of reflections3360
No. of parameters195
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.69

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O210.821.942.735 (2)163.4
O21—H21A···O10i1.001.742.728 (2)169.2
O21—H21B···O14ii1.001.752.754 (2)176.0
C13—H13···O21iii0.932.473.236 (3)139.4
Symmetry codes: (i) x, y1, z+1; (ii) x, y, z+1; (iii) x+1, y1, z+1.
 

Acknowledgements

Financial support from the Spanish Ministerio de Educacion y Ciencia (MAT2006–01997 and 'Factoría de Cristalización' Consolider Ingenio 2010) and FEDER funding is acknowledged.

References

First citationBassetti, M., D'Annibale, A., Fanfoni, A. & Minissi, F. (2005). Org. Lett. 7, 1805–1808.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeck, B., Magnin-Lachaux, M., Herdtweck, E. & Domling, A. (2001). Org. Lett. 3, 2875–2878.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Y., Song, F. & Guo, S. (2006). J. Am. Chem. Soc. 128, 11332–11333.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, S. & Gu, Z. (2005). J. Am. Chem. Soc. 127, 6182–6183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRudler, H., Parlier, A., Certal, V., Lastennet, G., Audouin, M. & Vaissermann, J. (2004). Eur. J. Org. Chem. pp. 2471–2502.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds