organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris{2-[(3-thien­yl)methyl­­idene­amino]­eth­yl}amine

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: alamgir@chem.jsums.edu

(Received 21 September 2010; accepted 30 September 2010; online 9 October 2010)

The title compound, C21H24N4S3, is a tripodal Schiff base that was obtained from the reaction of tris­(2-amino­eth­yl)amine (tren) and thio­phene-3-carbaldehyde. The compound forms a cavity with approximate C3 symmetry. One of the thio­phene units is disordered in a 0.764 (2):0.236 (2) ratio. In the crystal, the three thio­phene ligands are involved in intra­molecular C—H⋯π inter­actions and the mol­ecules are connected by C—H⋯N inter­actions, forming hydrogen-bonded chains.

Related literature

For general background to tren-based imines, see: Ballester et al. (1999[Ballester, P., Costa, A., Deyii, P. M., Vega, M. & Morey, J. (1999). Tetrahedron Lett. 40, 171-174.]); Bianchi et al. (1997[Bianchi, A., García-España, E. & Bowman-James, K. (1997). In Supramol­ecular Chemistry of Anions. New York: Wiley-VCH.]); Fan et al. (2002[Fan, A. L., Hong, H. K., Valiyaveettil, S. & Vittal, J. J. (2002). J. Supramol. Chem. 2, 247-254.]); Kang et al. (2005[Kang, S. O., Hossain, M. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328-330.]); McLachlan et al. (1996[McLachlan, G. A., Fallon, G. D. & Spiccia, L. (1996). Acta Cryst. C52, 309-312.]); Kaur et al. (2009[Kaur, N., Singh, N., Cairns, D. & Callan, J. F. (2009). Org. Lett. 11, 2229-2232.]); Salehzadeh et al. (2006[Salehzadeh, S., Javarsineh, S. A. & Keypour, H. (2006). J. Mol. Struct. 785, 54-62.]). For related structures, see: Alyea et al. (1989[Alyea, E. C., Liu, S., Li, B., Xu, Z. & You, X. (1989). Acta Cryst. C45, 1566-1568.]); Bazzicalupi et al. (2009[Bazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem. 48, 2391-8.]); Burgess et al. (1991[Burgess, J., Al-Alousy, A., Fawcett, J. & Russell, D. R. (1991). Acta Cryst. C47, 2506-2508.]); Hossain et al. (2004[Hossain, M. A., Liljegren, J. A., Powell, R. D. & Bowman-James, K. (2004). Inorg. Chem. 43, 3751-3755.]); Mazik et al. (2001[Mazik, M., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 5791-5797.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N4S3

  • Mr = 428.62

  • Monoclinic, C 2/c

  • a = 28.694 (3) Å

  • b = 9.2529 (10) Å

  • c = 16.427 (2) Å

  • β = 96.150 (5)°

  • V = 4336.3 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.23 mm−1

  • T = 90 K

  • 0.30 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.444, Tmax = 0.537

  • 13414 measured reflections

  • 3884 independent reflections

  • 3571 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.04

  • 3884 reflections

  • 261 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the S1,C4–C7, S2,C11–C14 and S3,C18–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯N2i 0.95 2.55 3.354 (7) 143
C21—H21⋯Cg1 0.95 2.61 3.437 (2) 146
C5—H5⋯Cg2 0.95 2.65 3.452 (2) 142
C12—H12⋯Cg3 0.95 2.61 3.432 (3) 145
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Tren-based imines synthesized from the reaction of tris(2-aminoethyl)amine (tren) and an aldehyde are versatile ligands for transitional metals (Salehzadeh et al., 2006; McLachlan et al., 1996). Because of the simplicity, such imines are often converted directly into the corresponding amines, which are potential to bind a wide range of cations and anions (Bianchi et al., 1997; Kang et al., 2005). The connecting arms play an important role in achieving shape and size selectivity of a particular guest. Compared with a monopodal or dipodal receptor, a tripodal receptor often binds a guest species strongly due to the enhanced chelating effect and controlled cavity (Ballester et al., 1999; Fan et al., 2002). Therefore, an increasing attention is being paid to the development of new tripodal receptors (Kaur et al., 2009). During the course of our study, we synthesized a new Schiff base from the reaction of tris(2-aminoethyl)amine (tren) and 3-thiophene aldehyde, and obtained crystals. Herein, we report the structure of tris[(4–2-thienyl)-3-aza-3-butenyl]amine (I), which was prepared by condensation of 3-thiophene aldehyde with tris(2-aminoethyl)amine. A related Schiff base, tris[4-(2-thienyl)-3-aza-3-butenyl]amine was synthesized and analyzed previously by crystallography (Alyea et al., 1989). Although our compound is isomerically different, it shows almost similar cell parameters observed in the tris[(4–2-thienyl)-3-aza-3-butenyl]amine.

The structural analysis of the title compound shows that it forms a cavity with three arms (Figure 1). The compound contains an approximate C3 symmetry axis passing through the tertiary N atom. One of the thiophene moieties is disordered by twofold rotation about C17—C18. All three aromatic units are involved in CH···π interactions with C···centroid distances of 3.452 (2), 3.432 (2) and 3.437 (3) Å (Table 1 and Figure 2). A related tren based receptor with three phenyl groups was reported earlier, showing a relatively flat structure where no CH···π interaction was observed (Hossain et al., 2004). The presence of sulfur in the aromatic rings perhaps facilitates CH···π interactions by increasing the electron density to aromatic rings. In the crystal structure, neighboring units are connected by intermolecular C20—H20···N2 interactions (C···N = 3.354 (7) Å), forming hydrogen-bonded chains (Figure 3). Such distances are comparable with those observed in the crystal structure of an α,β-unsaturated ketone (CH···N interactions with C···N = 3.41 to 3.71 Å) with a terminal pyridine subunit (Mazik et al., 2001).

Related literature top

For general background to tren-based imines, see: Ballester et al. (1999); Bianchi et al. (1997); Fan et al. (2002); Kang et al. (2005); McLachlan et al. (1996); Kaur et al. (2009); Salehzadeh et al. (2006). For related structures, see: Alyea et al. (1989); Bazzicalupi et al. (2009); Burgess et al. (1991); Hossain et al. (2004); Mazik et al. (2001).

Experimental top

To a solution of 3-thiophene aldehyde (2.30 g, 20.5 mmol) in diethylether (50 ml) was added tris(2-aminoethyl)amine (1.00 g, 6.84 mmol) in ethanol (50 ml). The mixture was stirred overnight at room temperature, and the solvent was evaporated. The product was suspended in water (50 ml) and an extraction was made with CH2Cl2(3 x 50 ml). The organic layers were combined and dried by anhydrous MgSO4 (1.5 g). The yellowish solution was collected by filtration, and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on a neutral-alumina column (2% CH3OH in CH2Cl2) to give the imine as a white powder. Yield = 3.98 g (67%). M.P. 80 °C. 1H NMR (500 MHz, CDCl3, TMS): δ 2.85 (t, 6H, NCH2),3.59 ((t, 6H, NCH2CH2), δ 8.011 (s, 3H, NCH), 7.11 (m, 3H, ArH), 7.28 (m, 3H, ArH), 7.45 (m, 3H, ArH). The compound was redissolved in ethanol (1 ml) and crystals suitable for X-ray analysis were grown from slow evaporation of the solvent at room temperature.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.99 Å and thereafter treated as riding. Uiso for H were assigned as 1.2 times Ueq of the attached C atom. The disorder in the thiophene ring containing S3 was modeled with two orientations having populations 0.764 (2) and 0.236 (2), their geometries being restrained to be the same as that of the thiophene containing S1. Displacement parameters of S3 and S3A were constrained to be equal, as were those of C20 and C20A.

Structure description top

Tren-based imines synthesized from the reaction of tris(2-aminoethyl)amine (tren) and an aldehyde are versatile ligands for transitional metals (Salehzadeh et al., 2006; McLachlan et al., 1996). Because of the simplicity, such imines are often converted directly into the corresponding amines, which are potential to bind a wide range of cations and anions (Bianchi et al., 1997; Kang et al., 2005). The connecting arms play an important role in achieving shape and size selectivity of a particular guest. Compared with a monopodal or dipodal receptor, a tripodal receptor often binds a guest species strongly due to the enhanced chelating effect and controlled cavity (Ballester et al., 1999; Fan et al., 2002). Therefore, an increasing attention is being paid to the development of new tripodal receptors (Kaur et al., 2009). During the course of our study, we synthesized a new Schiff base from the reaction of tris(2-aminoethyl)amine (tren) and 3-thiophene aldehyde, and obtained crystals. Herein, we report the structure of tris[(4–2-thienyl)-3-aza-3-butenyl]amine (I), which was prepared by condensation of 3-thiophene aldehyde with tris(2-aminoethyl)amine. A related Schiff base, tris[4-(2-thienyl)-3-aza-3-butenyl]amine was synthesized and analyzed previously by crystallography (Alyea et al., 1989). Although our compound is isomerically different, it shows almost similar cell parameters observed in the tris[(4–2-thienyl)-3-aza-3-butenyl]amine.

The structural analysis of the title compound shows that it forms a cavity with three arms (Figure 1). The compound contains an approximate C3 symmetry axis passing through the tertiary N atom. One of the thiophene moieties is disordered by twofold rotation about C17—C18. All three aromatic units are involved in CH···π interactions with C···centroid distances of 3.452 (2), 3.432 (2) and 3.437 (3) Å (Table 1 and Figure 2). A related tren based receptor with three phenyl groups was reported earlier, showing a relatively flat structure where no CH···π interaction was observed (Hossain et al., 2004). The presence of sulfur in the aromatic rings perhaps facilitates CH···π interactions by increasing the electron density to aromatic rings. In the crystal structure, neighboring units are connected by intermolecular C20—H20···N2 interactions (C···N = 3.354 (7) Å), forming hydrogen-bonded chains (Figure 3). Such distances are comparable with those observed in the crystal structure of an α,β-unsaturated ketone (CH···N interactions with C···N = 3.41 to 3.71 Å) with a terminal pyridine subunit (Mazik et al., 2001).

For general background to tren-based imines, see: Ballester et al. (1999); Bianchi et al. (1997); Fan et al. (2002); Kang et al. (2005); McLachlan et al. (1996); Kaur et al. (2009); Salehzadeh et al. (2006). For related structures, see: Alyea et al. (1989); Bazzicalupi et al. (2009); Burgess et al. (1991); Hossain et al. (2004); Mazik et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and H atoms with arbitrary radius.
[Figure 2] Fig. 2. CH···π interactions (dotted lines) in the crystal structure of the title compound.
[Figure 3] Fig. 3. Hydrogen bonded chain in the lattice of the title compound viewed down a axis.
Tris{2-[(3-thienyl)methylideneamino]ethyl}amine top
Crystal data top
C21H24N4S3F(000) = 1808
Mr = 428.62Dx = 1.313 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 7541 reflections
a = 28.694 (3) Åθ = 5.0–68.3°
b = 9.2529 (10) ŵ = 3.23 mm1
c = 16.427 (2) ÅT = 90 K
β = 96.150 (5)°Fragment, colourless
V = 4336.3 (8) Å30.30 × 0.28 × 0.22 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3884 independent reflections
Radiation source: fine-focus sealed tube3571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 68.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3433
Tmin = 0.444, Tmax = 0.537k = 1110
13414 measured reflectionsl = 1917
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0403P)2 + 7.6616P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3884 reflectionsΔρmax = 0.41 e Å3
261 parametersΔρmin = 0.44 e Å3
28 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00060 (5)
Crystal data top
C21H24N4S3V = 4336.3 (8) Å3
Mr = 428.62Z = 8
Monoclinic, C2/cCu Kα radiation
a = 28.694 (3) ŵ = 3.23 mm1
b = 9.2529 (10) ÅT = 90 K
c = 16.427 (2) Å0.30 × 0.28 × 0.22 mm
β = 96.150 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3884 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3571 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 0.537Rint = 0.031
13414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03528 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
3884 reflectionsΔρmin = 0.44 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.292078 (17)0.23863 (5)0.25479 (3)0.02483 (15)
N10.42630 (5)0.04730 (16)0.62236 (9)0.0153 (3)
N20.34778 (5)0.26041 (17)0.65167 (9)0.0174 (3)
N30.37162 (5)0.07966 (17)0.46740 (9)0.0188 (3)
N40.47792 (5)0.26700 (17)0.52115 (9)0.0179 (3)
C10.40953 (6)0.0885 (2)0.70049 (11)0.0180 (4)
H1A0.42690.17500.72240.022*
H1B0.41620.00900.74040.022*
C20.35725 (6)0.1209 (2)0.69159 (11)0.0198 (4)
H2A0.34020.04400.65880.024*
H2B0.34580.12220.74630.024*
C30.32751 (6)0.2597 (2)0.57929 (11)0.0155 (4)
H30.32060.17000.55250.019*
S10.276626 (16)0.57210 (5)0.42956 (3)0.02137 (14)
C40.31449 (6)0.3943 (2)0.53614 (11)0.0148 (4)
C50.28869 (6)0.3986 (2)0.46128 (11)0.0175 (4)
H50.27860.31530.43050.021*
C60.30664 (6)0.6422 (2)0.51705 (11)0.0194 (4)
H60.31000.74250.52830.023*
C70.32484 (6)0.5360 (2)0.56788 (11)0.0166 (4)
H70.34260.55390.61910.020*
C80.41542 (6)0.1043 (2)0.60370 (12)0.0191 (4)
H8A0.38470.12820.62240.023*
H8B0.43940.16620.63430.023*
C90.41392 (6)0.1375 (2)0.51287 (12)0.0212 (4)
H9A0.44180.09510.49130.025*
H9B0.41500.24350.50490.025*
C100.37694 (6)0.0228 (2)0.41808 (11)0.0171 (4)
H100.40750.06030.41500.021*
C110.33762 (6)0.0855 (2)0.36569 (11)0.0165 (4)
C120.34322 (6)0.1941 (2)0.31106 (11)0.0195 (4)
H120.37240.23950.30520.023*
C130.26031 (6)0.11281 (19)0.30122 (11)0.0156 (4)
H130.22770.09570.28860.019*
C140.29004 (6)0.0380 (2)0.36131 (11)0.0174 (4)
H140.27950.03580.39510.021*
C150.47680 (6)0.0740 (2)0.62364 (11)0.0172 (4)
H15A0.48930.01280.58160.021*
H15B0.49260.04500.67770.021*
C160.48832 (6)0.2312 (2)0.60779 (11)0.0194 (4)
H16A0.46980.29450.64070.023*
H16B0.52200.24900.62510.023*
C170.44833 (6)0.3661 (2)0.50276 (11)0.0179 (4)
H170.43340.41000.54530.021*
S30.43695 (3)0.45750 (11)0.26243 (4)0.0223 (3)0.764 (2)
C200.3950 (3)0.5473 (10)0.3129 (5)0.0236 (13)0.764 (2)
H200.37240.61200.28710.028*0.764 (2)
S3A0.3904 (3)0.5578 (10)0.3071 (4)0.0223 (3)0.236 (2)
C20A0.4402 (5)0.4535 (15)0.2850 (7)0.0236 (13)0.236 (2)
H20A0.45170.45060.23290.028*0.236 (2)
C180.43616 (6)0.4160 (2)0.41825 (11)0.0178 (4)
C190.45957 (6)0.3789 (2)0.35179 (11)0.0215 (4)
H190.48580.31560.35570.026*0.764 (2)
H19A0.48490.31260.35260.026*0.236 (2)
C210.39888 (6)0.5126 (2)0.39551 (13)0.0230 (4)
H210.37870.54960.43270.028*0.764 (2)
H21A0.37970.54790.43480.028*0.236 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0283 (3)0.0242 (3)0.0219 (3)0.00055 (19)0.00263 (19)0.00012 (19)
N10.0126 (7)0.0167 (8)0.0168 (7)0.0004 (6)0.0022 (6)0.0013 (6)
N20.0138 (7)0.0177 (8)0.0212 (8)0.0023 (6)0.0038 (6)0.0021 (6)
N30.0157 (8)0.0177 (8)0.0229 (8)0.0007 (6)0.0014 (6)0.0038 (7)
N40.0161 (7)0.0199 (8)0.0182 (8)0.0030 (6)0.0036 (6)0.0007 (6)
C10.0186 (9)0.0199 (9)0.0157 (8)0.0021 (7)0.0029 (7)0.0037 (7)
C20.0183 (9)0.0195 (10)0.0225 (9)0.0025 (7)0.0061 (7)0.0052 (8)
C30.0115 (8)0.0150 (9)0.0211 (9)0.0000 (7)0.0067 (7)0.0020 (7)
S10.0178 (2)0.0234 (3)0.0225 (2)0.00528 (18)0.00034 (17)0.00436 (18)
C40.0096 (8)0.0174 (9)0.0181 (8)0.0010 (7)0.0054 (6)0.0002 (7)
C50.0142 (8)0.0198 (9)0.0190 (9)0.0008 (7)0.0038 (7)0.0018 (7)
C60.0167 (9)0.0144 (9)0.0277 (10)0.0004 (7)0.0057 (7)0.0012 (8)
C70.0131 (8)0.0175 (9)0.0194 (9)0.0006 (7)0.0032 (7)0.0019 (7)
C80.0161 (9)0.0159 (9)0.0252 (9)0.0014 (7)0.0011 (7)0.0035 (8)
C90.0162 (9)0.0176 (10)0.0293 (10)0.0020 (7)0.0004 (7)0.0048 (8)
C100.0129 (8)0.0188 (10)0.0205 (9)0.0033 (7)0.0057 (7)0.0082 (8)
C110.0161 (9)0.0166 (9)0.0174 (9)0.0016 (7)0.0050 (7)0.0070 (7)
C120.0190 (9)0.0182 (9)0.0223 (9)0.0039 (7)0.0067 (7)0.0048 (8)
C130.0141 (8)0.0148 (9)0.0198 (9)0.0054 (7)0.0109 (7)0.0080 (7)
C140.0166 (9)0.0184 (9)0.0179 (9)0.0018 (7)0.0045 (7)0.0038 (7)
C150.0124 (9)0.0228 (10)0.0160 (8)0.0011 (7)0.0001 (7)0.0014 (7)
C160.0170 (9)0.0250 (10)0.0163 (8)0.0042 (7)0.0018 (7)0.0009 (7)
C170.0143 (8)0.0188 (9)0.0212 (9)0.0045 (7)0.0051 (7)0.0053 (7)
S30.0200 (4)0.0282 (4)0.0190 (4)0.0019 (3)0.0040 (3)0.0048 (3)
C200.023 (3)0.017 (2)0.028 (2)0.0090 (16)0.0093 (16)0.0049 (15)
S3A0.0200 (4)0.0282 (4)0.0190 (4)0.0019 (3)0.0040 (3)0.0048 (3)
C20A0.023 (3)0.017 (2)0.028 (2)0.0090 (16)0.0093 (16)0.0049 (15)
C180.0131 (8)0.0159 (9)0.0246 (9)0.0044 (7)0.0026 (7)0.0002 (7)
C190.0172 (9)0.0246 (10)0.0232 (9)0.0010 (8)0.0052 (7)0.0027 (8)
C210.0149 (9)0.0166 (10)0.0374 (11)0.0029 (7)0.0028 (8)0.0044 (8)
Geometric parameters (Å, º) top
S2—C121.6990 (19)C9—H9B0.9900
S2—C131.7079 (18)C10—C111.464 (3)
N1—C81.462 (2)C10—H100.9500
N1—C151.468 (2)C11—C121.368 (3)
N1—C11.468 (2)C11—C141.429 (3)
N2—C31.266 (2)C12—H120.9500
N2—C21.460 (2)C13—C141.414 (3)
N3—C101.267 (2)C13—H130.9500
N3—C91.457 (2)C14—H140.9500
N4—C171.264 (2)C15—C161.521 (3)
N4—C161.461 (2)C15—H15A0.9900
C1—C21.522 (2)C15—H15B0.9900
C1—H1A0.9900C16—H16A0.9900
C1—H1B0.9900C16—H16B0.9900
C2—H2A0.9900C17—C181.469 (3)
C2—H2B0.9900C17—H170.9500
C3—C41.461 (2)S3—C191.703 (2)
C3—H30.9500S3—C201.743 (7)
S1—C51.7113 (19)C20—C211.387 (8)
S1—C61.7211 (19)C20—H200.9500
C4—C51.367 (3)S3A—C211.506 (7)
C4—C71.431 (3)S3A—C20A1.793 (13)
C5—H50.9500C20A—C191.363 (11)
C6—C71.357 (3)C20A—H20A0.9500
C6—H60.9500C18—C191.385 (3)
C7—H70.9500C18—C211.413 (3)
C8—C91.520 (3)C19—H190.9500
C8—H8A0.9900C19—H19A0.9500
C8—H8B0.9900C21—H210.9500
C9—H9A0.9900C21—H21A0.9500
C12—S2—C1393.62 (9)C14—C11—C10125.46 (17)
C8—N1—C15110.65 (14)C11—C12—S2112.30 (14)
C8—N1—C1110.47 (14)C11—C12—H12123.9
C15—N1—C1111.05 (14)S2—C12—H12123.9
C3—N2—C2117.52 (16)C14—C13—S2109.53 (13)
C10—N3—C9116.86 (16)C14—C13—H13125.2
C17—N4—C16117.33 (16)S2—C13—H13125.2
N1—C1—C2112.29 (14)C13—C14—C11112.72 (16)
N1—C1—H1A109.1C13—C14—H14123.6
C2—C1—H1A109.1C11—C14—H14123.6
N1—C1—H1B109.1N1—C15—C16113.01 (15)
C2—C1—H1B109.1N1—C15—H15A109.0
H1A—C1—H1B107.9C16—C15—H15A109.0
N2—C2—C1110.59 (15)N1—C15—H15B109.0
N2—C2—H2A109.5C16—C15—H15B109.0
C1—C2—H2A109.5H15A—C15—H15B107.8
N2—C2—H2B109.5N4—C16—C15110.99 (15)
C1—C2—H2B109.5N4—C16—H16A109.4
H2A—C2—H2B108.1C15—C16—H16A109.4
N2—C3—C4121.28 (17)N4—C16—H16B109.4
N2—C3—H3119.4C15—C16—H16B109.4
C4—C3—H3119.4H16A—C16—H16B108.0
C5—S1—C691.85 (9)N4—C17—C18122.64 (17)
C5—C4—C7111.84 (16)N4—C17—H17118.7
C5—C4—C3123.20 (17)C18—C17—H17118.7
C7—C4—C3124.89 (15)C19—S3—C2090.7 (2)
C4—C5—S1111.98 (14)C21—C20—S3111.6 (4)
C4—C5—H5124.0C21—C20—H20124.2
S1—C5—H5124.0S3—C20—H20124.2
C7—C6—S1111.50 (14)C21—S3A—C20A89.8 (5)
C7—C6—H6124.3C19—C20A—S3A112.0 (8)
S1—C6—H6124.3C19—C20A—H20A124.0
C6—C7—C4112.84 (16)S3A—C20A—H20A124.0
C6—C7—H7123.6C19—C18—C21111.44 (17)
C4—C7—H7123.6C19—C18—C17125.50 (17)
N1—C8—C9112.52 (15)C21—C18—C17123.04 (17)
N1—C8—H8A109.1C20A—C19—C18108.6 (5)
C9—C8—H8A109.1C18—C19—S3113.67 (15)
N1—C8—H8B109.1C20A—C19—H19128.1
C9—C8—H8B109.1C18—C19—H19123.2
H8A—C8—H8B107.8S3—C19—H19123.2
N3—C9—C8111.31 (15)C20A—C19—H19A125.7
N3—C9—H9A109.4C18—C19—H19A125.7
C8—C9—H9A109.4S3—C19—H19A120.6
N3—C9—H9B109.4C20—C21—C18112.6 (3)
C8—C9—H9B109.4C18—C21—S3A118.0 (3)
H9A—C9—H9B108.0C20—C21—H21123.7
N3—C10—C11122.30 (16)C18—C21—H21123.7
N3—C10—H10118.9S3A—C21—H21118.3
C11—C10—H10118.9C20—C21—H21A126.4
C12—C11—C14111.82 (17)C18—C21—H21A121.0
C12—C11—C10122.64 (16)S3A—C21—H21A121.0
C8—N1—C1—C280.05 (18)C10—C11—C14—C13175.99 (16)
C15—N1—C1—C2156.79 (15)C8—N1—C15—C16156.43 (15)
C3—N2—C2—C1109.39 (18)C1—N1—C15—C1680.51 (18)
N1—C1—C2—N274.34 (19)C17—N4—C16—C15120.22 (18)
C2—N2—C3—C4176.83 (15)N1—C15—C16—N475.56 (19)
N2—C3—C4—C5173.54 (17)C16—N4—C17—C18177.60 (16)
N2—C3—C4—C73.2 (3)C19—S3—C20—C211.2 (6)
C7—C4—C5—S10.38 (19)C21—S3A—C20A—C193.9 (11)
C3—C4—C5—S1176.71 (13)N4—C17—C18—C1910.2 (3)
C6—S1—C5—C40.30 (15)N4—C17—C18—C21171.36 (18)
C5—S1—C6—C70.13 (15)S3A—C20A—C19—C184.2 (11)
S1—C6—C7—C40.1 (2)S3A—C20A—C19—S3146 (7)
C5—C4—C7—C60.3 (2)C21—C18—C19—C20A2.7 (7)
C3—C4—C7—C6176.75 (16)C17—C18—C19—C20A175.9 (7)
C15—N1—C8—C979.14 (17)C21—C18—C19—S30.5 (2)
C1—N1—C8—C9157.46 (15)C17—C18—C19—S3179.13 (15)
C10—N3—C9—C8112.60 (19)C20—S3—C19—C20A30 (6)
N1—C8—C9—N374.04 (19)C20—S3—C19—C181.0 (4)
C9—N3—C10—C11176.80 (15)S3—C20—C21—C181.2 (8)
N3—C10—C11—C12178.59 (18)S3—C20—C21—S3A172 (9)
N3—C10—C11—C142.2 (3)C19—C18—C21—C200.4 (5)
C14—C11—C12—S20.2 (2)C17—C18—C21—C20178.2 (5)
C10—C11—C12—S2176.66 (13)C19—C18—C21—S3A0.3 (5)
C13—S2—C12—C110.32 (15)C17—C18—C21—S3A178.9 (5)
C12—S2—C13—C140.73 (14)C20A—S3A—C21—C205 (8)
S2—C13—C14—C110.95 (19)C20A—S3A—C21—C182.3 (8)
C12—C11—C14—C130.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the S1,C4–C7, S2,C11–C14 and S3,C18–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···N2i0.952.553.354 (7)143
C21—H21···Cg10.952.613.437 (2)146
C5—H5···Cg20.952.653.452 (2)142
C12—H12···Cg30.952.613.432 (3)145
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC21H24N4S3
Mr428.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)28.694 (3), 9.2529 (10), 16.427 (2)
β (°) 96.150 (5)
V3)4336.3 (8)
Z8
Radiation typeCu Kα
µ (mm1)3.23
Crystal size (mm)0.30 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.444, 0.537
No. of measured, independent and
observed [I > 2σ(I)] reflections
13414, 3884, 3571
Rint0.031
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.04
No. of reflections3884
No. of parameters261
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.44

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the S1,C4–C7, S2,C11–C14 and S3,C18–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···N2i0.952.553.354 (7)142.5
C21—H21···Cg10.952.613.437 (2)146.0
C5—H5···Cg20.952.653.452 (2)142.1
C12—H12···Cg30.952.613.432 (3)144.5
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

This work was supported by the National Institutes of Health, Division of National Center for Research Resources, under grant No. G12RR013459. This material is based upon work supported by the National Science Foundation under CHE-0821357.

References

First citationAlyea, E. C., Liu, S., Li, B., Xu, Z. & You, X. (1989). Acta Cryst. C45, 1566–1568.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBallester, P., Costa, A., Deyii, P. M., Vega, M. & Morey, J. (1999). Tetrahedron Lett. 40, 171–174.  Web of Science CrossRef CAS Google Scholar
First citationBazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem. 48, 2391–8.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBianchi, A., García-España, E. & Bowman-James, K. (1997). In Supramol­ecular Chemistry of Anions. New York: Wiley-VCH.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgess, J., Al-Alousy, A., Fawcett, J. & Russell, D. R. (1991). Acta Cryst. C47, 2506–2508.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFan, A. L., Hong, H. K., Valiyaveettil, S. & Vittal, J. J. (2002). J. Supramol. Chem. 2, 247–254.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHossain, M. A., Liljegren, J. A., Powell, R. D. & Bowman-James, K. (2004). Inorg. Chem. 43, 3751–3755.  CSD CrossRef PubMed CAS Google Scholar
First citationKang, S. O., Hossain, M. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328–330.  Web of Science CSD CrossRef Google Scholar
First citationKaur, N., Singh, N., Cairns, D. & Callan, J. F. (2009). Org. Lett. 11, 2229–2232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 5791–5797.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcLachlan, G. A., Fallon, G. D. & Spiccia, L. (1996). Acta Cryst. C52, 309–312.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSalehzadeh, S., Javarsineh, S. A. & Keypour, H. (2006). J. Mol. Struct. 785, 54–62.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds