organic compounds
2′,3,4,4′,5-Pentamethoxychalcone
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: Muller.theunis@gmail.com
In the title chalcone [systemetic name 1-(2,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one], C20H22O6, the dihedral angle between the plane of the two benzene rings is 7.03 (4)° with all but one of the methoxy groups essentially co-planar with these rings [C—C—O—C torsion angles = −76.1 (2), −0.7 (3), 1.8 (3), −6.2 (3), 2.0 (3)°]. An intramolecular C—H⋯O interaction occurs. The crystal packing is stabilized by weak intermolecular C—H⋯O hydrogen bonds.
Related literature
For standard bond lengths, see: Allen et al. (1987). For related structures, see: Patil et al. (2006); van Tonder et al. (2010); Teh et al. (2006); Rosli et al. (2006). For the synthesis of the title compound, see: Kraus & Roy (2008). For the biological activity of see: Pietta et al. (2003). For non-linear optical (NLO) properties of see: Marais et al. (2005); Uchida et al. (1998); Kitaoka et al. (1990); Goto et al. (1991); Zhang et al. (1990). For applications of NLO crystals, see: Chemla & Zyss (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: WingGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810040845/zs2069sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810040845/zs2069Isup2.hkl
Freshly ground KOH (15.1 g; 270 mmol; 32 eq.) was added to a cold (ice bath) stirred solution of 2',4'-dimethoxyacetophenone (1.52 g; 8.4 mmol) and 3,4,5-trimethoxybenzaldehyde (1.95 g; 10.0 mmol; 1.2 eq.) in ethanol (60 ml). The temperature of the reaction mixture was allowed to rise to room temperature and stirring contined until completion of the reaction (TLC). Extraction of the water phase with ethyl acetate (3 x 100 ml) followed by neutralization with aqueous NaHCO3 (litmus) and washing with water gave the crude chalcone after drying of the solution (Na2SO4) and evaporation of the solvent in vacuo at ca. 40° C. Crystallization from ethanol afforded the desired chalcone (2.15 g; 71.2%) as yellow needles. Rf 0.17 (H:A; 8:2); m.p. 85.1° C; 1H NMR (600 MHz, CDCl3) δ 7.70 (1H, d, J = 8.61 Hz, H-6'), 7.54 (1H, d, J = 15.72 Hz, H-β), 7.35 (1H, d, J = 15.72 Hz, H-α), 6.79 (2H, s, H-2,6), 6.53 (1H, dd, J = 2.27, 8.61 Hz, H-5'), 6.47 (1H, d, J = 2.27 Hz, H-3'), 3.86 (9H, s, –OCH3), 3.85 (3H, s, –OCH3), 3.83 (3H, s, –OCH3); 13C NMR (151 MHz, CDCl3) δ 190.47 (CO), 164.13, 160.31, 153.39, 142.23 (C-β), 139.97, 132.72 (C-6'), 131.01, 126.68 (C-α), 122.21, 105.49 (C-2,6), 105.23 (C-5'), 98.70 (C-3'), 60.96 (–OCH3), 56.15 (–OCH3), 55.75 (–OCH3), 55.54 (–OCH3).
The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with with C—H(aromatic and methine) = 0.93 Å and C–H(methyl) = 0.96 ° and Uiso(H) = 1.2Ueq(C)(aromatic and methine) or 1.5U<i/>eq(C)(methyl). The
parameter is meaningless and has been removed from the file. Friedel pairs were therefore averaged in the final cycles of the refinement.Flavonoids are a prominent class of secondary plant metabolites known for their wide range of biological activity that include antibacterial, antifungal, anti-tumor and anti-inflammatory properties (Pietta et al., 2003). β), must have polarizable electrons (e.g. π electrons) spread over a large distance. We report here the synthesis and structure of a new chalcone, the title compound C20H22O6, (I).
are an important subclass of these compounds and are often utilized as intermediates in the synthesis of a variety of cyclic (Marais et al., 2005). Furthermore, many chalcone derivatives are a class of organic compounds with excellent NLO properties (Kitaoka et al., 1990; Goto et al., 1991; Zhang et al., 1990; Uchida et al., 1998; Patil et al., 2006), much better than those observed in inorganic crystals. Nonlinear optical materials capable of generating second harmonic frequency play an important role in the domain of optoelectronics and photonics (Rosli et al., 2006). NLO crystals with high conversion efficiencies for second harmonic generation (SHG) and which are transparent in the visible and ultraviolet ranges are required for numerous device applications (Chemla & Zyss, 1987). Advantages of using organic molecules as NLO materials stem from the fact that they can be designed to optimize the desired NLO properties. At the molecular level, compounds likely to exhibit larger values of molecular hyperpolarizability (Crystals of (I) exhibit second-order nonlinear optical properties. Bond distances in (I) have normal values (Allen et al., 1987) and these and bond angles are comparable to those in related structures (van Tonder et al., 2010; Teh et al., 2006; Patil et al., 2006; Rosli et al., 2006). The least-squares plane through the enone group (C7, C8, C9 and O3) exhibit dihedral angles of 5.25 (5)° and 3.32 (6)° with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between the two benzene rings is 7.03 (4)°. The methoxy group attached at C13 is twisted away from the C10—C15 benzene ring plane, with a C19—O5—C13—C12 torsion angle of -76.1 (2)°. The methoxy groups at C1, C3, C12 and C14 are almost coplanar with the C1—C6 and C10—C15 benzene rings with C16—O1—C1—C2, C17—O2—C3—C2, C18—O4—C12—C11 and C20—O6—C14—C15 torsion angles of -0.7 (3), 1.8 (3), -6.2 (3) and 2.0 (3)°, respectively. The C8—C9 bond [1.332 (3) Å] is significantly shorter than the C6—C7, C7—C8 and C9—C10 bonds [1.498 (3), 1.483 (3) and 1.473 (2) respectively]. The C8—C9 bond length indicates a double bond rather than single bonds as in the other bonds. This corresponds well with literature values (Van Tonder et al. 2010). Intramolecular C5—H5···O3, C8—H8···O1, C9—H9···O3 and C19—H19C···O4 interactions are found in the molecular structure of (I), while the molecules form chains through weak intermolecular C11—H11···O3i and C17—H17B···O4ii hydrogen bonds (Table 1).
For standard bond lengths, see: Allen et al. (1987). For related structures, see: Patil et al. (2006); van Tonder et al. (2010); Teh et al. (2006); Rosli et al. (2006). For the synthesis of the title compound, see: Kraus & Roy (2008). For the biological activity of
see: Pietta et al. (2003). For non-linear optical (NLO) properties of see: Marais et al. (2005); Uchida et al. (1998); Kitaoka et al. (1990); Goto et al. (1991); Zhang et al. (1990). For applications of NLO crystals, see: Chemla & Zyss (1987).Data collection: APEX2 (Bruker, 2008); cell
SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: WingGX (Farrugia, 1999).Fig. 1. Molecular conformation of the title compound, showing the atom numbering scheme and displacement ellipsoids (50% probability). |
C20H22O6 | Dx = 1.389 Mg m−3 |
Mr = 358.38 | Melting point: 358.1 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9978 reflections |
a = 7.3041 (2) Å | θ = 2.8–28.2° |
b = 8.0288 (3) Å | µ = 0.10 mm−1 |
c = 29.217 (1) Å | T = 100 K |
V = 1713.38 (10) Å3 | Cuboid, colourless |
Z = 4 | 0.40 × 0.28 × 0.27 mm |
F(000) = 760 |
Bruker APEXII CCD area-detector diffractometer | 2343 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
φ and ω scans | θmax = 28.4°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→9 |
Tmin = 0.960, Tmax = 0.973 | k = −10→10 |
30899 measured reflections | l = −39→39 |
2488 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.21 | w = 1/[σ2(Fo2) + (0.0721P)2 + 0.1972P] where P = (Fo2 + 2Fc2)/3 |
2488 reflections | (Δ/σ)max = 0.001 |
241 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
C20H22O6 | V = 1713.38 (10) Å3 |
Mr = 358.38 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.3041 (2) Å | µ = 0.10 mm−1 |
b = 8.0288 (3) Å | T = 100 K |
c = 29.217 (1) Å | 0.40 × 0.28 × 0.27 mm |
Bruker APEXII CCD area-detector diffractometer | 2488 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2343 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.973 | Rint = 0.049 |
30899 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.21 | Δρmax = 0.47 e Å−3 |
2488 reflections | Δρmin = −0.44 e Å−3 |
241 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6645 (3) | 0.6440 (2) | 0.61028 (6) | 0.0137 (4) | |
C2 | 0.8307 (3) | 0.7258 (2) | 0.61820 (6) | 0.0148 (4) | |
H2 | 0.8557 | 0.7704 | 0.6469 | 0.018* | |
C3 | 0.9589 (3) | 0.7405 (2) | 0.58310 (6) | 0.0154 (4) | |
C4 | 0.9214 (3) | 0.6751 (2) | 0.53980 (6) | 0.0165 (4) | |
H4 | 1.0058 | 0.6862 | 0.5162 | 0.02* | |
C5 | 0.7583 (3) | 0.5942 (2) | 0.53265 (6) | 0.0152 (4) | |
H5 | 0.7347 | 0.5508 | 0.5037 | 0.018* | |
C6 | 0.6251 (3) | 0.5738 (2) | 0.56704 (6) | 0.0133 (4) | |
C7 | 0.4581 (3) | 0.4776 (2) | 0.55344 (6) | 0.0145 (4) | |
C8 | 0.3112 (3) | 0.4413 (2) | 0.58701 (6) | 0.0156 (4) | |
H8 | 0.3191 | 0.4864 | 0.6163 | 0.019* | |
C9 | 0.1683 (3) | 0.3459 (2) | 0.57636 (6) | 0.0145 (4) | |
H9 | 0.1619 | 0.3042 | 0.5467 | 0.017* | |
C10 | 0.0196 (3) | 0.3017 (2) | 0.60816 (6) | 0.0128 (3) | |
C11 | −0.1257 (3) | 0.2052 (2) | 0.59173 (6) | 0.0132 (4) | |
H11 | −0.1295 | 0.1746 | 0.5611 | 0.016* | |
C12 | −0.2650 (3) | 0.1548 (2) | 0.62144 (6) | 0.0130 (3) | |
C13 | −0.2581 (3) | 0.1996 (2) | 0.66793 (6) | 0.0123 (4) | |
C14 | −0.1169 (3) | 0.3024 (2) | 0.68353 (6) | 0.0127 (3) | |
C15 | 0.0224 (3) | 0.3523 (2) | 0.65412 (6) | 0.0125 (3) | |
H15 | 0.1172 | 0.419 | 0.6649 | 0.015* | |
C16 | 0.5751 (3) | 0.7012 (3) | 0.68799 (6) | 0.0193 (4) | |
H16A | 0.6818 | 0.6487 | 0.7007 | 0.029* | |
H16B | 0.4725 | 0.6832 | 0.7079 | 0.029* | |
H16C | 0.5968 | 0.8186 | 0.6849 | 0.029* | |
C17 | 1.1706 (3) | 0.8786 (3) | 0.63268 (6) | 0.0187 (4) | |
H17A | 1.0857 | 0.9647 | 0.641 | 0.028* | |
H17B | 1.2925 | 0.9233 | 0.6322 | 0.028* | |
H17C | 1.1642 | 0.7899 | 0.6547 | 0.028* | |
C18 | −0.4316 (3) | 0.0238 (3) | 0.56113 (6) | 0.0166 (4) | |
H18A | −0.4463 | 0.1259 | 0.5444 | 0.025* | |
H18B | −0.5374 | −0.0452 | 0.5567 | 0.025* | |
H18C | −0.3246 | −0.0335 | 0.5503 | 0.025* | |
C19 | −0.5600 (3) | 0.2182 (3) | 0.69496 (7) | 0.0201 (4) | |
H19A | −0.5508 | 0.3306 | 0.7059 | 0.03* | |
H19B | −0.6478 | 0.1584 | 0.7131 | 0.03* | |
H19C | −0.5986 | 0.2189 | 0.6636 | 0.03* | |
C20 | 0.0107 (3) | 0.4563 (3) | 0.74565 (7) | 0.0213 (4) | |
H20A | 0.1272 | 0.4011 | 0.7443 | 0.032* | |
H20B | −0.016 | 0.486 | 0.7768 | 0.032* | |
H20C | 0.0143 | 0.555 | 0.7272 | 0.032* | |
O1 | 0.5368 (2) | 0.63145 (19) | 0.64410 (4) | 0.0188 (3) | |
O2 | 1.1249 (2) | 0.81565 (19) | 0.58822 (5) | 0.0185 (3) | |
O3 | 0.4459 (2) | 0.4251 (2) | 0.51410 (5) | 0.0239 (4) | |
O4 | −0.41125 (19) | 0.06034 (18) | 0.60910 (4) | 0.0154 (3) | |
O5 | −0.38532 (19) | 0.13860 (18) | 0.69848 (4) | 0.0154 (3) | |
O6 | −0.12802 (19) | 0.34736 (18) | 0.72892 (4) | 0.0160 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0133 (8) | 0.0133 (8) | 0.0145 (8) | 0.0019 (7) | 0.0011 (7) | 0.0027 (7) |
C2 | 0.0145 (9) | 0.0153 (8) | 0.0148 (8) | −0.0001 (7) | 0.0002 (7) | 0.0012 (7) |
C3 | 0.0126 (9) | 0.0140 (8) | 0.0195 (8) | −0.0011 (7) | 0.0002 (7) | 0.0018 (7) |
C4 | 0.0150 (8) | 0.0184 (9) | 0.0160 (8) | 0.0003 (8) | 0.0041 (7) | 0.0010 (7) |
C5 | 0.0168 (9) | 0.0165 (9) | 0.0124 (8) | 0.0010 (7) | 0.0017 (7) | 0.0003 (7) |
C6 | 0.0117 (8) | 0.0135 (8) | 0.0148 (8) | 0.0007 (7) | 0.0003 (6) | 0.0021 (7) |
C7 | 0.0140 (9) | 0.0153 (8) | 0.0142 (8) | −0.0010 (7) | 0.0008 (7) | 0.0010 (7) |
C8 | 0.0140 (8) | 0.0188 (9) | 0.0140 (8) | −0.0005 (8) | 0.0022 (7) | 0.0000 (7) |
C9 | 0.0140 (9) | 0.0174 (8) | 0.0120 (7) | −0.0001 (7) | 0.0006 (6) | 0.0009 (7) |
C10 | 0.0114 (8) | 0.0128 (8) | 0.0141 (8) | 0.0003 (7) | −0.0008 (6) | 0.0008 (6) |
C11 | 0.0139 (9) | 0.0150 (8) | 0.0107 (7) | −0.0002 (7) | 0.0001 (6) | −0.0003 (7) |
C12 | 0.0117 (8) | 0.0121 (8) | 0.0153 (8) | −0.0002 (7) | −0.0009 (7) | −0.0003 (7) |
C13 | 0.0110 (8) | 0.0138 (8) | 0.0121 (8) | 0.0002 (7) | 0.0010 (6) | 0.0024 (7) |
C14 | 0.0144 (9) | 0.0123 (8) | 0.0116 (7) | 0.0021 (7) | −0.0005 (6) | −0.0006 (6) |
C15 | 0.0110 (8) | 0.0131 (8) | 0.0135 (8) | −0.0014 (7) | −0.0016 (6) | −0.0007 (6) |
C16 | 0.0191 (10) | 0.0262 (10) | 0.0127 (8) | −0.0054 (9) | 0.0012 (7) | −0.0029 (7) |
C17 | 0.0146 (9) | 0.0215 (10) | 0.0199 (9) | −0.0030 (8) | −0.0017 (7) | −0.0021 (7) |
C18 | 0.0167 (9) | 0.0198 (9) | 0.0134 (8) | −0.0014 (8) | −0.0033 (7) | −0.0025 (7) |
C19 | 0.0127 (9) | 0.0282 (10) | 0.0193 (9) | 0.0004 (8) | 0.0024 (7) | −0.0003 (8) |
C20 | 0.0225 (10) | 0.0263 (10) | 0.0152 (8) | −0.0049 (9) | −0.0007 (7) | −0.0066 (8) |
O1 | 0.0162 (7) | 0.0273 (7) | 0.0130 (6) | −0.0067 (6) | 0.0030 (5) | −0.0038 (5) |
O2 | 0.0135 (7) | 0.0235 (7) | 0.0187 (6) | −0.0052 (6) | 0.0026 (5) | −0.0016 (6) |
O3 | 0.0227 (8) | 0.0333 (9) | 0.0158 (6) | −0.0109 (7) | 0.0020 (5) | −0.0044 (6) |
O4 | 0.0133 (6) | 0.0195 (7) | 0.0132 (6) | −0.0044 (6) | −0.0010 (5) | −0.0017 (5) |
O5 | 0.0125 (6) | 0.0189 (6) | 0.0149 (6) | −0.0009 (6) | 0.0031 (5) | 0.0030 (5) |
O6 | 0.0173 (7) | 0.0198 (7) | 0.0108 (6) | −0.0028 (6) | 0.0004 (5) | −0.0026 (5) |
C1—O1 | 1.362 (2) | C13—C14 | 1.398 (3) |
C1—C2 | 1.400 (3) | C14—O6 | 1.377 (2) |
C1—C6 | 1.413 (3) | C14—C15 | 1.390 (3) |
C2—C3 | 1.394 (3) | C15—H15 | 0.93 |
C2—H2 | 0.93 | C16—O1 | 1.427 (2) |
C3—O2 | 1.363 (2) | C16—H16A | 0.96 |
C3—C4 | 1.397 (3) | C16—H16B | 0.96 |
C4—C5 | 1.373 (3) | C16—H16C | 0.96 |
C4—H4 | 0.93 | C17—O2 | 1.433 (2) |
C5—C6 | 1.408 (2) | C17—H17A | 0.96 |
C5—H5 | 0.93 | C17—H17B | 0.96 |
C6—C7 | 1.498 (3) | C17—H17C | 0.96 |
C7—O3 | 1.227 (2) | C18—O4 | 1.439 (2) |
C7—C8 | 1.483 (3) | C18—H18A | 0.96 |
C8—C9 | 1.332 (3) | C18—H18B | 0.96 |
C8—H8 | 0.93 | C18—H18C | 0.96 |
C9—C10 | 1.473 (2) | C19—O5 | 1.430 (2) |
C9—H9 | 0.93 | C19—H19A | 0.96 |
C10—C11 | 1.398 (3) | C19—H19B | 0.96 |
C10—C15 | 1.403 (2) | C19—H19C | 0.96 |
C11—C12 | 1.397 (3) | C20—O6 | 1.425 (3) |
C11—H11 | 0.93 | C20—H20A | 0.96 |
C12—O4 | 1.359 (2) | C20—H20B | 0.96 |
C12—C13 | 1.406 (2) | C20—H20C | 0.96 |
C13—O5 | 1.378 (2) | ||
O1—C1—C2 | 120.57 (16) | O6—C14—C13 | 115.16 (16) |
O1—C1—C6 | 118.67 (16) | C15—C14—C13 | 120.58 (16) |
C2—C1—C6 | 120.75 (17) | C14—C15—C10 | 119.79 (17) |
C3—C2—C1 | 120.05 (17) | C14—C15—H15 | 120.1 |
C3—C2—H2 | 120 | C10—C15—H15 | 120.1 |
C1—C2—H2 | 120 | O1—C16—H16A | 109.5 |
O2—C3—C2 | 123.66 (17) | O1—C16—H16B | 109.5 |
O2—C3—C4 | 116.11 (17) | H16A—C16—H16B | 109.5 |
C2—C3—C4 | 120.23 (17) | O1—C16—H16C | 109.5 |
C5—C4—C3 | 119.04 (17) | H16A—C16—H16C | 109.5 |
C5—C4—H4 | 120.5 | H16B—C16—H16C | 109.5 |
C3—C4—H4 | 120.5 | O2—C17—H17A | 109.5 |
C4—C5—C6 | 123.08 (17) | O2—C17—H17B | 109.5 |
C4—C5—H5 | 118.5 | H17A—C17—H17B | 109.5 |
C6—C5—H5 | 118.5 | O2—C17—H17C | 109.5 |
C5—C6—C1 | 116.83 (17) | H17A—C17—H17C | 109.5 |
C5—C6—C7 | 115.67 (16) | H17B—C17—H17C | 109.5 |
C1—C6—C7 | 127.49 (17) | O4—C18—H18A | 109.5 |
O3—C7—C8 | 119.95 (18) | O4—C18—H18B | 109.5 |
O3—C7—C6 | 119.01 (17) | H18A—C18—H18B | 109.5 |
C8—C7—C6 | 121.01 (16) | O4—C18—H18C | 109.5 |
C9—C8—C7 | 121.71 (16) | H18A—C18—H18C | 109.5 |
C9—C8—H8 | 119.1 | H18B—C18—H18C | 109.5 |
C7—C8—H8 | 119.1 | O5—C19—H19A | 109.5 |
C8—C9—C10 | 124.71 (17) | O5—C19—H19B | 109.5 |
C8—C9—H9 | 117.6 | H19A—C19—H19B | 109.5 |
C10—C9—H9 | 117.6 | O5—C19—H19C | 109.5 |
C11—C10—C15 | 120.02 (16) | H19A—C19—H19C | 109.5 |
C11—C10—C9 | 118.46 (16) | H19B—C19—H19C | 109.5 |
C15—C10—C9 | 121.52 (17) | O6—C20—H20A | 109.5 |
C12—C11—C10 | 119.98 (16) | O6—C20—H20B | 109.5 |
C12—C11—H11 | 120 | H20A—C20—H20B | 109.5 |
C10—C11—H11 | 120 | O6—C20—H20C | 109.5 |
O4—C12—C11 | 124.71 (16) | H20A—C20—H20C | 109.5 |
O4—C12—C13 | 115.28 (16) | H20B—C20—H20C | 109.5 |
C11—C12—C13 | 120.01 (17) | C1—O1—C16 | 119.25 (15) |
O5—C13—C14 | 119.75 (16) | C3—O2—C17 | 117.57 (15) |
O5—C13—C12 | 120.72 (16) | C12—O4—C18 | 116.94 (14) |
C14—C13—C12 | 119.49 (16) | C13—O5—C19 | 113.32 (14) |
O6—C14—C15 | 124.26 (17) | C14—O6—C20 | 116.70 (15) |
C16—O1—C1—C2 | −0.7 (3) | C5—C6—C7—C8 | 177.43 (16) |
C16—O1—C1—C6 | 179.75 (17) | C1—C6—C7—O3 | 180.00 (18) |
C17—O2—C3—C2 | 1.8 (3) | C1—C6—C7—C8 | −1.8 (3) |
C17—O2—C3—C4 | −177.72 (17) | O3—C7—C8—C9 | 3.1 (3) |
C18—O4—C12—C13 | 174.86 (17) | C6—C7—C8—C9 | −175.10 (17) |
C18—O4—C12—C11 | −6.2 (3) | C7—C8—C9—C10 | 178.64 (17) |
C19—O5—C13—C14 | 106.1 (2) | C8—C9—C10—C11 | 177.67 (18) |
C19—O5—C13—C12 | −76.1 (2) | C8—C9—C10—C15 | −3.1 (3) |
C20—O6—C14—C13 | −178.15 (17) | C9—C10—C15—C14 | −177.41 (17) |
C20—O6—C14—C15 | 2.0 (3) | C15—C10—C11—C12 | −2.0 (3) |
C2—C1—C6—C7 | 177.63 (17) | C11—C10—C15—C14 | 1.8 (3) |
O1—C1—C6—C7 | −2.8 (3) | C9—C10—C11—C12 | 177.18 (16) |
O1—C1—C2—C3 | −178.83 (16) | C10—C11—C12—C13 | −0.7 (3) |
C2—C1—C6—C5 | −1.5 (3) | C10—C11—C12—O4 | −179.58 (17) |
O1—C1—C6—C5 | 178.03 (16) | O4—C12—C13—O5 | 4.9 (3) |
C6—C1—C2—C3 | 0.7 (3) | O4—C12—C13—C14 | −177.38 (16) |
C1—C2—C3—O2 | −178.85 (16) | C11—C12—C13—C14 | 3.6 (3) |
C1—C2—C3—C4 | 0.6 (3) | C11—C12—C13—O5 | −174.14 (16) |
O2—C3—C4—C5 | 178.45 (16) | O5—C13—C14—O6 | −6.0 (2) |
C2—C3—C4—C5 | −1.0 (3) | C12—C13—C14—C15 | −3.9 (3) |
C3—C4—C5—C6 | 0.2 (3) | O5—C13—C14—C15 | 173.89 (16) |
C4—C5—C6—C7 | −178.16 (16) | C12—C13—C14—O6 | 176.28 (16) |
C4—C5—C6—C1 | 1.1 (3) | O6—C14—C15—C10 | −178.98 (17) |
C5—C6—C7—O3 | −0.8 (2) | C13—C14—C15—C10 | 1.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O3 | 0.93 | 2.36 | 2.710 (3) | 102 |
C8—H8···O1 | 0.93 | 2.13 | 2.798 (2) | 127 |
C9—H9···O3 | 0.93 | 2.48 | 2.797 (2) | 100 |
C11—H11···O3i | 0.93 | 2.4 | 3.306 (2) | 164 |
C17—H17B···O4ii | 0.96 | 2.52 | 3.455 (2) | 165 |
C19—H19C···O4 | 0.96 | 2.45 | 3.013 (2) | 117 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+2, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C20H22O6 |
Mr | 358.38 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 7.3041 (2), 8.0288 (3), 29.217 (1) |
V (Å3) | 1713.38 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.40 × 0.28 × 0.27 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.960, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30899, 2488, 2343 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.113, 1.21 |
No. of reflections | 2488 |
No. of parameters | 241 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.44 |
Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2005), WingGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1 | 0.93 | 2.13 | 2.798 (2) | 127 |
C11—H11···O3i | 0.93 | 2.4 | 3.306 (2) | 164 |
C17—H17B···O4ii | 0.96 | 2.52 | 3.455 (2) | 165 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+2, y+1, z. |
Acknowledgements
The University of the Free State is gratefully acknowledged for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany. Google Scholar
Bruker (2008). APEX2, SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chemla, D. S. & Zyss, J. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals. Boston: Academic Press. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698. CrossRef CAS Web of Science Google Scholar
Kitaoka, Y., Sasaki, T., Nakai, S., Yokotani, A., Goto, Y. & Nakayama, M. (1990). Appl. Phys. Lett. 56, 659. CrossRef Web of Science Google Scholar
Kraus, G. & Roy, S. (2008). J. Nat. Prod. 71, 1961–1962. Web of Science CrossRef PubMed CAS Google Scholar
Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochem. 66, 2145–2176. CrossRef CAS Google Scholar
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pietta, P., Gardana, C. & Pietta, A. (2003). Flavonoids in Health and Disease edited by C. A. Rice-Evans & L. Packer, 2nd ed. New York: Marcel Dekker, Inc. Google Scholar
Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4228–o4230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o890–o892. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tonder, J. H. van, Muller, T. J. & Bezuidenhoudt, B. C. B. (2010). Acta Cryst. E66, o1798–o1799. Web of Science CSD CrossRef IUCr Journals Google Scholar
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 62, 135–140. Web of Science CrossRef Google Scholar
Zhang, G., Kinoshita, T., Sasaki, K., Goto, Y. & Nakayama, M. (1990). J. Cryst. Growth 100, 411–416. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Flavonoids are a prominent class of secondary plant metabolites known for their wide range of biological activity that include antibacterial, antifungal, anti-tumor and anti-inflammatory properties (Pietta et al., 2003). Chalcones are an important subclass of these compounds and are often utilized as intermediates in the synthesis of a variety of cyclic flavonoids (Marais et al., 2005). Furthermore, many chalcone derivatives are a class of organic compounds with excellent NLO properties (Kitaoka et al., 1990; Goto et al., 1991; Zhang et al., 1990; Uchida et al., 1998; Patil et al., 2006), much better than those observed in inorganic crystals. Nonlinear optical materials capable of generating second harmonic frequency play an important role in the domain of optoelectronics and photonics (Rosli et al., 2006). NLO crystals with high conversion efficiencies for second harmonic generation (SHG) and which are transparent in the visible and ultraviolet ranges are required for numerous device applications (Chemla & Zyss, 1987). Advantages of using organic molecules as NLO materials stem from the fact that they can be designed to optimize the desired NLO properties. At the molecular level, compounds likely to exhibit larger values of molecular hyperpolarizability (β), must have polarizable electrons (e.g. π electrons) spread over a large distance. We report here the synthesis and structure of a new chalcone, the title compound C20H22O6, (I).
Crystals of (I) exhibit second-order nonlinear optical properties. Bond distances in (I) have normal values (Allen et al., 1987) and these and bond angles are comparable to those in related structures (van Tonder et al., 2010; Teh et al., 2006; Patil et al., 2006; Rosli et al., 2006). The least-squares plane through the enone group (C7, C8, C9 and O3) exhibit dihedral angles of 5.25 (5)° and 3.32 (6)° with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between the two benzene rings is 7.03 (4)°. The methoxy group attached at C13 is twisted away from the C10—C15 benzene ring plane, with a C19—O5—C13—C12 torsion angle of -76.1 (2)°. The methoxy groups at C1, C3, C12 and C14 are almost coplanar with the C1—C6 and C10—C15 benzene rings with C16—O1—C1—C2, C17—O2—C3—C2, C18—O4—C12—C11 and C20—O6—C14—C15 torsion angles of -0.7 (3), 1.8 (3), -6.2 (3) and 2.0 (3)°, respectively. The C8—C9 bond [1.332 (3) Å] is significantly shorter than the C6—C7, C7—C8 and C9—C10 bonds [1.498 (3), 1.483 (3) and 1.473 (2) respectively]. The C8—C9 bond length indicates a double bond rather than single bonds as in the other bonds. This corresponds well with literature values (Van Tonder et al. 2010). Intramolecular C5—H5···O3, C8—H8···O1, C9—H9···O3 and C19—H19C···O4 interactions are found in the molecular structure of (I), while the molecules form chains through weak intermolecular C11—H11···O3i and C17—H17B···O4ii hydrogen bonds (Table 1).