organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro­phen­yl)-3-(4-nitro­phen­yl)urea

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bInstitute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: actaeli@gmail.com

(Received 29 September 2010; accepted 7 October 2010; online 13 October 2010)

In the title compound, C13H10ClN3O3, prepared by the reaction of 1-chloro-3-isocyanato­benzene with 4-nitro­benzenamine, the two substituent benzene rings are roughly coplanar [inter-ring dihedral angle = 8.70 (7)°]. In the crystal, mol­ecules make cyclic inter­molecular associations through two urea–nitro N—H⋯O hydrogen bonds, forming a chain structure [give chain direction] in which there are also weak inter­molecular C—H⋯Cl inter­actions. The urea O atom has only intra­molecular aromatic ring C—H⋯O associations.

Related literature

For the bioactivity of urea derivatives, see: Wang et al. (2001[Wang, J.-L., Li, A.-X., Li, Y.-H., Di, X.-H. & Miao, F.-M. (2001). Acta Chim. Sin. 59, 1490-1494.]); Song et al. (2008[Song, E. Y., Kaur, N., Park, M.-Y., Jin, Y.-L., Lee, K., Kim, G. C., Lee, K.-Y., Yang, J.-S., Shin, J.-H., Nam, K.-Y., No, K.-T. & Han, G. (2008). Eur. J. Med. Chem. 43, 1519-1524.]); Yip et al. (1986[Yip, W. K. & Yang, S. F. (1986). Plant Physiol. 80, 515-519.]); Liu et al. (2005[Liu, X. P., Liu, A. P., Lin, L. Z., Wei, Z. Z., Huang, L. & Yu, K. (2005). Modern Agrochem. 4, 14-16.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClN3O3

  • Mr = 291.69

  • Monoclinic, P 21 /n

  • a = 8.3410 (13) Å

  • b = 12.5410 (18) Å

  • c = 12.1120 (16) Å

  • β = 99.866 (5)°

  • V = 1248.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 113 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.928, Tmax = 0.939

  • 15672 measured reflections

  • 2964 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.04

  • 2964 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.807 (16) 2.211 (16) 3.0131 (14) 172.8 (16)
N2—H2⋯O2i 0.832 (14) 2.136 (14) 2.9448 (14) 164.1 (14)
C3—H3⋯O1 0.95 2.26 2.8720 (15) 121
C9—H9⋯O1 0.95 2.31 2.8833 (15) 118
C12—H12⋯Cl1ii 0.95 2.83 3.5465 (13) 133
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Previous studies have shown that urea derivatives have important medical and biological applications, e.g. N, N'-diarylurea derivatives have cytokinin activity (Wang et al., 2001) and bacteriostatic activity. Compounds bearing a urea linkage to benzothiazole were also investigated for their ability to inhibit Raf-1 activity (Song et al.. 2008). Thidiazuron, a substituted heterocyclic urea compound, mimicked the effect of benzyladenine (BA) in the Ca2+ and cytokinin systems or on the IAA and cytokinin systems (Yip et al.. 1986). Recently, better activity was achieved with benzoyl urea derivatives (Liu et al.. 2005). In order to discover further biologically active urea compounds, the title compound C13H10ClN3O3 (I) was synthesized and its crystal structure is reported here.

In the structure of title compound (Fig. 1), the molecule is almost planar [torsion angles C1–N1–C2–C7 and C1–N2–C8–C13, 178.39 (11)° and -165.69 (11)°] with a dihedral angle between two phenyl rings of 8.70 (7)°. In the crystal structure, the molecules give cyclic intermolecular associations through two urea N–H···Onitro hydrogen bonds (Table 1) giving a one-dimensional chain structure (Fig. 2) in which there are also weak intermolecular C—H···Cl interactions [C12–H12···Cl1iii, 3.5465 (13) Å] [symmetry code (iii): x, y + 1, z]. The urea O atom has only intramolecular aromatic ring C–H···O associations [C3–H3···O1, 2.8720 (15) Å; C9–H9···O1, 2.8833 (15) Å].

Related literature top

For the bioactivity of urea derivatives, see: Wang et al. (2001); Song et al. (2008); Yip et al. (1986); Liu et al. (2005).

Experimental top

1-Chloro-3-isocyanatobenzene (0.153 g, 1 mmol) and 4-nitrobenzenamine (0.138 g, 1 mmol) were mixed and ground in an agate mortar, then irradiated by microwave for 1 min. After the reaction was completed, the resulting product was dissolved in 95% ethanol with warming and immediately filtered. The product obtained was recrystallized from ethanol and single crystals of the title compound were obtained by slow evaporation.

Refinement top

The urea H atoms were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H = 0.95 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Previous studies have shown that urea derivatives have important medical and biological applications, e.g. N, N'-diarylurea derivatives have cytokinin activity (Wang et al., 2001) and bacteriostatic activity. Compounds bearing a urea linkage to benzothiazole were also investigated for their ability to inhibit Raf-1 activity (Song et al.. 2008). Thidiazuron, a substituted heterocyclic urea compound, mimicked the effect of benzyladenine (BA) in the Ca2+ and cytokinin systems or on the IAA and cytokinin systems (Yip et al.. 1986). Recently, better activity was achieved with benzoyl urea derivatives (Liu et al.. 2005). In order to discover further biologically active urea compounds, the title compound C13H10ClN3O3 (I) was synthesized and its crystal structure is reported here.

In the structure of title compound (Fig. 1), the molecule is almost planar [torsion angles C1–N1–C2–C7 and C1–N2–C8–C13, 178.39 (11)° and -165.69 (11)°] with a dihedral angle between two phenyl rings of 8.70 (7)°. In the crystal structure, the molecules give cyclic intermolecular associations through two urea N–H···Onitro hydrogen bonds (Table 1) giving a one-dimensional chain structure (Fig. 2) in which there are also weak intermolecular C—H···Cl interactions [C12–H12···Cl1iii, 3.5465 (13) Å] [symmetry code (iii): x, y + 1, z]. The urea O atom has only intramolecular aromatic ring C–H···O associations [C3–H3···O1, 2.8720 (15) Å; C9–H9···O1, 2.8833 (15) Å].

For the bioactivity of urea derivatives, see: Wang et al. (2001); Song et al. (2008); Yip et al. (1986); Liu et al. (2005).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
1-(3-Chlorophenyl)-3-(4-nitrophenyl)urea top
Crystal data top
C13H10ClN3O3F(000) = 600
Mr = 291.69Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 4351 reflections
a = 8.3410 (13) Åθ = 1.6–27.9°
b = 12.5410 (18) ŵ = 0.32 mm1
c = 12.1120 (16) ÅT = 113 K
β = 99.866 (5)°Prism, colorless
V = 1248.2 (3) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD
diffractometer
2964 independent reflections
Radiation source: rotating anode2396 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.041
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2009)
k = 1616
Tmin = 0.928, Tmax = 0.939l = 1515
15672 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0589P)2]
where P = (Fo2 + 2Fc2)/3
2964 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H10ClN3O3V = 1248.2 (3) Å3
Mr = 291.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3410 (13) ŵ = 0.32 mm1
b = 12.5410 (18) ÅT = 113 K
c = 12.1120 (16) Å0.24 × 0.22 × 0.20 mm
β = 99.866 (5)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2964 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2009)
2396 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.939Rint = 0.041
15672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
2964 reflectionsΔρmin = 0.24 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22721 (4)0.01383 (3)0.53821 (3)0.02970 (12)
O10.31522 (10)0.39764 (6)0.45111 (7)0.0187 (2)
O20.55192 (10)0.80112 (7)0.13369 (7)0.0218 (2)
O30.49009 (10)0.93629 (7)0.22967 (7)0.0221 (2)
N10.17484 (13)0.41897 (8)0.59747 (9)0.0177 (2)
N20.23742 (12)0.56468 (8)0.50077 (9)0.0171 (2)
N30.49071 (11)0.83930 (8)0.21073 (8)0.0173 (2)
C10.24839 (13)0.45459 (9)0.51100 (10)0.0152 (2)
C20.15298 (14)0.31274 (9)0.62949 (10)0.0153 (2)
C30.20047 (14)0.22475 (9)0.57217 (10)0.0175 (3)
H30.25250.23380.50890.021*
C40.16951 (15)0.12397 (9)0.61013 (10)0.0191 (3)
C50.09396 (15)0.10706 (10)0.70225 (10)0.0205 (3)
H50.07430.03690.72620.025*
C60.04799 (14)0.19542 (10)0.75831 (10)0.0198 (3)
H60.00420.18580.82150.024*
C70.07749 (14)0.29736 (9)0.72298 (10)0.0175 (3)
H70.04630.35730.76240.021*
C80.29852 (14)0.62892 (9)0.42460 (10)0.0151 (2)
C90.34844 (14)0.59016 (9)0.32687 (10)0.0177 (3)
H90.34070.51620.30960.021*
C100.40879 (14)0.66018 (10)0.25622 (10)0.0178 (3)
H100.44340.63480.19030.021*
C110.41844 (14)0.76771 (9)0.28220 (10)0.0157 (2)
C120.36528 (14)0.80862 (9)0.37613 (10)0.0174 (3)
H120.37020.88300.39130.021*
C130.30537 (14)0.73906 (10)0.44672 (10)0.0174 (3)
H130.26810.76570.51130.021*
H10.1324 (18)0.4614 (13)0.6334 (14)0.035 (5)*
H20.1933 (16)0.5948 (12)0.5489 (12)0.024 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0455 (2)0.01399 (17)0.0309 (2)0.00282 (13)0.01006 (16)0.00398 (12)
O10.0246 (5)0.0139 (4)0.0200 (4)0.0023 (3)0.0111 (4)0.0004 (3)
O20.0264 (5)0.0220 (5)0.0196 (4)0.0022 (4)0.0115 (4)0.0009 (4)
O30.0290 (5)0.0128 (4)0.0259 (5)0.0023 (3)0.0089 (4)0.0026 (3)
N10.0245 (6)0.0118 (5)0.0195 (5)0.0016 (4)0.0114 (4)0.0003 (4)
N20.0244 (6)0.0115 (5)0.0182 (5)0.0011 (4)0.0120 (4)0.0003 (4)
N30.0171 (5)0.0172 (5)0.0178 (5)0.0014 (4)0.0035 (4)0.0030 (4)
C10.0159 (6)0.0137 (5)0.0164 (5)0.0012 (4)0.0037 (4)0.0008 (4)
C20.0151 (6)0.0132 (5)0.0173 (6)0.0008 (4)0.0019 (5)0.0017 (4)
C30.0191 (6)0.0168 (6)0.0171 (6)0.0007 (5)0.0042 (5)0.0000 (5)
C40.0220 (6)0.0141 (6)0.0202 (6)0.0015 (5)0.0011 (5)0.0023 (5)
C50.0235 (6)0.0147 (6)0.0228 (6)0.0032 (5)0.0020 (5)0.0037 (5)
C60.0197 (6)0.0209 (6)0.0192 (6)0.0023 (5)0.0045 (5)0.0043 (5)
C70.0187 (6)0.0165 (6)0.0179 (6)0.0004 (5)0.0050 (5)0.0009 (4)
C80.0147 (6)0.0142 (6)0.0171 (5)0.0001 (4)0.0046 (4)0.0016 (4)
C90.0223 (6)0.0137 (5)0.0181 (6)0.0004 (5)0.0067 (5)0.0010 (4)
C100.0208 (6)0.0168 (6)0.0172 (6)0.0012 (5)0.0072 (5)0.0006 (5)
C110.0160 (6)0.0150 (6)0.0168 (6)0.0009 (4)0.0049 (5)0.0034 (4)
C120.0205 (6)0.0132 (5)0.0194 (6)0.0001 (4)0.0056 (5)0.0000 (4)
C130.0212 (6)0.0148 (6)0.0176 (6)0.0010 (5)0.0076 (5)0.0010 (4)
Geometric parameters (Å, º) top
Cl1—C41.7441 (12)C5—C61.3876 (17)
O1—C11.2187 (14)C5—H50.9500
O2—N31.2345 (13)C6—C71.3835 (16)
O3—N31.2380 (13)C6—H60.9500
N1—C11.3759 (15)C7—H70.9500
N1—C21.4080 (14)C8—C131.4064 (16)
N1—H10.806 (16)C8—C91.4070 (15)
N2—C81.3860 (15)C9—C101.3800 (16)
N2—C11.3879 (15)C9—H90.9500
N2—H20.832 (14)C10—C111.3840 (17)
N3—C111.4483 (14)C10—H100.9500
C2—C31.3968 (16)C11—C121.3882 (16)
C2—C71.4001 (16)C12—C131.3741 (16)
C3—C41.3842 (16)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.3885 (16)
C1—N1—C2127.77 (10)C7—C6—C5120.52 (11)
C1—N1—H1119.4 (12)C7—C6—H6119.7
C2—N1—H1112.7 (12)C5—C6—H6119.7
C8—N2—C1127.69 (10)C6—C7—C2120.39 (11)
C8—N2—H2117.4 (10)C6—C7—H7119.8
C1—N2—H2114.8 (10)C2—C7—H7119.8
O2—N3—O3122.45 (10)N2—C8—C13116.84 (10)
O2—N3—C11118.67 (10)N2—C8—C9123.70 (11)
O3—N3—C11118.88 (10)C13—C8—C9119.44 (11)
O1—C1—N1124.88 (11)C10—C9—C8119.59 (11)
O1—C1—N2124.04 (11)C10—C9—H9120.2
N1—C1—N2111.08 (10)C8—C9—H9120.2
C3—C2—C7119.89 (11)C9—C10—C11119.48 (11)
C3—C2—N1123.33 (11)C9—C10—H10120.3
C7—C2—N1116.78 (10)C11—C10—H10120.3
C4—C3—C2118.12 (11)C10—C11—C12122.16 (11)
C4—C3—H3120.9C10—C11—N3118.82 (10)
C2—C3—H3120.9C12—C11—N3119.00 (11)
C3—C4—C5122.85 (11)C13—C12—C11118.46 (11)
C3—C4—Cl1118.29 (9)C13—C12—H12120.8
C5—C4—Cl1118.85 (10)C11—C12—H12120.8
C6—C5—C4118.22 (11)C12—C13—C8120.81 (11)
C6—C5—H5120.9C12—C13—H13119.6
C4—C5—H5120.9C8—C13—H13119.6
C2—N1—C1—O14.21 (19)C1—N2—C8—C13165.69 (11)
C2—N1—C1—N2176.06 (11)C1—N2—C8—C916.15 (18)
C8—N2—C1—O10.55 (19)N2—C8—C9—C10179.59 (11)
C8—N2—C1—N1179.19 (11)C13—C8—C9—C102.29 (17)
C1—N1—C2—C32.48 (19)C8—C9—C10—C110.37 (17)
C1—N1—C2—C7178.39 (11)C9—C10—C11—C121.71 (18)
C7—C2—C3—C40.46 (17)C9—C10—C11—N3176.47 (10)
N1—C2—C3—C4178.64 (11)O2—N3—C11—C105.16 (16)
C2—C3—C4—C50.09 (18)O3—N3—C11—C10175.45 (10)
C2—C3—C4—Cl1179.53 (9)O2—N3—C11—C12173.09 (10)
C3—C4—C5—C60.06 (19)O3—N3—C11—C126.30 (16)
Cl1—C4—C5—C6179.68 (9)C10—C11—C12—C131.80 (17)
C4—C5—C6—C70.16 (18)N3—C11—C12—C13176.39 (10)
C5—C6—C7—C20.54 (17)C11—C12—C13—C80.20 (17)
C3—C2—C7—C60.69 (17)N2—C8—C13—C12179.54 (10)
N1—C2—C7—C6178.47 (11)C9—C8—C13—C122.22 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.807 (16)2.211 (16)3.0131 (14)172.8 (16)
N2—H2···O2i0.832 (14)2.136 (14)2.9448 (14)164.1 (14)
C3—H3···O10.952.262.8720 (15)121
C9—H9···O10.952.312.8833 (15)118
C12—H12···Cl1ii0.952.833.5465 (13)133
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H10ClN3O3
Mr291.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.3410 (13), 12.5410 (18), 12.1120 (16)
β (°) 99.866 (5)
V3)1248.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2009)
Tmin, Tmax0.928, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
15672, 2964, 2396
Rint0.041
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.04
No. of reflections2964
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.24

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.807 (16)2.211 (16)3.0131 (14)172.8 (16)
N2—H2···O2i0.832 (14)2.136 (14)2.9448 (14)164.1 (14)
C3—H3···O10.952.262.8720 (15)121
C9—H9···O10.952.312.8833 (15)118
C12—H12···Cl1ii0.952.833.5465 (13)133
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

References

First citationLiu, X. P., Liu, A. P., Lin, L. Z., Wei, Z. Z., Huang, L. & Yu, K. (2005). Modern Agrochem. 4, 14–16.  CAS Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, E. Y., Kaur, N., Park, M.-Y., Jin, Y.-L., Lee, K., Kim, G. C., Lee, K.-Y., Yang, J.-S., Shin, J.-H., Nam, K.-Y., No, K.-T. & Han, G. (2008). Eur. J. Med. Chem. 43, 1519–1524.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, J.-L., Li, A.-X., Li, Y.-H., Di, X.-H. & Miao, F.-M. (2001). Acta Chim. Sin. 59, 1490–1494.  CAS Google Scholar
First citationYip, W. K. & Yang, S. F. (1986). Plant Physiol. 80, 515–519.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds