metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(tri­phenyl­phosphane)copper(I)]-di-μ-iodido-[(tri­phenyl­phosphane)copper(I)]-μ-[3,6-bis­­(4-pyrid­yl)-1,2,4,5-tetra­zine]] aceto­nitrile disolvate]

aMolecular Materials Research Center, Scientific Research Academy, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: zjf260@ujs.edu.cn

(Received 1 October 2010; accepted 21 October 2010; online 30 October 2010)

The title compound, {[Cu2I2(C12H8N6)(C18H15P)2]·2CH3CN}n, contains centrosymmetric dinuclear Cu2I2(PPh3)2 units bridged by 3,6-bis­(4-pyrid­yl)-1,2,4,5-tetra­zine ligands lying also across crystallographic inversion centers, giving a chain structure in the ab plane. The distorted tetra­hedral CuI atoms in the dinuclear unit are coordinated by two bridging iodide anions, one pyridine N atom from the substituted tetra­zine ligand and one terminal triphenyl­phosphine P-atom donor. The Cu⋯Cu distance is 2.8293 (12) Å, implying a weak Cu⋯Cu inter­action.

Related literature

For examples of metal-organic compounds with intriguing architectures and topologies, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]). For potential applications of these compounds, see: Banerjee et al. (2008[Banerjee, Ra., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939-943.]); Zhang et al. (2007[Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.]). For examples of metal-organic frameworks constructed using long bridging ligands, see: Withersby et al. (2000[Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schroder, M. (2000). J. Am. Chem. Soc. 122, 4044-4046.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2I2(C12H8N6)(C18H15P)2]·2C2H3N

  • Mr = 1223.80

  • Monoclinic, P 21 /c

  • a = 12.344 (3) Å

  • b = 11.675 (2) Å

  • c = 18.521 (4) Å

  • β = 101.41 (3)°

  • V = 2616.4 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corp., Tokyo, Japan.]) Tmin = 0.779, Tmax = 1.000

  • 12271 measured reflections

  • 5042 independent reflections

  • 4233 reflections with I > 2sI)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.079

  • S = 1.09

  • 5042 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corp., Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic frameworks have attracted great attention in recent years not only because of their intriguing structures (Eddaoudi et al., 2001) but also their potential applications (Banerjee et al., 2008; Zhang et al., 2007). Long bridging ligands can be employed for the construction of interesting metal-organic frameworks (Withersby et al., 2000). The extended bridging ligand 2,6-bis(4-pyridyl)-1,2,4,5-tetrazine was used to synthesize the title compound {[Cu2I2(C12H8N6)((C6H5)3P)2 .2(CH3CN)}n (3,6-di2(PPh3)2 (I) by using a diffusion reaction and the crystal structure is presented here.

The centrosymmetric dinuclear Cu2I2(PPh3)2 complex units in (I) are linked by the extended 3,6-di-4-pyridyl-1,2,4,5-tetrazine ligands, also lying across crystallographic inversion centers, giving a one-dimensional chain structure (Fig. 1). Each tetrahedral CuI centre in the dinuclear unit is coordinated by two bridging I anions [Cu—I, 2.6412 (9), 2.6603 (9) Å], one pyridine-N from the bridging substituted tetrazine ligand [Cu—N, 2.066 (3)Å] and one terminal triphenylphosphine P-donor [Cu—P, 2.2388 (11) Å]. The Cu···Cui distance is 2.8293 (12) Å, implying a weak Cu···Cu interaction [symmetry code: (i) -x, -y, -z].

Related literature top

For examples of metal-organic compounds with intriguing architectures and topologies, see: Eddaoudi et al. (2001). For potential applications of these compounds, see: Banerjee et al. (2008); Zhang et al. (2007). For examples of metal-organic frameworks constructed using long bridging ligands, see: Withersby et al. (2000).

Experimental top

CuI (0.1 mmol) and triphenylphosphine (0.2 mmol) were added to a mixture of 3 ml of dimethylformamide and 2 ml of H3CN with thorough stirring for 2 minutes. After filtering, the filtrate was carefully layered with a solution of 0.1 mmol 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine in 3 ml of CH2Cl2. Blue block crystals were obtained after two weeks.

Refinement top

H atoms were positioned geometrically with C—H(phenyl, pyridyl) = 0.93 Å or 0.96 Å (methyl) and refined using a riding model, with Uiso(H) = 1.2Ueq(C)phenyl, pyridyl or 1.5Ueq(C)methyl.

Structure description top

Metal-organic frameworks have attracted great attention in recent years not only because of their intriguing structures (Eddaoudi et al., 2001) but also their potential applications (Banerjee et al., 2008; Zhang et al., 2007). Long bridging ligands can be employed for the construction of interesting metal-organic frameworks (Withersby et al., 2000). The extended bridging ligand 2,6-bis(4-pyridyl)-1,2,4,5-tetrazine was used to synthesize the title compound {[Cu2I2(C12H8N6)((C6H5)3P)2 .2(CH3CN)}n (3,6-di2(PPh3)2 (I) by using a diffusion reaction and the crystal structure is presented here.

The centrosymmetric dinuclear Cu2I2(PPh3)2 complex units in (I) are linked by the extended 3,6-di-4-pyridyl-1,2,4,5-tetrazine ligands, also lying across crystallographic inversion centers, giving a one-dimensional chain structure (Fig. 1). Each tetrahedral CuI centre in the dinuclear unit is coordinated by two bridging I anions [Cu—I, 2.6412 (9), 2.6603 (9) Å], one pyridine-N from the bridging substituted tetrazine ligand [Cu—N, 2.066 (3)Å] and one terminal triphenylphosphine P-donor [Cu—P, 2.2388 (11) Å]. The Cu···Cui distance is 2.8293 (12) Å, implying a weak Cu···Cu interaction [symmetry code: (i) -x, -y, -z].

For examples of metal-organic compounds with intriguing architectures and topologies, see: Eddaoudi et al. (2001). For potential applications of these compounds, see: Banerjee et al. (2008); Zhang et al. (2007). For examples of metal-organic frameworks constructed using long bridging ligands, see: Withersby et al. (2000).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXSL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted. Symmetry codes: (i) -x, -y, -z; (ii) -x + 1, -y - 1, -z.
catena-Poly[[[(triphenylphosphane)copper(I)]-di-µ-iodido- [(triphenylphosphane)copper(I)]-µ-[3,6-bis(4-pyridyl)-1,2,4,5-tetrazine]] acetonitrile disolvate] top
Crystal data top
[Cu2I2(C12H8N6)(C18H15P)2]·2C2H3NF(000) = 1212
Mr = 1223.80Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10225 reflections
a = 12.344 (3) Åθ = 2.8–29.1°
b = 11.675 (2) ŵ = 2.10 mm1
c = 18.521 (4) ÅT = 293 K
β = 101.41 (3)°Block, blue
V = 2616.4 (10) Å30.25 × 0.20 × 0.15 mm
Z = 2
Data collection top
Rigaku Saturn724
diffractometer
5042 independent reflections
Radiation source: fine-focus sealed tube4233 reflections with I > 2s˘I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1511
Tmin = 0.779, Tmax = 1.000k = 1414
12271 measured reflectionsl = 1822
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5456P]
where P = (Fo2 + 2Fc2)/3
5042 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2I2(C12H8N6)(C18H15P)2]·2C2H3NV = 2616.4 (10) Å3
Mr = 1223.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.344 (3) ŵ = 2.10 mm1
b = 11.675 (2) ÅT = 293 K
c = 18.521 (4) Å0.25 × 0.20 × 0.15 mm
β = 101.41 (3)°
Data collection top
Rigaku Saturn724
diffractometer
5042 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
4233 reflections with I > 2s˘I)
Tmin = 0.779, Tmax = 1.000Rint = 0.030
12271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.09Δρmax = 0.49 e Å3
5042 reflectionsΔρmin = 0.47 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.01591 (2)0.05190 (2)0.113971 (13)0.04604 (10)
Cu10.11635 (4)0.00036 (4)0.02284 (2)0.04082 (13)
P10.23134 (8)0.14551 (8)0.06241 (5)0.0398 (2)
N10.1998 (2)0.1497 (2)0.01109 (16)0.0407 (7)
N20.4794 (3)0.4221 (3)0.05567 (17)0.0466 (8)
N30.4453 (3)0.4974 (3)0.05724 (16)0.0468 (8)
N40.1913 (5)0.7319 (6)0.2563 (3)0.121 (2)
C60.4276 (3)0.4218 (3)0.0010 (2)0.0393 (9)
C130.3435 (3)0.1093 (3)0.13879 (19)0.0433 (9)
C20.3008 (3)0.3135 (3)0.0653 (2)0.0518 (10)
H20.31870.36230.10550.062*
C230.0102 (5)0.3983 (5)0.0741 (4)0.101 (2)
H230.06140.41530.04980.121*
C220.0648 (6)0.4706 (5)0.1276 (4)0.106 (2)
H220.03000.53670.13940.128*
C210.1706 (5)0.4459 (4)0.1637 (4)0.0941 (19)
H210.20700.49450.20040.113*
C30.3460 (3)0.3303 (3)0.00372 (19)0.0383 (8)
C10.2290 (3)0.2235 (3)0.0664 (2)0.0517 (10)
H10.19900.21370.10830.062*
C80.3772 (4)0.1219 (4)0.0334 (2)0.0648 (12)
H80.39750.05420.00780.078*
C70.3016 (3)0.1947 (3)0.01016 (19)0.0463 (9)
C40.3140 (3)0.2564 (3)0.0553 (2)0.0483 (10)
H40.34090.26600.09840.058*
C190.1689 (3)0.2757 (3)0.0911 (2)0.0481 (10)
C160.5102 (4)0.0355 (4)0.2532 (2)0.0654 (13)
H160.56620.00990.29100.079*
C50.2420 (3)0.1687 (3)0.0490 (2)0.0472 (10)
H50.22140.11970.08900.057*
C170.5309 (4)0.1236 (4)0.2086 (2)0.0631 (12)
H170.59980.15870.21660.076*
C180.4468 (3)0.1597 (4)0.1513 (2)0.0554 (11)
H180.46060.21900.12080.066*
C140.3247 (4)0.0209 (3)0.1853 (2)0.0522 (10)
H140.25570.01410.17790.063*
C240.0620 (4)0.2999 (4)0.0565 (3)0.0708 (13)
H240.02450.25000.02100.085*
C110.3177 (5)0.3187 (5)0.1108 (3)0.0841 (16)
H110.29730.38570.13710.101*
C150.4076 (4)0.0155 (4)0.2426 (2)0.0646 (13)
H150.39400.07400.27370.078*
C100.3914 (5)0.2462 (6)0.1326 (3)0.0908 (19)
H100.42060.26320.17400.109*
C120.2727 (4)0.2936 (4)0.0497 (2)0.0648 (12)
H120.22260.34400.03530.078*
C200.2222 (4)0.3491 (4)0.1454 (3)0.0706 (13)
H200.29390.33260.16970.085*
C90.4224 (4)0.1483 (5)0.0934 (3)0.0834 (16)
H90.47410.09940.10750.100*
C260.0159 (6)0.7161 (6)0.2552 (3)0.125 (3)
H26A0.05650.73850.20760.187*
H26B0.03620.76460.29220.187*
H26C0.03290.63800.26470.187*
C250.1023 (7)0.7271 (6)0.2569 (3)0.0907 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04230 (17)0.05492 (18)0.04190 (15)0.00885 (12)0.01074 (11)0.00954 (12)
Cu10.0381 (3)0.0371 (3)0.0471 (3)0.0054 (2)0.0081 (2)0.0014 (2)
P10.0371 (5)0.0416 (5)0.0413 (5)0.0004 (4)0.0089 (4)0.0018 (4)
N10.0381 (18)0.0412 (17)0.0443 (17)0.0114 (14)0.0116 (14)0.0046 (15)
N20.048 (2)0.0468 (18)0.0485 (18)0.0197 (16)0.0180 (15)0.0066 (15)
N30.050 (2)0.0467 (18)0.0454 (18)0.0190 (16)0.0146 (15)0.0055 (16)
N40.108 (5)0.154 (5)0.095 (4)0.031 (5)0.005 (4)0.022 (3)
C60.037 (2)0.0367 (19)0.044 (2)0.0082 (16)0.0076 (17)0.0012 (17)
C130.037 (2)0.052 (2)0.0395 (19)0.0020 (18)0.0045 (17)0.0006 (18)
C20.062 (3)0.049 (2)0.049 (2)0.027 (2)0.019 (2)0.0137 (19)
C230.076 (4)0.080 (4)0.138 (5)0.033 (3)0.001 (4)0.028 (4)
C220.103 (5)0.062 (3)0.158 (6)0.020 (3)0.033 (5)0.038 (4)
C210.082 (4)0.072 (4)0.129 (5)0.004 (3)0.023 (4)0.046 (3)
C30.033 (2)0.037 (2)0.045 (2)0.0086 (16)0.0087 (16)0.0022 (17)
C10.056 (3)0.056 (2)0.049 (2)0.025 (2)0.0236 (19)0.012 (2)
C80.066 (3)0.070 (3)0.062 (3)0.005 (3)0.022 (2)0.003 (2)
C70.045 (2)0.053 (2)0.041 (2)0.0093 (19)0.0079 (18)0.0023 (19)
C40.051 (2)0.053 (2)0.044 (2)0.019 (2)0.0167 (18)0.0094 (19)
C190.047 (2)0.044 (2)0.055 (2)0.0004 (19)0.0153 (19)0.002 (2)
C160.060 (3)0.085 (3)0.046 (2)0.014 (3)0.004 (2)0.010 (2)
C50.046 (2)0.052 (2)0.045 (2)0.0205 (19)0.0113 (18)0.0115 (19)
C170.044 (3)0.082 (3)0.060 (3)0.006 (2)0.002 (2)0.006 (3)
C180.046 (3)0.068 (3)0.052 (2)0.002 (2)0.008 (2)0.002 (2)
C140.052 (3)0.060 (3)0.045 (2)0.001 (2)0.009 (2)0.002 (2)
C240.060 (3)0.063 (3)0.084 (3)0.012 (2)0.002 (3)0.014 (3)
C110.095 (4)0.095 (4)0.062 (3)0.029 (3)0.014 (3)0.023 (3)
C150.078 (4)0.066 (3)0.046 (2)0.009 (3)0.003 (2)0.009 (2)
C100.102 (5)0.129 (5)0.048 (3)0.047 (4)0.032 (3)0.002 (3)
C120.068 (3)0.066 (3)0.061 (3)0.011 (2)0.011 (2)0.014 (2)
C200.055 (3)0.063 (3)0.094 (3)0.007 (2)0.015 (3)0.028 (3)
C90.086 (4)0.102 (4)0.074 (3)0.020 (3)0.044 (3)0.021 (3)
C260.147 (7)0.118 (5)0.129 (6)0.040 (5)0.076 (5)0.056 (4)
C250.118 (6)0.096 (4)0.060 (3)0.033 (5)0.022 (4)0.022 (3)
Geometric parameters (Å, º) top
Cu1—N12.066 (3)C8—C71.392 (6)
Cu1—P12.2388 (11)C8—H80.9300
Cu1—I1i2.6603 (9)C7—C121.376 (6)
Cu1—Cu1i2.8293 (12)C4—C51.376 (5)
P1—C131.823 (4)C4—H40.9300
P1—C191.830 (4)C19—C241.378 (5)
P1—C71.831 (4)C19—C201.384 (6)
N1—C11.333 (4)C16—C171.374 (6)
N1—C51.338 (4)C16—C151.378 (6)
N2—N3ii1.327 (4)C16—H160.9300
N2—C61.333 (5)C5—H50.9300
N3—N2ii1.327 (4)C17—C181.395 (5)
N3—C61.349 (4)C17—H170.9300
N4—C251.102 (8)C18—H180.9300
C6—C31.476 (5)C14—C151.386 (6)
C13—C181.382 (5)C14—H140.9300
C13—C141.393 (5)C24—H240.9300
C2—C11.378 (5)C11—C101.361 (8)
C2—C31.378 (5)C11—C121.387 (6)
C2—H20.9300C11—H110.9300
C23—C221.372 (8)C15—H150.9300
C23—C241.385 (6)C10—C91.368 (7)
C23—H230.9300C10—H100.9300
C22—C211.376 (8)C12—H120.9300
C22—H220.9300C20—H200.9300
C21—C201.373 (6)C9—H90.9300
C21—H210.9300C26—C251.460 (9)
C3—C41.387 (5)C26—H26A0.9600
C1—H10.9300C26—H26B0.9600
C8—C91.374 (6)C26—H26C0.9600
Cu1—I1—Cu1i64.51 (3)C8—C7—P1118.6 (3)
N1—Cu1—P1112.29 (9)C5—C4—C3119.0 (4)
N1—Cu1—I1104.81 (9)C5—C4—H4120.5
P1—Cu1—I1113.43 (3)C3—C4—H4120.5
N1—Cu1—I1i103.87 (8)C24—C19—C20119.0 (4)
P1—Cu1—I1i106.64 (4)C24—C19—P1117.0 (3)
I1—Cu1—I1i115.49 (3)C20—C19—P1123.9 (3)
N1—Cu1—Cu1i117.65 (9)C17—C16—C15120.8 (4)
P1—Cu1—Cu1i129.83 (4)C17—C16—H16119.6
I1—Cu1—Cu1i58.07 (3)C15—C16—H16119.6
I1i—Cu1—Cu1i57.42 (3)N1—C5—C4123.9 (3)
C13—P1—C19105.43 (17)N1—C5—H5118.1
C13—P1—C7104.18 (18)C4—C5—H5118.1
C19—P1—C7103.94 (19)C16—C17—C18119.0 (4)
C13—P1—Cu1114.42 (13)C16—C17—H17120.5
C19—P1—Cu1116.59 (13)C18—C17—H17120.5
C7—P1—Cu1111.05 (12)C13—C18—C17121.4 (4)
C1—N1—C5116.3 (3)C13—C18—H18119.3
C1—N1—Cu1122.1 (2)C17—C18—H18119.3
C5—N1—Cu1120.8 (2)C15—C14—C13120.8 (4)
N3ii—N2—C6117.8 (3)C15—C14—H14119.6
N2ii—N3—C6117.0 (3)C13—C14—H14119.6
N2—C6—N3125.2 (3)C19—C24—C23120.3 (5)
N2—C6—C3117.7 (3)C19—C24—H24119.8
N3—C6—C3117.0 (3)C23—C24—H24119.8
C18—C13—C14118.3 (3)C10—C11—C12120.7 (5)
C18—C13—P1124.4 (3)C10—C11—H11119.7
C14—C13—P1117.3 (3)C12—C11—H11119.7
C1—C2—C3119.3 (3)C16—C15—C14119.7 (4)
C1—C2—H2120.4C16—C15—H15120.1
C3—C2—H2120.4C14—C15—H15120.1
C22—C23—C24119.8 (5)C11—C10—C9119.7 (5)
C22—C23—H23120.1C11—C10—H10120.1
C24—C23—H23120.1C9—C10—H10120.1
C23—C22—C21120.4 (5)C7—C12—C11120.5 (5)
C23—C22—H22119.8C7—C12—H12119.7
C21—C22—H22119.8C11—C12—H12119.7
C20—C21—C22119.7 (5)C21—C20—C19120.8 (5)
C20—C21—H21120.2C21—C20—H20119.6
C22—C21—H21120.2C19—C20—H20119.6
C2—C3—C4117.6 (3)C10—C9—C8120.1 (5)
C2—C3—C6121.5 (3)C10—C9—H9120.0
C4—C3—C6120.9 (3)C8—C9—H9120.0
N1—C1—C2123.9 (4)C25—C26—H26A109.5
N1—C1—H1118.1C25—C26—H26B109.5
C2—C1—H1118.1H26A—C26—H26B109.5
C9—C8—C7121.1 (5)C25—C26—H26C109.5
C9—C8—H8119.4H26A—C26—H26C109.5
C7—C8—H8119.4H26B—C26—H26C109.5
C12—C7—C8117.9 (4)N4—C25—C26177.2 (8)
C12—C7—P1122.9 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2I2(C12H8N6)(C18H15P)2]·2C2H3N
Mr1223.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.344 (3), 11.675 (2), 18.521 (4)
β (°) 101.41 (3)
V3)2616.4 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku Saturn724
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.779, 1.000
No. of measured, independent and
observed [I > 2s˘I)] reflections
12271, 5042, 4233
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.079, 1.09
No. of reflections5042
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.47

Computer programs: CrystalClear (Rigaku, 2007), SHELXSL97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of Jiangsu University (08JDG036).

References

First citationBanerjee, Ra., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939–943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corp., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWithersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schroder, M. (2000). J. Am. Chem. Soc. 122, 4044–4046.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds