organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(1H-benzimidazol-2-yl)benzene methanol monosolvate

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China
*Correspondence e-mail: shenlin@fjnu.edu.cn;_jiangbosu@163.com

(Received 30 September 2010; accepted 25 November 2010; online 11 December 2010)

The asymmetric unit of the title compound, C20H14N4·CH4O, contains two independent half-mol­ecules, each located on an inversion centre, and a methanol solvent mol­ecule. The benzimidazolyl groups form different dihedral angles [24.0 (1) and 11.6 (1)°] with the plane of the central benzene ring in the two mol­ecules. In the crystal, a two-dimensional network is formed through N—H⋯ N, N—H⋯O and O—H⋯N hydrogen-bonding inter­actions between the benzimidazole units and methanol solvent mol­ecules. ππ stacking inter­actions also occur between the benzimidazole rings of adjacent mol­ecules, with centroid–centroid distances of 3.720 (14) Å and inter­planar distances of 3.53 (1) Å .

Related literature

For the synthesis of the title compound see: Wu et al. (2009[Wu, D.-H. & Hu, L. (2009). Acta Cryst. E65, o522.]). For the properties and applications of benzimidazoles, see: Tidwell et al. (1993[Tidwell, R. R., Jones, S. K., Naiman, N. A., Berger, L. C., Brake, W. B., Dykstra, C. C. & Hall, J. E. (1993). Antimicrob. Agents Chemother. 37, 1713-1716.]); Salunke et al. (1994[Salunke, N. M., Revankar, V. K. & Mahale, V. B. (1994). Transition Met. Chem. 19, 53-56.]); Hoorn et al. (1995[Hoorn, H. J., Joode, P., Driessen, W. L. & Reedijk, J. (1995). React. Funct. Polym. 27, 223-235.]); van Berkel et al. (1995[Berkel, P. M. van, Dijkstra, D. J., Driessen, W. L., Reedijk, J. & Sherrington, D. C. (1995). React. Funct. Polym. 28, 39-54.]); Dinolfo et al. (2005[Dinolfo, P. H., Benkstein, K. D., Stern, C. L. & Hupp, J. T. (2005). Inorg. Chem. 44, 8707-8714.]); Yang et al. (2008[Yang, Q. F., Cui, X. B., Yu, J. H., Lu, J., Yu, X. Y., Zhang, X., Xu, J. Q., Hou, Q. & Wang, T. G. (2008). CrystEngComm, 10, 1534-1541.]). For structures of 1,4-bis­(benzimidazol-2-yl)benzene analogues, see: Bei et al. (2000[Bei, F., Jian, F., Yang, X., Lu, L., Wang, X., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 718-719.]); Wu et al. (2009[Wu, D.-H. & Hu, L. (2009). Acta Cryst. E65, o522.]). For bond lengths and angles in similar structures, see: Matthews et al. (1996[Matthews, C. C., Elsegood, J. W., Leese, M. R. J., Thorp, T. A., Thornton, D. P. & Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 1531-1538.]); Ozbey et al. (1998[Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N4·CH4O

  • Mr = 342.39

  • Triclinic, [P \overline 1]

  • a = 7.1730 (14) Å

  • b = 10.599 (2) Å

  • c = 12.260 (3) Å

  • α = 76.21 (3)°

  • β = 88.37 (3)°

  • γ = 77.01 (3)°

  • V = 881.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.31 × 0.16 × 0.12 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.432, Tmax = 1.000

  • 4565 measured reflections

  • 3139 independent reflections

  • 2577 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.04

  • 3139 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.93 (3) 1.93 (3) 2.829 (2) 162 (2)
N2—H2A⋯N3 0.86 2.03 2.873 (2) 168
N4—H4A⋯O1i 0.86 1.99 2.855 (2) 179
Symmetry code: (i) x, y, z+1.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In earlier communications (Tidwell, et al., 1993; Salunke, et al., 1994; Hoorn, et al., 1995; van Berkel, et al., 1995; Dinolfo et al., 2005; Yang et al., 2008;) it has been reported that the benzimidazole moiety is an important heterocyclic ring not only because of its wide-ranging antivirus activity, its importance in selective ion-exchange resin, but also because of the interest in the coordination chemistry of azoles acting as ligands in transition metal compounds. However, the crystal structure of 1,4-bis(benzimidazol-2-yl)benzene analogues have rarely been reported (Bei, et al., 2000; Wu, et al., 2009;). Herein, we report the crystal structure of the title compound, 1,4-bis(benzimidazol-2-yl)benzene methanol solvate (1).

The structure of title compound is illustrated in Fig. 1. The asymmetric unit contains two different molecules halved by inversion centres at (1/2, 1/2, 1/2) and (0, 1, 0), respectively, and a methanol solvent. Bond lengths and angles have normal values and are comparable to those reported in similar structures (Matthews et al., 1996; Ozbey et al., 1998). The benzimidazoyl moieties form different dihedral angles with the plane of the central benzene ring (24.0 (1)°, 11.6 (1)° for A and B, respectively, Fig. 1). C—N bond lengths in the imidazole ring are in the range 1.328 (2)–1.391 (2) Å, shorter than typical single C—N bond lengths (ca 1.48 Å) and longer than typical C=N ones (ca 1.28 Å), indicating partial double-bond character. This can be interpreted in terms of conjugation in the heterocycle(Fig. 1, Table 1).

In the solid state the 1,4-bis(Benzimidazol-2-yl)benzene moieties are connected to form a two-dimensional network through intermolecular N—H··· N, N—H···O and O—H···N hydrogen bonds (Fig.2, Table 2). Moreover, there exists π-π stacking interactions between the aromatic and imidazole rings of adjacent molecules, with intercentroid/interplanar distances of about 3.72 (1) Å /3.53 (1) Å, respectively.

Related literature top

For the synthesis of the title compound see: Wu et al. (2009). For the properties and applications of benzimidazoles, see: Tidwell et al. (1993); Salunke et al. (1994); Hoorn et al. (1995); van Berkel et al. (1995); Dinolfo et al. (2005); Yang et al. (2008). For structures of 1,4-bis(benzimidazol-2-yl)benzene analogues, see: Bei et al. (2000); Wu et al. (2009). For bond lengths and angles in similar structures, see: Matthews et al. (1996); Ozbey et al. (1998).

Experimental top

All reagents were of AR grade available commercially and used without further purification. To a mixed solvent of polyphosphoric acid (5 ml) and Phosphoric acid (15 ml, 85%) was added benzene-1,4-dicarboxylic acid (1.67 g, 10.0 mmol) and 1,2-diaminobenzene (2.16 g, 20.0 mmol). The mixture was heated slowly to 398 K, and the resulting solution was stirred at 453 K for five hours, and was poured into 300 ml water. Then the mixture was neutralized with 50% sodium hydroxide solution. The crude product was collected by filtration, dried and recrystallized (yield 67%). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution.

Refinement top

The (C)H and (N)H atoms of the title compound were placed in calculated positions (C—H = 0.93 and N—H = 0.86 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). The (C)H atoms of the methanol molecule were placed geometrically (C—H = 0.96 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C). The (O)H atom of the methanol molecule was located in a difference Fourier map and refined with restrained O—H = 0.93 (3) Å and Uiso(H) = 1.5Ueq(O).

Structure description top

In earlier communications (Tidwell, et al., 1993; Salunke, et al., 1994; Hoorn, et al., 1995; van Berkel, et al., 1995; Dinolfo et al., 2005; Yang et al., 2008;) it has been reported that the benzimidazole moiety is an important heterocyclic ring not only because of its wide-ranging antivirus activity, its importance in selective ion-exchange resin, but also because of the interest in the coordination chemistry of azoles acting as ligands in transition metal compounds. However, the crystal structure of 1,4-bis(benzimidazol-2-yl)benzene analogues have rarely been reported (Bei, et al., 2000; Wu, et al., 2009;). Herein, we report the crystal structure of the title compound, 1,4-bis(benzimidazol-2-yl)benzene methanol solvate (1).

The structure of title compound is illustrated in Fig. 1. The asymmetric unit contains two different molecules halved by inversion centres at (1/2, 1/2, 1/2) and (0, 1, 0), respectively, and a methanol solvent. Bond lengths and angles have normal values and are comparable to those reported in similar structures (Matthews et al., 1996; Ozbey et al., 1998). The benzimidazoyl moieties form different dihedral angles with the plane of the central benzene ring (24.0 (1)°, 11.6 (1)° for A and B, respectively, Fig. 1). C—N bond lengths in the imidazole ring are in the range 1.328 (2)–1.391 (2) Å, shorter than typical single C—N bond lengths (ca 1.48 Å) and longer than typical C=N ones (ca 1.28 Å), indicating partial double-bond character. This can be interpreted in terms of conjugation in the heterocycle(Fig. 1, Table 1).

In the solid state the 1,4-bis(Benzimidazol-2-yl)benzene moieties are connected to form a two-dimensional network through intermolecular N—H··· N, N—H···O and O—H···N hydrogen bonds (Fig.2, Table 2). Moreover, there exists π-π stacking interactions between the aromatic and imidazole rings of adjacent molecules, with intercentroid/interplanar distances of about 3.72 (1) Å /3.53 (1) Å, respectively.

For the synthesis of the title compound see: Wu et al. (2009). For the properties and applications of benzimidazoles, see: Tidwell et al. (1993); Salunke et al. (1994); Hoorn et al. (1995); van Berkel et al. (1995); Dinolfo et al. (2005); Yang et al. (2008). For structures of 1,4-bis(benzimidazol-2-yl)benzene analogues, see: Bei et al. (2000); Wu et al. (2009). For bond lengths and angles in similar structures, see: Matthews et al. (1996); Ozbey et al. (1998).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular drawing of (1), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (1). Broken lines indicate the intermolecular N—H···N hydrogen bonds, N—H···O hydrogen bonds and N—H···O interactions.
1,4-Bis(1H-benzimidazol-2-yl)benzene methanol monosolvate top
Crystal data top
C20H14N4·CH4OZ = 2
Mr = 342.39F(000) = 360
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1730 (14) ÅCell parameters from 3188 reflections
b = 10.599 (2) Åθ = 3.0–27.5°
c = 12.260 (3) ŵ = 0.08 mm1
α = 76.21 (3)°T = 293 K
β = 88.37 (3)°Prism, yellow
γ = 77.01 (3)°0.31 × 0.16 × 0.12 mm
V = 881.7 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
3139 independent reflections
Radiation source: fine-focus sealed tube2577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
h = 88
Tmin = 0.432, Tmax = 1.000k = 1211
4565 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.058P)2 + 0.2072P]
where P = (Fo2 + 2Fc2)/3
3139 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H14N4·CH4Oγ = 77.01 (3)°
Mr = 342.39V = 881.7 (3) Å3
Triclinic, P1Z = 2
a = 7.1730 (14) ÅMo Kα radiation
b = 10.599 (2) ŵ = 0.08 mm1
c = 12.260 (3) ÅT = 293 K
α = 76.21 (3)°0.31 × 0.16 × 0.12 mm
β = 88.37 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3139 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
2577 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 1.000Rint = 0.016
4565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
3139 reflectionsΔρmin = 0.19 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4353 (2)0.72851 (15)0.20907 (11)0.0655 (4)
H10.466 (4)0.773 (3)0.157 (2)0.099 (9)*
N10.5137 (2)0.81332 (14)0.01667 (11)0.0462 (4)
N20.4593 (2)0.81243 (13)0.16469 (11)0.0431 (4)
H2A0.39990.82850.22360.052*
N30.3135 (2)0.86666 (13)0.37352 (11)0.0404 (3)
N40.34446 (19)0.84695 (13)0.55855 (11)0.0388 (3)
H4A0.37310.81060.62830.047*
C10.6775 (3)0.74325 (16)0.04753 (14)0.0438 (4)
C20.8563 (3)0.67915 (19)0.01578 (17)0.0569 (5)
H2B0.88180.68010.05920.068*
C30.9931 (3)0.6147 (2)0.09908 (19)0.0624 (6)
H3B1.11260.57170.07950.075*
C40.9576 (3)0.61209 (19)0.21223 (18)0.0584 (5)
H4B1.05360.56700.26600.070*
C50.7826 (3)0.67513 (18)0.24601 (16)0.0502 (5)
H5A0.75840.67330.32120.060*
C60.6448 (2)0.74142 (16)0.16162 (14)0.0412 (4)
C70.3870 (3)0.85267 (16)0.05676 (13)0.0403 (4)
C80.1892 (2)0.92809 (15)0.02858 (13)0.0394 (4)
C90.1321 (3)0.98685 (17)0.08376 (14)0.0456 (4)
H9A0.22040.97840.14010.055*
C100.0540 (3)1.05739 (17)0.11194 (13)0.0451 (4)
H10A0.08961.09550.18700.068*
C110.2500 (2)0.99128 (16)0.39671 (14)0.0394 (4)
C120.1739 (3)1.11565 (18)0.32434 (16)0.0541 (5)
H12A0.16471.12520.24720.065*
C130.1133 (3)1.22324 (18)0.37161 (18)0.0590 (5)
H13A0.06131.30650.32540.071*
C140.1282 (3)1.21002 (18)0.48749 (18)0.0551 (5)
H14A0.08441.28460.51640.066*
C150.2059 (3)1.08975 (17)0.55992 (16)0.0484 (4)
H15A0.21731.08160.63680.058*
C160.2667 (2)0.98057 (16)0.51249 (13)0.0379 (4)
C170.3672 (2)0.78377 (15)0.47268 (13)0.0358 (4)
C180.4362 (2)0.63846 (15)0.48859 (13)0.0356 (4)
C190.5493 (2)0.55926 (16)0.58125 (13)0.0421 (4)
H19C0.58290.59820.63600.063*
C200.3879 (3)0.57685 (16)0.40750 (14)0.0426 (4)
H20B0.31250.62810.34520.064*
C210.3492 (5)0.6260 (3)0.1553 (2)0.0971 (9)
H21A0.26850.65450.09790.117*
H21B0.44810.55160.11900.117*
H21C0.27390.59650.20430.174 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1004 (12)0.0687 (9)0.0363 (7)0.0341 (8)0.0012 (7)0.0157 (7)
N10.0571 (9)0.0468 (8)0.0349 (8)0.0070 (7)0.0014 (7)0.0143 (6)
N20.0505 (9)0.0457 (8)0.0305 (7)0.0023 (7)0.0035 (6)0.0115 (6)
N30.0500 (8)0.0365 (7)0.0327 (7)0.0029 (6)0.0045 (6)0.0097 (6)
N40.0495 (8)0.0389 (8)0.0280 (7)0.0082 (6)0.0005 (6)0.0093 (6)
C10.0525 (11)0.0401 (9)0.0406 (9)0.0095 (8)0.0004 (8)0.0138 (7)
C20.0608 (13)0.0566 (12)0.0539 (12)0.0086 (10)0.0084 (10)0.0195 (9)
C30.0517 (12)0.0574 (12)0.0775 (15)0.0048 (10)0.0052 (11)0.0226 (11)
C40.0532 (12)0.0514 (11)0.0690 (14)0.0085 (9)0.0142 (10)0.0125 (10)
C50.0556 (12)0.0501 (11)0.0451 (10)0.0100 (9)0.0089 (8)0.0126 (8)
C60.0481 (10)0.0373 (9)0.0392 (9)0.0085 (7)0.0028 (7)0.0117 (7)
C70.0546 (10)0.0354 (8)0.0315 (8)0.0086 (7)0.0031 (7)0.0100 (7)
C80.0524 (10)0.0336 (8)0.0320 (9)0.0073 (7)0.0060 (7)0.0087 (7)
C90.0550 (11)0.0481 (10)0.0310 (9)0.0064 (8)0.0005 (7)0.0090 (7)
C100.0585 (11)0.0451 (10)0.0281 (8)0.0057 (8)0.0069 (8)0.0063 (7)
C110.0417 (9)0.0366 (9)0.0400 (9)0.0066 (7)0.0033 (7)0.0108 (7)
C120.0682 (13)0.0429 (10)0.0471 (11)0.0068 (9)0.0139 (9)0.0063 (8)
C130.0660 (13)0.0350 (10)0.0711 (14)0.0029 (9)0.0159 (10)0.0092 (9)
C140.0553 (12)0.0420 (10)0.0718 (14)0.0055 (9)0.0010 (10)0.0254 (9)
C150.0542 (11)0.0471 (10)0.0491 (10)0.0115 (8)0.0049 (8)0.0222 (8)
C160.0392 (9)0.0377 (9)0.0386 (9)0.0096 (7)0.0021 (7)0.0118 (7)
C170.0380 (9)0.0388 (9)0.0313 (8)0.0075 (7)0.0006 (6)0.0109 (7)
C180.0380 (9)0.0366 (8)0.0313 (8)0.0063 (7)0.0011 (7)0.0082 (7)
C190.0541 (11)0.0405 (9)0.0332 (9)0.0089 (8)0.0084 (7)0.0122 (7)
C200.0526 (10)0.0392 (9)0.0337 (9)0.0063 (8)0.0122 (7)0.0064 (7)
C210.141 (3)0.107 (2)0.0643 (16)0.072 (2)0.0164 (16)0.0224 (15)
Geometric parameters (Å, º) top
O1—C211.391 (3)C9—C101.384 (3)
O1—H10.93 (3)C9—H9A0.9300
N1—C71.331 (2)C10—C8i1.400 (2)
N1—C11.391 (2)C10—H10A0.9300
N2—C71.368 (2)C11—C161.403 (2)
N2—C61.378 (2)C11—C121.403 (2)
N2—H2A0.8600C12—C131.380 (3)
N3—C171.328 (2)C12—H12A0.9300
N3—C111.391 (2)C13—C141.399 (3)
N4—C171.3640 (19)C13—H13A0.9300
N4—C161.385 (2)C14—C151.376 (3)
N4—H4A0.8600C14—H14A0.9300
C1—C21.401 (3)C15—C161.395 (2)
C1—C61.408 (2)C15—H15A0.9300
C2—C31.377 (3)C17—C181.475 (2)
C2—H2B0.9300C18—C191.395 (2)
C3—C41.398 (3)C18—C201.402 (2)
C3—H3B0.9300C19—C20ii1.386 (2)
C4—C51.385 (3)C19—H19C0.9300
C4—H4B0.9300C20—C19ii1.386 (2)
C5—C61.393 (2)C20—H20B0.9300
C5—H5A0.9300C21—H21A0.9600
C7—C81.469 (2)C21—H21B0.9600
C8—C10i1.400 (2)C21—H21C0.9600
C8—C91.400 (2)
C21—O1—H1109.8 (16)C8i—C10—H10A119.7
C7—N1—C1104.98 (14)N3—C11—C16110.02 (14)
C7—N2—C6107.32 (14)N3—C11—C12130.11 (16)
C7—N2—H2A126.3C16—C11—C12119.85 (16)
C6—N2—H2A126.3C13—C12—C11117.72 (18)
C17—N3—C11104.91 (13)C13—C12—H12A121.1
C17—N4—C16107.26 (13)C11—C12—H12A121.1
C17—N4—H4A126.4C12—C13—C14121.53 (18)
C16—N4—H4A126.4C12—C13—H13A119.2
N1—C1—C2130.63 (17)C14—C13—H13A119.2
N1—C1—C6109.80 (15)C15—C14—C13121.84 (17)
C2—C1—C6119.57 (17)C15—C14—H14A119.1
C3—C2—C1117.88 (19)C13—C14—H14A119.1
C3—C2—H2B121.1C14—C15—C16116.80 (17)
C1—C2—H2B121.1C14—C15—H15A121.6
C2—C3—C4121.92 (19)C16—C15—H15A121.6
C2—C3—H3B119.0N4—C16—C15132.62 (16)
C4—C3—H3B119.0N4—C16—C11105.12 (14)
C5—C4—C3121.46 (19)C15—C16—C11122.22 (16)
C5—C4—H4B119.3N3—C17—N4112.68 (14)
C3—C4—H4B119.3N3—C17—C18123.53 (14)
C4—C5—C6116.64 (18)N4—C17—C18123.74 (14)
C4—C5—H5A121.7C19—C18—C20118.34 (15)
C6—C5—H5A121.7C19—C18—C17122.54 (14)
N2—C6—C5132.09 (16)C20—C18—C17119.12 (14)
N2—C6—C1105.38 (15)C20ii—C19—C18120.63 (15)
C5—C6—C1122.52 (17)C20ii—C19—H19C119.7
N1—C7—N2112.51 (15)C18—C19—H19C119.7
N1—C7—C8125.12 (15)C19ii—C20—C18121.03 (15)
N2—C7—C8122.36 (15)C19ii—C20—H20B119.5
C10i—C8—C9118.54 (16)C18—C20—H20B119.5
C10i—C8—C7121.45 (15)O1—C21—H21A109.0
C9—C8—C7120.00 (16)O1—C21—H21B108.1
C10—C9—C8120.80 (16)H21A—C21—H21B107.6
C10—C9—H9A119.6O1—C21—H21C114.6
C8—C9—H9A119.6H21A—C21—H21C108.7
C9—C10—C8i120.66 (15)H21B—C21—H21C108.7
C9—C10—H10A119.7
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.93 (3)1.93 (3)2.829 (2)162 (2)
N2—H2A···N30.862.032.873 (2)168
N4—H4A···O1iii0.861.992.855 (2)179
Symmetry code: (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H14N4·CH4O
Mr342.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1730 (14), 10.599 (2), 12.260 (3)
α, β, γ (°)76.21 (3), 88.37 (3), 77.01 (3)
V3)881.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.16 × 0.12
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.432, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4565, 3139, 2577
Rint0.016
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.04
No. of reflections3139
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.93 (3)1.93 (3)2.829 (2)162 (2)
N2—H2A···N30.862.032.873 (2)168.3
N4—H4A···O1i0.861.992.855 (2)178.9
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20771024), the Natural Science Foundation of Fujian Province (No. 2008 J0142) and the Key Project Fund of Science and Technology of Fujian Province (No. 2008I0013).

References

First citationBei, F., Jian, F., Yang, X., Lu, L., Wang, X., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 718–719.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBerkel, P. M. van, Dijkstra, D. J., Driessen, W. L., Reedijk, J. & Sherrington, D. C. (1995). React. Funct. Polym. 28, 39–54.  CrossRef Web of Science Google Scholar
First citationDinolfo, P. H., Benkstein, K. D., Stern, C. L. & Hupp, J. T. (2005). Inorg. Chem. 44, 8707–8714.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHoorn, H. J., Joode, P., Driessen, W. L. & Reedijk, J. (1995). React. Funct. Polym. 27, 223–235.  CrossRef CAS Web of Science Google Scholar
First citationMatthews, C. C., Elsegood, J. W., Leese, M. R. J., Thorp, T. A., Thornton, D. P. & Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 1531–1538.  CSD CrossRef Web of Science Google Scholar
First citationOzbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSalunke, N. M., Revankar, V. K. & Mahale, V. B. (1994). Transition Met. Chem. 19, 53–56.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTidwell, R. R., Jones, S. K., Naiman, N. A., Berger, L. C., Brake, W. B., Dykstra, C. C. & Hall, J. E. (1993). Antimicrob. Agents Chemother. 37, 1713–1716.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWu, D.-H. & Hu, L. (2009). Acta Cryst. E65, o522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Q. F., Cui, X. B., Yu, J. H., Lu, J., Yu, X. Y., Zhang, X., Xu, J. Q., Hou, Q. & Wang, T. G. (2008). CrystEngComm, 10, 1534–1541.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds