metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­carbonyl­chlorido(phen­­oxy­thio­carbonyl-κ2C,S)bis­­(tri­phenyl­phosphane-κP)molybdenum(II)

aInstrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan, and bDepartment of Applied Cosmetology, Hungkuang University, Shalu 433, Taichung, Taiwan
*Correspondence e-mail: ghlee@ntu.edu.tw, khyih@sunrise.hk.edu.tw

(Received 25 October 2010; accepted 14 December 2010; online 24 December 2010)

In the title complex, [Mo(C7H5OS)Cl(C18H15P)2(CO)2], the geometry around the metal atom is a capped octa­hedron. The phen­oxy­thio­carbonyl ligand coordinates the MoII atom through the C and S atoms. A one-dimensional structure is formed by ππ inter­molecular inter­actions and a supra­molecular aggregation is determined by inter­molecular C—H⋯O, C—H⋯Cl, C—H⋯π(arene) hydrogen bonds and CO⋯π(arene) inter­actions [O⋯centroid distances = 3.485 (4) and 3.722 (3) Å].

Related literature

For the use of metallocarb­oxy­lic acids as inter­mediates in the homogeneous catalysis of the water gas shift reaction, see: Yoshida et al. (1978[Yoshida, T., Ueda, Y. & Otsuka, S. (1978). J. Am. Chem. Soc. 100, 3941-3942.]). For O-Aryl thio­carbonate, benzoxazoline-2-thione, chromene-2-thione and N,N-dimethyl­thio­carb­amate metal complexes, see: Chen et al. (1978[Chen, H. W., Fackler, J. P., Schussler, D. P. & Thompson, L. D. (1978). J. Am. Chem. Soc. 100, 2370-2375.]); McFarlane et al. (1998[McFarlane, W., Akrivos, P. D., Aslanudis, P., Karagiannidis, P., Atzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121-125.]); Zheng et al. (2006[Zheng, Z., Chen, J., Luo, N., Yu, Z. & Han, X. (2006). Organometallics, 25, 5301-5310.]) and Zhang & Shi (2004[Zhang, W. & Shi, M. (2004). Tetrahedron Lett. 45, 8921-8924.]), respectively. For phen­oxy­lcarbonyl metal complexes, see: Anderson et al. (2001[Anderson, S., Cook, D. J. & Hill, A. F. (2001). Organometallics, 20, 2468-2476.]). We are inter­ested in the synthesis of dithio­carbamate, pyridine-2-thio­nate (Yih et al., 2010[Yih, K.-H., Wang, H.-F. & Lee, G.-H. (2010). Acta Cryst. E66, m1189-m1190.]) and N,N-dimethyl­dithio­carbarmoyl (Yih & Lee, 2010[Yih, K. H. & Lee, G. H. (2010). Organometallics, 29, 3397-3403.]) metal complexes. For a phen­oxy­thio­carbon­yl–palladium complex, see: Yih & Lee (2004[Yih, K. H. & Lee, G. H. (2004). J. Chin. Chem. Soc. 51, 265-270.]). For C—H⋯O inter­actions, see: Strasser et al. (2009[Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2009). Acta Cryst. E65, m914.]); Arumugam et al. (2010[Arumugam, N., Abdul Rahim, A. S., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1214-o1215.]). For C—H⋯π inter­actions, see: Suresh et al. (2007[Suresh, J., Kumar, R. S., Perumal, S. & Natarajan, S. (2007). Acta Cryst. E63, o1375-o1376.]). For ππ inter­actions, see: Bartholomä et al. (2009)[Bartholomä, M. D., Ouellette, W. & Zubieta, J. (2009). Acta Cryst. E65, o61.]; Hu et al. (2009[Hu, D.-Y., Chu, X.-W. & Qu, Z.-R. (2009). Acta Cryst. E65, o2463.]). For the C—H⋯Cl inter­actions, see: Shawkataly et al. (2010[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m90-m91.]); Qi et al. (2009[Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507-m1508.]). For C—H⋯S inter­actions, see: Asad et al. (2010[Asad, M., Oo, C.-W., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2861-o2862.]); Goh et al. (2010[Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o1233-o1234.]). For C–H⋯acceptor inter­actions, see: Steiner (1996[Steiner, Th. (1996). Crystallogr. Rev. 6, 1-57.]). For typical C—O and C—S bond lengths, see: Huheey (1983[Huheey, J. E. (1983). Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed., p. A-37. New York: Harper & Row.]). For Mo—CO and C—O bond lengths in other molybdenum–carbonyl complexes, see: Yih & Lee (2008[Yih, K. H. & Lee, G. H. (2008). J. Organomet. Chem. 693, 3303-3311.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • [Mo(C7H5OS)Cl(C18H15P)2(CO)2]

  • Mr = 849.12

  • Triclinic, [P \overline 1]

  • a = 10.5685 (10) Å

  • b = 12.5224 (11) Å

  • c = 16.3983 (14) Å

  • α = 82.088 (2)°

  • β = 77.476 (2)°

  • γ = 67.212 (2)°

  • V = 1949.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 150 K

  • 0.16 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.944

  • 25423 measured reflections

  • 8942 independent reflections

  • 6714 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.128

  • S = 1.00

  • 8942 reflections

  • 478 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg7 are the centroids of the C4–C9, C10–C15, C16–C21 and C40–C45 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O3 0.95 2.31 3.208 (5) 157
C24—H24⋯O1i 0.95 2.58 3.199 (5) 123
C39—H39⋯Cl1 0.95 2.80 3.573 (4) 139
C9—H9⋯Cg3 0.95 2.97 3.896 (5) 165
C14—H14⋯Cg7ii 0.95 2.83 3.663 (5) 147
C20—H20⋯Cg1iii 0.95 2.97 3.802 (4) 147
C27—H27⋯Cg2 0.95 2.84 3.636 (5) 141
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y+1, z; (iii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interest in the M—C(S)OPh moiety is due to its analogy with metallocarboxylic acid esters (M—C(O)OR) and metallocarboxylic acids themselves. Metallocarboxylic acids have been proposed to be the key intermediates in the homogeneous catalysis of the water gas shift reaction (Yoshida et al., 1978). O-Aryl thiocarbonate (Chen et al., 1978), benzoxazoline-2-thione (McFarlane et al., 1998), chromene-2-thione (Zheng et al., 2006), and N,N-dimethylthiocarbamate (Zhang et al., 2004) metal complexes have been reported but few phenoxylcarbonyl metal complexes have been studied (Anderson et al., 2001). We are interested in the synthesis of dithiocarbamate, pyridine-2-thionate (Yih et al., 2010) and N,N-dimethyldithiocarbarmoyl (Yih & Lee, 2010) metal complexes. To our knowledge, no chelating phenoxythiocarbonyl crystal structure has been described so far.

The molecular structure of the title compound [Mo(CO)2(SCOPh)(PPh3)2Cl], (I),is shown in Fig. 1. The geometry around the metal atom is midway a capped trigonal prism and a capped octahedron. The capped trigonal prism consist of a phosphorus atom, P2, in the unique capping position [Mo1—P2 = 2.5509 (10) Å]. Two carbonyl groups, C1-O1 and C2-O2, Cl1, and the sulfur atom S1 of the phenoxythiocarbonyl ligand are present in the capped quadrilateral face [Mo—C1 = 1.938 (4) Å; Mo—C2 = 1.998 (4) Å; Mo—Cl1 = 2.5160 (9) Å; Mo—S1 = 2.6553 (10) Å] and the phenoxythiocarbonyl ligand is at the unique edge [Mo—S1 = 2.6553 (10) Å; Mo—C3 = 2.025 (4) Å]. In contrast the capped octahedron is made up of C3 in the capping position, C1, S1, and P2 in the capped face, and P1, C2, and Cl1 in the uncapped face. Two PPh3 ligands are in trans position: P1—Mo—P2, 173.19 (3)°, while the sulfur atom of the phenoxythiocarbonyl ligand, chloride and two carbonyl groups are trans to each other: C2—Mo—S1, 170.67 (11)°, C1—Mo—Cl1, 154.93 (12)°. The mean Mo—C—O angle of (I) ( 176.4 (3)° ) shows the group to be essentially linear, similarly to other terminal carbonyls of Mo. The Mo—CO (1.938 (4), 1.998 (4) Å) and C—O (1.163 (4), 1.146 (4) Å) distances are both consistent with the range of values reported for the other molybdenum carbonyl complexes (Yih & Lee, 2008 and references therein). The Mo—C1 bond distance is clearly shorter than that of Mo—C2 due to the larger trans influence of the sulfur atom of phenoxythiocarbonyl ligand than that of the chlorine ligand.

Within the SCOPh ligand, the C—S (1.650 (4) Å) and SC—O (1.319 (4) Å) bond distances are typical for C—O and C—S bonds having partial double bond character and are certainly much shorter than typical C—O (1.43 Å) and C—S (1.82 Å) single bonds (Huheey, 1983). The S1—C3—O3 group shows a geometrical environment characteristic of sp2 hybridization of the carbon atom. In addition, the S1—C3—O3 angle of 129.0 (3)° is larger than that found in the palladium phenoxythiocarbonyl complex (125.2 (6)°) (Yih et al., 2004). To our knowledge, the title complex is the first chelating phenoxythiocarbonyl-metal complex in the literature.

Three weak intramolecular hydrogen bonds and one intermolecular hydrogen bond are present in the structure (Table 1, entries 1-4). In addition, the phenyl ring (C4—C9) of the phenoxythiocarbonyl ligand and a phenyl ring (C10—C15) from the triphenylphosphane are nearly parallel, with an intercentroid distance of 3.938 (3)Å and a shortest inter-ring distance of 3.160 (2) Å. The resulting π-π interaction links molecules into a 1-D chain structure (Fig. 2).Finally, a supramolecular aggregation is determined by four C—H···π(arene) hydrogen bonds (Fig. 3 and Table 1, entries 5-8). The structure also presents some short CO···π(arene) contacts, O1···Cg5: 3.485 (4) and O2···Cg2iv:3.722 (3)Å, ( iv = -x + 2,-y_2,-z + 1)

In the 1H NMR spectrum of (I), 35 protons of the seven phenyl exhibit multiple resonances in the region of δ 7.12–7.73. In the 13C{1H} NMR spectrum of (I), two triplet resonances appear at δ 229.3 and δ 238.6 with 2JP—C = 12.95, 11.95 Hz couplings for the two inequivalent carbonyl groups, respectively. The 31P{1H} NMR spectrum of (I) shows one resonance at δ 34.2.

It is also noted that the IR spectrum of the title complex (I) shows four stretching bands, two at 1965, 1891 cm-1 for C=O and two at 1483, 1434 cm-1 for C-OPh groups. In the FAB mass spectra, the base peak with the typical Mo isotope distribution is in agreement with the [M+] molecular mass of (I).

Related literature top

For the use of metallocarboxylic acids as intermediates in the homogeneous catalysis of the water gas shift reaction, see: Yoshida et al. (1978). For O-Aryl thiocarbonate, benzoxazoline-2-thione, chromene-2-thione and N,N-dimethylthiocarbamate (Zhang et al., 2004) metal complexes, see: Chen et al. (1978); McFarlane et al. (1998); Zheng et al. (2006) and Zhang & Shi (2004), respectively. For phenoxylcarbonyl metal complexes, see: Anderson et al. (2001). We are interested in the synthesis of dithiocarbamate, pyridine-2-thionate (Yih et al., 2010) and N,N-dimethyldithiocarbarmoyl (Yih & Lee, 2010) metal complexes.

For a phenoxythiocarbonyl–palladium complex, see: Yih et al. (2004). For C—H···O interactions, see: Strasser et al. (2009); Arumugam et al. (2010). For C—H···π (arene) interactions, see: Suresh et al. (2007). For ππ interactions, see: Bartholomä et al. (2009); Hu et al. (2009). For the C—H···Cl interactions, see: Shawkataly et al. (2010); Qi et al. (2009). For C—H···S interactions, see: Asad et al. (2010); Goh et al. (2010). For C–H···acceptor interactions, see: Steiner (1996). For typical C—O and C—S bond lengths, see: Huheey (1983).

Experimental top

The synthesis of the title compound (I) was carried out as follows. PhOCSCl (0.135 g, 1.1 mmol) was added to a flask (100 ml) containing CH2Cl2 (10 ml) and [Mo(CH3CN)2(CO)2(PPh3)2] (0.758 g, 1.0 mmol) at room temperature. The color of the solution was changed from yellow to red immediately. The solution was concentrated under vacuum and n-hexane (10 ml) was added to initiate a yellow-brown precipitation. The resulting bright-yellow solid was isolated by filtration (G4), washed with diethyl ether (2 x 10 ml) and subsequently dried under vacuum, yielding [Mo(CO)2(SCOPh)(PPh3)2Cl] (0.764 g, 90%). Further purification was accomplished by recrystallization from 1/10 CH2Cl2/n-hexane. The orange crystals of (I) for X-ray structure analysis were obtained by slow diffusion of n-hexane into the CH2Cl2 solution of the title compound at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): δ 7.12–7.73 (m, 35H, Ph). 31P{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 34.3. 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 127.9- 134.2 (m, C of Ph), 159.7 (s, O—Ph), 229.3, 238.6 (t, CO, 2JP—C = 12.95, 11.95 Hz). MS (m/z): 850 (M+). Anal. Calcd for C45H35ClO3P2SMo: C, 63.65; H, 4.16. Found: C, 63.50; H, 4.05.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The interest in the M—C(S)OPh moiety is due to its analogy with metallocarboxylic acid esters (M—C(O)OR) and metallocarboxylic acids themselves. Metallocarboxylic acids have been proposed to be the key intermediates in the homogeneous catalysis of the water gas shift reaction (Yoshida et al., 1978). O-Aryl thiocarbonate (Chen et al., 1978), benzoxazoline-2-thione (McFarlane et al., 1998), chromene-2-thione (Zheng et al., 2006), and N,N-dimethylthiocarbamate (Zhang et al., 2004) metal complexes have been reported but few phenoxylcarbonyl metal complexes have been studied (Anderson et al., 2001). We are interested in the synthesis of dithiocarbamate, pyridine-2-thionate (Yih et al., 2010) and N,N-dimethyldithiocarbarmoyl (Yih & Lee, 2010) metal complexes. To our knowledge, no chelating phenoxythiocarbonyl crystal structure has been described so far.

The molecular structure of the title compound [Mo(CO)2(SCOPh)(PPh3)2Cl], (I),is shown in Fig. 1. The geometry around the metal atom is midway a capped trigonal prism and a capped octahedron. The capped trigonal prism consist of a phosphorus atom, P2, in the unique capping position [Mo1—P2 = 2.5509 (10) Å]. Two carbonyl groups, C1-O1 and C2-O2, Cl1, and the sulfur atom S1 of the phenoxythiocarbonyl ligand are present in the capped quadrilateral face [Mo—C1 = 1.938 (4) Å; Mo—C2 = 1.998 (4) Å; Mo—Cl1 = 2.5160 (9) Å; Mo—S1 = 2.6553 (10) Å] and the phenoxythiocarbonyl ligand is at the unique edge [Mo—S1 = 2.6553 (10) Å; Mo—C3 = 2.025 (4) Å]. In contrast the capped octahedron is made up of C3 in the capping position, C1, S1, and P2 in the capped face, and P1, C2, and Cl1 in the uncapped face. Two PPh3 ligands are in trans position: P1—Mo—P2, 173.19 (3)°, while the sulfur atom of the phenoxythiocarbonyl ligand, chloride and two carbonyl groups are trans to each other: C2—Mo—S1, 170.67 (11)°, C1—Mo—Cl1, 154.93 (12)°. The mean Mo—C—O angle of (I) ( 176.4 (3)° ) shows the group to be essentially linear, similarly to other terminal carbonyls of Mo. The Mo—CO (1.938 (4), 1.998 (4) Å) and C—O (1.163 (4), 1.146 (4) Å) distances are both consistent with the range of values reported for the other molybdenum carbonyl complexes (Yih & Lee, 2008 and references therein). The Mo—C1 bond distance is clearly shorter than that of Mo—C2 due to the larger trans influence of the sulfur atom of phenoxythiocarbonyl ligand than that of the chlorine ligand.

Within the SCOPh ligand, the C—S (1.650 (4) Å) and SC—O (1.319 (4) Å) bond distances are typical for C—O and C—S bonds having partial double bond character and are certainly much shorter than typical C—O (1.43 Å) and C—S (1.82 Å) single bonds (Huheey, 1983). The S1—C3—O3 group shows a geometrical environment characteristic of sp2 hybridization of the carbon atom. In addition, the S1—C3—O3 angle of 129.0 (3)° is larger than that found in the palladium phenoxythiocarbonyl complex (125.2 (6)°) (Yih et al., 2004). To our knowledge, the title complex is the first chelating phenoxythiocarbonyl-metal complex in the literature.

Three weak intramolecular hydrogen bonds and one intermolecular hydrogen bond are present in the structure (Table 1, entries 1-4). In addition, the phenyl ring (C4—C9) of the phenoxythiocarbonyl ligand and a phenyl ring (C10—C15) from the triphenylphosphane are nearly parallel, with an intercentroid distance of 3.938 (3)Å and a shortest inter-ring distance of 3.160 (2) Å. The resulting π-π interaction links molecules into a 1-D chain structure (Fig. 2).Finally, a supramolecular aggregation is determined by four C—H···π(arene) hydrogen bonds (Fig. 3 and Table 1, entries 5-8). The structure also presents some short CO···π(arene) contacts, O1···Cg5: 3.485 (4) and O2···Cg2iv:3.722 (3)Å, ( iv = -x + 2,-y_2,-z + 1)

In the 1H NMR spectrum of (I), 35 protons of the seven phenyl exhibit multiple resonances in the region of δ 7.12–7.73. In the 13C{1H} NMR spectrum of (I), two triplet resonances appear at δ 229.3 and δ 238.6 with 2JP—C = 12.95, 11.95 Hz couplings for the two inequivalent carbonyl groups, respectively. The 31P{1H} NMR spectrum of (I) shows one resonance at δ 34.2.

It is also noted that the IR spectrum of the title complex (I) shows four stretching bands, two at 1965, 1891 cm-1 for C=O and two at 1483, 1434 cm-1 for C-OPh groups. In the FAB mass spectra, the base peak with the typical Mo isotope distribution is in agreement with the [M+] molecular mass of (I).

For the use of metallocarboxylic acids as intermediates in the homogeneous catalysis of the water gas shift reaction, see: Yoshida et al. (1978). For O-Aryl thiocarbonate, benzoxazoline-2-thione, chromene-2-thione and N,N-dimethylthiocarbamate (Zhang et al., 2004) metal complexes, see: Chen et al. (1978); McFarlane et al. (1998); Zheng et al. (2006) and Zhang & Shi (2004), respectively. For phenoxylcarbonyl metal complexes, see: Anderson et al. (2001). We are interested in the synthesis of dithiocarbamate, pyridine-2-thionate (Yih et al., 2010) and N,N-dimethyldithiocarbarmoyl (Yih & Lee, 2010) metal complexes.

For a phenoxythiocarbonyl–palladium complex, see: Yih et al. (2004). For C—H···O interactions, see: Strasser et al. (2009); Arumugam et al. (2010). For C—H···π (arene) interactions, see: Suresh et al. (2007). For ππ interactions, see: Bartholomä et al. (2009); Hu et al. (2009). For the C—H···Cl interactions, see: Shawkataly et al. (2010); Qi et al. (2009). For C—H···S interactions, see: Asad et al. (2010); Goh et al. (2010). For C–H···acceptor interactions, see: Steiner (1996). For typical C—O and C—S bond lengths, see: Huheey (1983).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and the 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), showing the π-π interaction and 1-D chain structure.
[Figure 3] Fig. 3. The packing diagram of (I), showing the intermolecular C—H···O, C—H···π(arene) hydrogen bonds and CO···π(arene) interactions.
Dicarbonylchlorido(phenoxythiocarbonyl- κ2C,S)bis(triphenylphosphane-κP)molybdenum(II) top
Crystal data top
[Mo(C7H5OS)Cl(C18H15P)2(CO)2]Z = 2
Mr = 849.12F(000) = 868
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5685 (10) ÅCell parameters from 2285 reflections
b = 12.5224 (11) Åθ = 2.2–20.7°
c = 16.3983 (14) ŵ = 0.58 mm1
α = 82.088 (2)°T = 150 K
β = 77.476 (2)°Block, orange
γ = 67.212 (2)°0.16 × 0.15 × 0.10 mm
V = 1949.7 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
8942 independent reflections
Radiation source: fine-focus sealed tube6714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1313
Tmin = 0.913, Tmax = 0.944k = 1616
25423 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0566P)2]
where P = (Fo2 + 2Fc2)/3
8942 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 1.02 e Å3
3 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Mo(C7H5OS)Cl(C18H15P)2(CO)2]γ = 67.212 (2)°
Mr = 849.12V = 1949.7 (3) Å3
Triclinic, P1Z = 2
a = 10.5685 (10) ÅMo Kα radiation
b = 12.5224 (11) ŵ = 0.58 mm1
c = 16.3983 (14) ÅT = 150 K
α = 82.088 (2)°0.16 × 0.15 × 0.10 mm
β = 77.476 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
8942 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6714 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.944Rint = 0.075
25423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 1.02 e Å3
8942 reflectionsΔρmin = 0.81 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.77982 (3)0.84316 (3)0.741327 (19)0.01739 (10)
Cl11.00258 (9)0.78068 (8)0.79778 (6)0.0237 (2)
P10.77983 (9)1.04763 (8)0.71651 (6)0.0187 (2)
P20.80792 (10)0.63059 (8)0.77147 (6)0.0218 (2)
S10.61369 (10)0.87871 (8)0.88984 (6)0.0247 (2)
C10.6626 (4)0.8368 (3)0.6676 (2)0.0246 (8)
C20.8831 (4)0.8414 (3)0.6237 (2)0.0259 (8)
C30.5806 (4)0.9314 (3)0.7956 (2)0.0212 (8)
C40.3344 (4)1.0250 (3)0.8332 (2)0.0261 (9)
C50.2484 (4)0.9681 (3)0.8282 (2)0.0284 (9)
H50.27680.90840.79050.034*
C60.1185 (4)1.0009 (4)0.8801 (3)0.0338 (10)
H60.05630.96360.87820.041*
C70.0797 (4)1.0870 (4)0.9344 (3)0.0381 (10)
H70.01001.11020.96880.046*
C80.1699 (5)1.1401 (4)0.9392 (3)0.0389 (11)
H80.14311.19800.97800.047*
C90.3002 (4)1.1094 (4)0.8875 (3)0.0337 (10)
H90.36311.14580.88990.040*
C100.9438 (4)1.0723 (3)0.6985 (2)0.0213 (8)
C111.0648 (4)0.9969 (3)0.6529 (2)0.0260 (8)
H111.06720.92530.63820.031*
C121.1829 (4)1.0261 (4)0.6287 (3)0.0362 (10)
H121.26510.97460.59700.043*
C131.1808 (4)1.1293 (4)0.6504 (3)0.0367 (10)
H131.26111.14910.63320.044*
C141.0628 (4)1.2033 (4)0.6969 (3)0.0390 (11)
H141.06181.27380.71290.047*
C150.9447 (4)1.1748 (3)0.7206 (3)0.0317 (9)
H150.86311.22650.75260.038*
C160.6791 (4)1.1418 (3)0.8016 (2)0.0190 (7)
C170.5762 (4)1.2503 (3)0.7907 (2)0.0257 (8)
H170.55221.27730.73700.031*
C180.5087 (4)1.3192 (3)0.8585 (3)0.0319 (9)
H180.43911.39360.85060.038*
C190.5411 (4)1.2812 (3)0.9366 (2)0.0296 (9)
H190.49361.32850.98270.036*
C200.6439 (4)1.1730 (3)0.9479 (2)0.0269 (9)
H200.66741.14651.00170.032*
C210.7121 (4)1.1037 (3)0.8810 (2)0.0233 (8)
H210.78201.02960.88930.028*
C220.7063 (4)1.1261 (3)0.6235 (2)0.0208 (8)
C230.5875 (4)1.1172 (3)0.6072 (2)0.0258 (8)
H230.54321.07230.64510.031*
C240.5325 (4)1.1720 (3)0.5373 (2)0.0292 (9)
H240.45111.16440.52740.035*
C250.5952 (4)1.2384 (3)0.4810 (2)0.0293 (9)
H250.55691.27670.43280.035*
C260.7136 (4)1.2480 (4)0.4960 (3)0.0349 (10)
H260.75771.29250.45770.042*
C270.7684 (4)1.1931 (3)0.5667 (2)0.0298 (9)
H270.84951.20110.57660.036*
C280.6717 (4)0.5957 (3)0.7413 (2)0.0262 (9)
C290.6950 (5)0.5153 (3)0.6840 (3)0.0330 (10)
H290.78760.47050.65910.040*
C300.5822 (6)0.5006 (4)0.6631 (3)0.0454 (13)
H300.59830.44670.62290.054*
C310.4482 (6)0.5630 (4)0.6998 (3)0.0488 (14)
H310.37200.55280.68460.059*
C320.4239 (5)0.6405 (4)0.7588 (3)0.0418 (12)
H320.33130.68220.78530.050*
C330.5353 (4)0.6575 (4)0.7793 (3)0.0333 (10)
H330.51850.71150.81950.040*
C340.8098 (4)0.5616 (3)0.8780 (2)0.0250 (8)
C350.7853 (5)0.4590 (4)0.8978 (3)0.0403 (11)
H350.76640.42400.85630.048*
C360.7882 (5)0.4078 (4)0.9780 (3)0.0437 (12)
H360.77330.33680.99080.052*
C370.8122 (4)0.4579 (4)1.0391 (3)0.0352 (10)
H370.81380.42231.09410.042*
C380.8340 (4)0.5609 (4)1.0196 (2)0.0317 (9)
H380.84880.59721.06190.038*
C390.8346 (4)0.6120 (3)0.9393 (2)0.0267 (8)
H390.85220.68190.92640.032*
C400.9734 (4)0.5414 (3)0.7104 (3)0.0301 (9)
C411.0837 (4)0.4694 (4)0.7479 (3)0.0394 (11)
H411.07200.45850.80720.047*
C421.2122 (5)0.4129 (4)0.6989 (4)0.0572 (16)
H421.28800.36320.72510.069*
C431.2308 (6)0.4275 (5)0.6144 (4)0.0636 (18)
H431.31910.38790.58160.076*
C441.1228 (6)0.4992 (5)0.5763 (4)0.0601 (16)
H441.13610.50920.51690.072*
C450.9937 (5)0.5577 (4)0.6235 (3)0.0417 (11)
H450.91940.60870.59670.050*
O10.5958 (3)0.8323 (3)0.62133 (18)0.0408 (8)
O20.9334 (3)0.8416 (3)0.55439 (18)0.0425 (8)
O30.4605 (3)0.9978 (2)0.77308 (16)0.0340 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01565 (16)0.02145 (17)0.01619 (16)0.00996 (12)0.00020 (11)0.00036 (12)
Cl10.0189 (4)0.0264 (5)0.0288 (5)0.0124 (4)0.0075 (4)0.0054 (4)
P10.0146 (4)0.0212 (5)0.0189 (5)0.0077 (4)0.0006 (4)0.0003 (4)
P20.0221 (5)0.0220 (5)0.0231 (5)0.0111 (4)0.0021 (4)0.0015 (4)
S10.0223 (5)0.0310 (5)0.0189 (4)0.0107 (4)0.0001 (4)0.0018 (4)
C10.025 (2)0.034 (2)0.0206 (19)0.0184 (17)0.0052 (14)0.0052 (16)
C20.026 (2)0.033 (2)0.0200 (13)0.0162 (17)0.0028 (13)0.0023 (16)
C30.0212 (19)0.0235 (19)0.0226 (19)0.0149 (16)0.0007 (15)0.0014 (15)
C40.0122 (17)0.039 (2)0.022 (2)0.0074 (16)0.0004 (15)0.0017 (17)
C50.023 (2)0.033 (2)0.028 (2)0.0094 (17)0.0037 (17)0.0026 (17)
C60.023 (2)0.047 (3)0.034 (2)0.020 (2)0.0021 (18)0.002 (2)
C70.023 (2)0.048 (3)0.037 (3)0.014 (2)0.0089 (19)0.005 (2)
C80.040 (3)0.037 (2)0.040 (3)0.017 (2)0.003 (2)0.012 (2)
C90.029 (2)0.042 (3)0.035 (2)0.022 (2)0.0000 (18)0.0013 (19)
C100.0200 (19)0.0242 (19)0.0209 (19)0.0115 (16)0.0033 (15)0.0044 (15)
C110.0203 (19)0.033 (2)0.027 (2)0.0147 (17)0.0024 (16)0.0052 (17)
C120.021 (2)0.043 (3)0.039 (3)0.0114 (19)0.0069 (18)0.006 (2)
C130.027 (2)0.044 (3)0.043 (3)0.024 (2)0.0030 (19)0.005 (2)
C140.034 (2)0.031 (2)0.056 (3)0.021 (2)0.002 (2)0.006 (2)
C150.021 (2)0.030 (2)0.043 (3)0.0130 (17)0.0035 (18)0.0036 (18)
C160.0162 (17)0.0236 (19)0.0172 (18)0.0119 (15)0.0047 (14)0.0001 (14)
C170.022 (2)0.025 (2)0.027 (2)0.0099 (16)0.0016 (16)0.0030 (16)
C180.027 (2)0.026 (2)0.035 (2)0.0070 (17)0.0031 (18)0.0023 (18)
C190.029 (2)0.031 (2)0.027 (2)0.0135 (18)0.0081 (17)0.0092 (17)
C200.025 (2)0.036 (2)0.0205 (19)0.0168 (18)0.0035 (16)0.0015 (17)
C210.0209 (19)0.0223 (19)0.028 (2)0.0113 (16)0.0017 (16)0.0010 (16)
C220.0177 (18)0.0218 (19)0.0194 (18)0.0062 (15)0.0018 (14)0.0017 (15)
C230.0180 (19)0.032 (2)0.026 (2)0.0099 (16)0.0023 (16)0.0037 (17)
C240.023 (2)0.034 (2)0.028 (2)0.0105 (18)0.0026 (17)0.0015 (17)
C250.036 (2)0.029 (2)0.0159 (19)0.0071 (18)0.0046 (17)0.0042 (16)
C260.039 (3)0.036 (2)0.030 (2)0.021 (2)0.0022 (19)0.0094 (19)
C270.027 (2)0.035 (2)0.027 (2)0.0164 (18)0.0008 (17)0.0050 (17)
C280.033 (2)0.028 (2)0.024 (2)0.0200 (18)0.0096 (17)0.0094 (16)
C290.046 (3)0.031 (2)0.033 (2)0.025 (2)0.013 (2)0.0047 (18)
C300.074 (4)0.042 (3)0.041 (3)0.040 (3)0.029 (3)0.015 (2)
C310.068 (4)0.049 (3)0.056 (3)0.048 (3)0.039 (3)0.030 (3)
C320.036 (3)0.044 (3)0.054 (3)0.027 (2)0.016 (2)0.018 (2)
C330.033 (2)0.036 (2)0.038 (2)0.022 (2)0.0061 (19)0.0023 (19)
C340.023 (2)0.025 (2)0.025 (2)0.0087 (16)0.0032 (16)0.0002 (16)
C350.054 (3)0.035 (2)0.041 (3)0.024 (2)0.017 (2)0.008 (2)
C360.052 (3)0.035 (3)0.048 (3)0.027 (2)0.013 (2)0.019 (2)
C370.031 (2)0.040 (3)0.030 (2)0.013 (2)0.0043 (19)0.0127 (19)
C380.028 (2)0.040 (2)0.024 (2)0.0104 (19)0.0035 (17)0.0001 (18)
C390.022 (2)0.026 (2)0.028 (2)0.0077 (16)0.0016 (16)0.0017 (16)
C400.030 (2)0.029 (2)0.035 (2)0.0169 (18)0.0023 (18)0.0126 (18)
C410.024 (2)0.037 (2)0.062 (3)0.0143 (19)0.005 (2)0.015 (2)
C420.026 (2)0.042 (3)0.112 (5)0.017 (2)0.002 (3)0.030 (3)
C430.037 (3)0.052 (3)0.102 (5)0.027 (3)0.032 (3)0.046 (3)
C440.066 (4)0.056 (3)0.061 (4)0.039 (3)0.036 (3)0.037 (3)
C450.048 (3)0.039 (3)0.038 (3)0.023 (2)0.011 (2)0.012 (2)
O10.052 (2)0.056 (2)0.0298 (17)0.0332 (17)0.0188 (15)0.0068 (14)
O20.0468 (19)0.059 (2)0.0250 (16)0.0300 (16)0.0082 (14)0.0066 (14)
O30.0160 (14)0.0525 (18)0.0246 (15)0.0089 (13)0.0003 (11)0.0103 (13)
Geometric parameters (Å, º) top
Mo1—C11.938 (4)C20—C211.381 (5)
Mo1—C21.998 (4)C20—H200.9500
Mo1—C32.025 (4)C21—H210.9500
Mo1—Cl12.5160 (9)C22—C231.387 (5)
Mo1—P12.5368 (10)C22—C271.397 (5)
Mo1—P22.5509 (10)C23—C241.373 (5)
Mo1—S12.6553 (10)C23—H230.9500
P1—C161.819 (4)C24—C251.391 (5)
P1—C101.831 (4)C24—H240.9500
P1—C221.845 (4)C25—C261.378 (6)
P2—C401.829 (4)C25—H250.9500
P2—C281.834 (4)C26—C271.383 (5)
P2—C341.840 (4)C26—H260.9500
S1—C31.650 (4)C27—H270.9500
C1—O11.163 (4)C28—C291.388 (5)
C2—O21.146 (4)C28—C331.394 (6)
C3—O31.319 (4)C29—C301.392 (6)
C4—C91.365 (6)C29—H290.9500
C4—C51.375 (5)C30—C311.372 (7)
C4—O31.427 (4)C30—H300.9500
C5—C61.390 (5)C31—C321.379 (7)
C5—H50.9500C31—H310.9500
C6—C71.374 (6)C32—C331.389 (5)
C6—H60.9500C32—H320.9500
C7—C81.376 (6)C33—H330.9500
C7—H70.9500C34—C391.377 (5)
C8—C91.392 (6)C34—C351.390 (5)
C8—H80.9500C35—C361.382 (6)
C9—H90.9500C35—H350.9500
C10—C151.385 (5)C36—C371.367 (6)
C10—C111.389 (5)C36—H360.9500
C11—C121.395 (5)C37—C381.380 (6)
C11—H110.9500C37—H370.9500
C12—C131.378 (6)C38—C391.383 (5)
C12—H120.9500C38—H380.9500
C13—C141.372 (6)C39—H390.9500
C13—H130.9500C40—C411.377 (6)
C14—C151.391 (5)C40—C451.392 (6)
C14—H140.9500C41—C421.389 (6)
C15—H150.9500C41—H410.9500
C16—C171.391 (5)C42—C431.354 (8)
C16—C211.393 (5)C42—H420.9500
C17—C181.391 (5)C43—C441.364 (8)
C17—H170.9500C43—H430.9500
C18—C191.372 (5)C44—C451.386 (6)
C18—H180.9500C44—H440.9500
C19—C201.388 (5)C45—H450.9500
C19—H190.9500
C1—Mo1—C271.73 (15)C17—C18—H18119.6
C1—Mo1—C373.73 (15)C18—C19—C20119.5 (4)
C2—Mo1—C3132.98 (15)C18—C19—H19120.3
C1—Mo1—Cl1154.93 (12)C20—C19—H19120.3
C2—Mo1—Cl191.25 (11)C21—C20—C19120.3 (4)
C3—Mo1—Cl1130.01 (10)C21—C20—H20119.9
C1—Mo1—P1104.78 (11)C19—C20—H20119.9
C2—Mo1—P178.19 (11)C20—C21—C16120.4 (3)
C3—Mo1—P180.87 (10)C20—C21—H21119.8
Cl1—Mo1—P188.95 (3)C16—C21—H21119.8
C1—Mo1—P281.36 (11)C23—C22—C27117.9 (3)
C2—Mo1—P2101.33 (11)C23—C22—P1119.9 (3)
C3—Mo1—P2103.97 (10)C27—C22—P1122.2 (3)
Cl1—Mo1—P284.26 (3)C24—C23—C22121.3 (4)
P1—Mo1—P2173.19 (3)C24—C23—H23119.3
C1—Mo1—S1104.16 (11)C22—C23—H23119.3
C2—Mo1—S1170.67 (11)C23—C24—C25120.4 (4)
C3—Mo1—S138.38 (10)C23—C24—H24119.8
Cl1—Mo1—S195.19 (3)C25—C24—H24119.8
P1—Mo1—S195.15 (3)C26—C25—C24119.1 (4)
P2—Mo1—S186.06 (3)C26—C25—H25120.4
C16—P1—C10100.80 (16)C24—C25—H25120.4
C16—P1—C22104.60 (16)C25—C26—C27120.4 (4)
C10—P1—C22101.17 (16)C25—C26—H26119.8
C16—P1—Mo1114.53 (11)C27—C26—H26119.8
C10—P1—Mo1120.45 (12)C26—C27—C22120.9 (4)
C22—P1—Mo1113.17 (12)C26—C27—H27119.5
C40—P2—C28106.39 (18)C22—C27—H27119.5
C40—P2—C34104.36 (18)C29—C28—C33119.2 (4)
C28—P2—C34100.80 (17)C29—C28—P2125.1 (3)
C40—P2—Mo1108.48 (13)C33—C28—P2115.7 (3)
C28—P2—Mo1113.81 (12)C28—C29—C30119.7 (4)
C34—P2—Mo1121.70 (12)C28—C29—H29120.1
C3—S1—Mo149.67 (13)C30—C29—H29120.1
O1—C1—Mo1177.8 (3)C31—C30—C29120.7 (5)
O2—C2—Mo1175.0 (3)C31—C30—H30119.6
O3—C3—S1129.0 (3)C29—C30—H30119.6
O3—C3—Mo1138.8 (3)C30—C31—C32120.1 (4)
S1—C3—Mo191.95 (16)C30—C31—H31120.0
C9—C4—C5123.6 (4)C32—C31—H31120.0
C9—C4—O3120.1 (3)C31—C32—C33119.8 (5)
C5—C4—O3116.1 (3)C31—C32—H32120.1
C4—C5—C6117.7 (4)C33—C32—H32120.1
C4—C5—H5121.2C32—C33—C28120.4 (4)
C6—C5—H5121.2C32—C33—H33119.8
C7—C6—C5120.2 (4)C28—C33—H33119.8
C7—C6—H6119.9C39—C34—C35119.2 (4)
C5—C6—H6119.9C39—C34—P2120.0 (3)
C6—C7—C8120.5 (4)C35—C34—P2120.7 (3)
C6—C7—H7119.7C36—C35—C34120.0 (4)
C8—C7—H7119.7C36—C35—H35120.0
C7—C8—C9120.4 (4)C34—C35—H35120.0
C7—C8—H8119.8C37—C36—C35120.9 (4)
C9—C8—H8119.8C37—C36—H36119.5
C4—C9—C8117.6 (4)C35—C36—H36119.5
C4—C9—H9121.2C36—C37—C38119.0 (4)
C8—C9—H9121.2C36—C37—H37120.5
C15—C10—C11118.5 (3)C38—C37—H37120.5
C15—C10—P1120.0 (3)C37—C38—C39120.9 (4)
C11—C10—P1121.0 (3)C37—C38—H38119.6
C10—C11—C12120.2 (4)C39—C38—H38119.6
C10—C11—H11119.9C34—C39—C38120.0 (4)
C12—C11—H11119.9C34—C39—H39120.0
C13—C12—C11120.3 (4)C38—C39—H39120.0
C13—C12—H12119.9C41—C40—C45119.0 (4)
C11—C12—H12119.9C41—C40—P2121.7 (3)
C14—C13—C12120.1 (4)C45—C40—P2118.7 (3)
C14—C13—H13120.0C40—C41—C42119.8 (5)
C12—C13—H13120.0C40—C41—H41120.1
C13—C14—C15119.7 (4)C42—C41—H41120.1
C13—C14—H14120.1C43—C42—C41120.9 (5)
C15—C14—H14120.1C43—C42—H42119.5
C10—C15—C14121.2 (4)C41—C42—H42119.5
C10—C15—H15119.4C42—C43—C44120.0 (5)
C14—C15—H15119.4C42—C43—H43120.0
C17—C16—C21119.1 (3)C44—C43—H43120.0
C17—C16—P1123.5 (3)C43—C44—C45120.4 (5)
C21—C16—P1117.4 (3)C43—C44—H44119.8
C18—C17—C16119.8 (4)C45—C44—H44119.8
C18—C17—H17120.1C44—C45—C40119.8 (5)
C16—C17—H17120.1C44—C45—H45120.1
C19—C18—C17120.9 (4)C40—C45—H45120.1
C19—C18—H18119.6C3—O3—C4120.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg7 are the centroids of the C4–C9, C10–C15, C16–C21 and C40–C45 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C23—H23···O30.952.313.208 (5)157
C24—H24···O1i0.952.583.199 (5)123
C39—H39···Cl10.952.803.573 (4)139
C39—H39···S10.952.873.361 (4)114
C9—H9···Cg30.952.973.896 (5)165
C14—H14···Cg7ii0.952.833.663 (5)147
C20—H20···Cg1iii0.952.973.802 (4)147
C27—H27···Cg20.952.843.636 (5)141
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Mo(C7H5OS)Cl(C18H15P)2(CO)2]
Mr849.12
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.5685 (10), 12.5224 (11), 16.3983 (14)
α, β, γ (°)82.088 (2), 77.476 (2), 67.212 (2)
V3)1949.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.16 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.913, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
25423, 8942, 6714
Rint0.075
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.128, 1.00
No. of reflections8942
No. of parameters478
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.81

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg7 are the centroids of the C4–C9, C10–C15, C16–C21 and C40–C45 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C23—H23···O30.952.313.208 (5)157
C24—H24···O1i0.952.583.199 (5)123
C39—H39···Cl10.952.803.573 (4)139
C39—H39···S10.952.873.361 (4)114
C9—H9···Cg30.952.973.896 (5)165
C14—H14···Cg7ii0.952.833.663 (5)147
C20—H20···Cg1iii0.952.973.802 (4)147
C27—H27···Cg20.952.843.636 (5)141
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z+2.
 

Acknowledgements

We thank the National Science Council of the Republic of China for financial support (NSC98–2113-M-241–011-MY2).

References

First citationAnderson, S., Cook, D. J. & Hill, A. F. (2001). Organometallics, 20, 2468–2476.  Web of Science CrossRef CAS Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1214–o1215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsad, M., Oo, C.-W., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2861–o2862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M. D., Ouellette, W. & Zubieta, J. (2009). Acta Cryst. E65, o61.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. W., Fackler, J. P., Schussler, D. P. & Thompson, L. D. (1978). J. Am. Chem. Soc. 100, 2370–2375.  CSD CrossRef CAS Web of Science Google Scholar
First citationGoh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o1233–o1234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, D.-Y., Chu, X.-W. & Qu, Z.-R. (2009). Acta Cryst. E65, o2463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuheey, J. E. (1983). Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed., p. A-37. New York: Harper & Row.  Google Scholar
First citationMcFarlane, W., Akrivos, P. D., Aslanudis, P., Karagiannidis, P., Atzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationQi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507–m1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m90–m91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, Th. (1996). Crystallogr. Rev. 6, 1–57.  CrossRef CAS Google Scholar
First citationStrasser, C. E., Cronje, S. & Raubenheimer, H. G. (2009). Acta Cryst. E65, m914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuresh, J., Kumar, R. S., Perumal, S. & Natarajan, S. (2007). Acta Cryst. E63, o1375–o1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYih, K. H. & Lee, G. H. (2004). J. Chin. Chem. Soc. 51, 265–270.  CrossRef CAS Google Scholar
First citationYih, K. H. & Lee, G. H. (2008). J. Organomet. Chem. 693, 3303–3311.  Web of Science CrossRef CAS Google Scholar
First citationYih, K. H. & Lee, G. H. (2010). Organometallics, 29, 3397–3403.  Web of Science CSD CrossRef CAS Google Scholar
First citationYih, K.-H., Wang, H.-F. & Lee, G.-H. (2010). Acta Cryst. E66, m1189–m1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoshida, T., Ueda, Y. & Otsuka, S. (1978). J. Am. Chem. Soc. 100, 3941–3942.  CrossRef CAS Web of Science Google Scholar
First citationZhang, W. & Shi, M. (2004). Tetrahedron Lett. 45, 8921–8924.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Z., Chen, J., Luo, N., Yu, Z. & Han, X. (2006). Organometallics, 25, 5301–5310.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds