organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-{4-[2-(Tri­fluoro­meth­­oxy)phen­yl]piperazin-1-yl}but­yl)thio­phene-2-carboxamide dihydrate

aSchool of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: cpu_cj@hotmail.com

(Received 1 November 2010; accepted 9 December 2010; online 15 December 2010)

In the title compound, C20H24F3N3O2S·2H2O, a dopamine D3 ligand, the piperazine ring adopts a chair conformation while the piperazine and benzene rings form a dihedral angle of 47.71 (6)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. In the mol­ecular structure, the F atoms of the trifluoro­methyl group are disordered over two sites with occupancies of 0.69 (11) and 0.31 (11).

Related literature

For the synthesis of the title compound and its derivatives, see: Leopoldo et al. (2002[Leopoldo, M., Berardi, F., Colabufo, N. A., De Giorgio, P., Lacivita, E., Perrone, R., Rubin, R. & Tortorella, V. (2002). J. Med. Chem. 45, 5727-5735.]); Robarge et al. (2001[Robarge, M. J., Husbands, S. M., Kieltyka, A., Brodbeck, R., Thurkauf, A. & Newman, A. H. (2001). J. Med. Chem. 44, 3175-3186.]). For the pharmacological activity of the dopamine D3 ligand, see: Pilla et al. (1999[Pilla, M., Perachon, S., Sautel, F., Garrido, F., Mann, A., Wermuth, C. G., Schwartz, J. C., Everitt, B. J. & Sokoloff, P. (1999). Nature (London), 400, 371-375.]); Garcia-Ladona & Cox (2003[Garcia-Ladona, F. J. & Cox, B. F. (2003). CNS Drug Rev. 9, 141-158.]); Wood et al. (2000[Wood, M. D., Boyfield, I., Nash, D. J., Jewitt, F. R., Avenell, K. Y. & Riley, G. J. (2000). Eur. J. Pharmacol. 407, 47-51.]); Luedtke & Mach (2003[Luedtke, R. R. & Mach, R. H. (2003). Curr. Pharm. Des. 9, 643-671.]). For structure–activity relationships for the dopamine D3 receptor, see: Bettinetti et al. (2002)[Bettinetti, L., Schlotter, K., Hübner, H. & Gmeiner, P. (2002). J. Med. Chem. 45, 4594-4597.]; Leopoldo et al. (2002[Leopoldo, M., Berardi, F., Colabufo, N. A., De Giorgio, P., Lacivita, E., Perrone, R., Rubin, R. & Tortorella, V. (2002). J. Med. Chem. 45, 5727-5735.]); Dutta et al., (2004[Dutta, A. K., Venkataraman, S. K., Fei, X.-S., Kolhatkar, R., Zhang, S. & Reith, M. E. A. (2004). Bioorg. Med. Chem. 12, 4361-4373.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24F3N3O2S·2H2O

  • Mr = 463.51

  • Orthorhombic, P n a 21

  • a = 9.361 (2) Å

  • b = 35.966 (9) Å

  • c = 6.9102 (17) Å

  • V = 2326.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.53 × 0.49 × 0.47 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.915

  • 11753 measured reflections

  • 2234 independent reflections

  • 1588 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.173

  • S = 1.05

  • 2234 reflections

  • 308 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.17 2.929 (5) 148
O3—H21⋯N2ii 0.85 2.02 2.835 (4) 160
O3—H22⋯O1iii 0.85 1.98 2.822 (5) 171
O4—H23⋯O1iv 0.85 2.09 2.830 (7) 146
O4—H24⋯O3v 0.85 2.07 2.831 (6) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (iv) x, y, z+1; (v) x+1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was designed as a dopamine D3 ligand. The dopamine D3 receptor is recognized as a potential therapeutic target for the treatment of various neurological and psychiatric disorders, such as schizophrenia, Parkinson's disease and drug abuse (Pilla et al., 1999; Garcia-Ladona et al., 2003; Wood et al., 2000; Luedtke et al., 2003). Study of structure-activity relationships for dopamine D3 receptor are helpfull to rationalize the discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists (Bettinetti et al., 2002; Leopoldo et al., 2002; Dutta et al., 2004). We report here the crystal structure of the title compound, which was synthesized by the two-component reaction of 4-(4-(2-(trifluoromethoxy) phenyl) piperazin-1-yl)butan-1-amine and thiophene-2-carbonyl chloride. In the title compound, the piperazine ring (C10/C11/C12/C13/N2/N3) adopts a chair conformation, atoms C10, C11, C12 and C13 are coplanar, with atoms N2 and N3 deviating from the plane by -0.661 (5) and 0.679 (5) Å, respectively (Fig. 1).The dihedral angle between the C10/C11/C12/C13 plane and the C15/C16/C17/C18/C19/C20 plane is 47.71 (6) °.The molecules are linked by N1–H1···O3 intermolecular hydrogen bonds (Table 1, Fig. 2). In the molecular structure, the fluorine atoms of trifluoromethyl group is disordered over two sites with occupancies of 0.69 (11) and 0.31 (11).

Related literature top

For the synthesis of the title compound and its derivatives, see: Leopoldo et al. (2002); Robarge et al. (2001). For the pharmacological activity of the dopamine D3 ligand, see: Pilla et al. (1999); Garcia-Ladona et al. (2003); Wood et al. (2000); Luedtke et al. (2003). For structure–activity relationships for the dopamine D3 receptor, see: Bettinetti et al. (2002); Leopoldo et al. (2002); Dutta et al., (2004).

Experimental top

All chemicals used(reagent grade) were commercially available. 4-(4-(2-(trifluoromethoxy)phenyl)piperazin-1-yl)butan-1-amine 0.64 g (2mmol) was dissovled by 20 mL dichloromethane, then K2CO3 2 g (15mmol) and thiophene-2-carbonyl chloride 0.29 g (2mmol) were added under ice-cooling and stirred for 30 min. The mixture was filtered, and evaporated the dissolvent.Purification of the crude product by a column chramotagraphy (v:v chloroform: methanol = 40:1) afforded the title compound (0.56g, 65.2%) Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution at room temperature. m.p. 358–359 K;1H-NMR(CDCl3, 300MHz), δ(ppm): 1.63-1.69(m, 4H), 2.47(t, 2H, J=6.93Hz), 2.61(t, 4H, J=4.74Hz), 3.09(t, 4H, J=4.82Hz), 3.47(q, 2H, J=6.26Hz), 6.36(br, 1H), 6.98-7.07(m, 3H), 7.18-7.26(m, 2H), 7.43-7.51(m, 2H); 13C-NMR(CDCl3, 300MHz), δ(ppm): 24.3, 27.6, 27.7, 40.0, 50.7, 50.8, 50.9, 53.4, 58.0, 119.9, 122.0, 122.3, 122.4, 122.5, 122.6, 127.5, 127.5, 127.9, 129.5, 139.2, 142.4, 145.1, 162.0; ESI-MS m/z: 428.2[M+H]+; Anal. calcd for C20H24F3N3O2S(%): C 56.19, H 5.66, N 9.83; Found: C 56.25, H 5.70, N 9.83.

Refinement top

All H atoms were placed in calculated positions, with O–H = 0.85 Å, N–H = 0.86 Å, and C–H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom). The fluorine atoms of trifluoromethyl group is disordered over two sites with occupancies of 0.69 (11) and 0.31 (11). Due to the lack of any strong anomalous dispersor making absolute determination feasible, Friedel pairs were merged, thus leading to a rather poor data to parameters ratio.

Structure description top

The title compound was designed as a dopamine D3 ligand. The dopamine D3 receptor is recognized as a potential therapeutic target for the treatment of various neurological and psychiatric disorders, such as schizophrenia, Parkinson's disease and drug abuse (Pilla et al., 1999; Garcia-Ladona et al., 2003; Wood et al., 2000; Luedtke et al., 2003). Study of structure-activity relationships for dopamine D3 receptor are helpfull to rationalize the discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists (Bettinetti et al., 2002; Leopoldo et al., 2002; Dutta et al., 2004). We report here the crystal structure of the title compound, which was synthesized by the two-component reaction of 4-(4-(2-(trifluoromethoxy) phenyl) piperazin-1-yl)butan-1-amine and thiophene-2-carbonyl chloride. In the title compound, the piperazine ring (C10/C11/C12/C13/N2/N3) adopts a chair conformation, atoms C10, C11, C12 and C13 are coplanar, with atoms N2 and N3 deviating from the plane by -0.661 (5) and 0.679 (5) Å, respectively (Fig. 1).The dihedral angle between the C10/C11/C12/C13 plane and the C15/C16/C17/C18/C19/C20 plane is 47.71 (6) °.The molecules are linked by N1–H1···O3 intermolecular hydrogen bonds (Table 1, Fig. 2). In the molecular structure, the fluorine atoms of trifluoromethyl group is disordered over two sites with occupancies of 0.69 (11) and 0.31 (11).

For the synthesis of the title compound and its derivatives, see: Leopoldo et al. (2002); Robarge et al. (2001). For the pharmacological activity of the dopamine D3 ligand, see: Pilla et al. (1999); Garcia-Ladona et al. (2003); Wood et al. (2000); Luedtke et al. (2003). For structure–activity relationships for the dopamine D3 receptor, see: Bettinetti et al. (2002); Leopoldo et al. (2002); Dutta et al., (2004).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The minor part of the disordered moieties was omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. The minor part of the disordered moieties were omitted for clarity.
N-(4-{4-[2-(Trifluoromethoxy)phenyl]piperazin-1-yl}butyl)thiophene-2- carboxamide top
Crystal data top
C20H24F3N3O2S·2H2ODx = 1.323 Mg m3
Mr = 463.51Melting point = 358–359 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2897 reflections
a = 9.361 (2) Åθ = 2.3–20.9°
b = 35.966 (9) ŵ = 0.19 mm1
c = 6.9102 (17) ÅT = 298 K
V = 2326.5 (10) Å3Block, colorless
Z = 40.53 × 0.49 × 0.47 mm
F(000) = 976
Data collection top
Bruker SMART CCD area-detector
diffractometer
2234 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1110
Tmin = 0.905, Tmax = 0.915k = 3442
11753 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0941P)2 + 1.1623P]
where P = (Fo2 + 2Fc2)/3
2234 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C20H24F3N3O2S·2H2OV = 2326.5 (10) Å3
Mr = 463.51Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.361 (2) ŵ = 0.19 mm1
b = 35.966 (9) ÅT = 298 K
c = 6.9102 (17) Å0.53 × 0.49 × 0.47 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2234 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1588 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.915Rint = 0.051
11753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.173H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2234 reflectionsΔρmin = 0.34 e Å3
308 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.466 (3)0.4600 (11)0.854 (8)0.105 (9)0.69 (14)
F20.674 (5)0.4682 (14)0.718 (5)0.104 (8)0.69 (14)
F30.612 (7)0.5030 (6)0.941 (4)0.105 (7)0.69 (14)
F1'0.700 (8)0.480 (3)0.754 (16)0.105 (16)0.31 (14)
F2'0.545 (14)0.497 (2)0.967 (8)0.104 (18)0.31 (14)
F3'0.504 (10)0.450 (2)0.774 (16)0.102 (19)0.31 (14)
N10.6465 (5)0.21413 (14)0.2635 (8)0.0622 (13)
H10.65010.21120.38690.075*
N20.8389 (5)0.34518 (12)0.5478 (7)0.0494 (11)
N30.8691 (5)0.40422 (12)0.8224 (7)0.0513 (11)
O10.7165 (5)0.19256 (15)0.0274 (7)0.0817 (14)
O20.6543 (5)0.44353 (11)1.0101 (7)0.0662 (12)
O30.0358 (4)0.28929 (11)0.6596 (6)0.0665 (11)
H210.00850.30960.64110.080*
H220.08460.29330.76120.080*
O40.9232 (9)0.21670 (19)0.7014 (14)0.156 (3)
H230.89350.20890.81040.187*
H240.97640.23540.72350.187*
S10.8756 (2)0.12709 (6)0.1079 (3)0.0828 (6)
C10.7140 (6)0.18998 (17)0.1526 (9)0.0564 (15)
C20.7881 (6)0.15875 (17)0.2491 (10)0.0582 (16)
C30.7965 (7)0.14968 (18)0.4386 (12)0.0702 (19)
H30.75770.16390.53790.084*
C40.8706 (8)0.1163 (2)0.4675 (14)0.080 (2)
H40.88490.10580.58900.096*
C50.9190 (8)0.1009 (2)0.3030 (15)0.089 (3)
H50.96980.07870.29710.107*
C60.5661 (6)0.24558 (17)0.1865 (10)0.0630 (16)
H6A0.48270.24980.26680.076*
H6B0.53330.23960.05710.076*
C70.6549 (6)0.28115 (16)0.1791 (9)0.0553 (14)
H7A0.73980.27660.10220.066*
H7B0.59980.30030.11460.066*
C80.6999 (7)0.29530 (15)0.3773 (9)0.0565 (14)
H8A0.61560.29910.45650.068*
H8B0.75900.27670.44000.068*
C90.7821 (6)0.33140 (15)0.3632 (9)0.0518 (13)
H9A0.86110.32800.27410.062*
H9B0.71980.35020.30880.062*
C100.7249 (6)0.35471 (16)0.6839 (9)0.0543 (14)
H10A0.67030.33260.71450.065*
H10B0.66080.37250.62410.065*
C110.7848 (6)0.37098 (15)0.8671 (9)0.0530 (14)
H11A0.70740.37750.95410.064*
H11B0.84480.35270.93120.064*
C120.9850 (6)0.39461 (16)0.6932 (10)0.0576 (15)
H12A1.04730.37660.75480.069*
H12B1.04070.41660.66330.069*
C130.9238 (7)0.37841 (16)0.5096 (9)0.0554 (14)
H13A0.86430.39690.44670.066*
H13B1.00120.37220.42210.066*
C140.9037 (6)0.42691 (14)0.9829 (9)0.0526 (14)
C150.7973 (6)0.44795 (15)1.0736 (9)0.0562 (14)
C160.8248 (8)0.47043 (17)1.2283 (10)0.0705 (18)
H160.75050.48301.28920.085*
C170.9637 (9)0.47451 (18)1.2945 (11)0.078 (2)
H170.98440.49031.39730.094*
C181.0689 (8)0.45489 (18)1.2056 (11)0.075 (2)
H181.16260.45761.24820.090*
C191.0410 (7)0.43120 (16)1.0548 (11)0.0647 (17)
H191.11550.41780.99970.078*
C200.6040 (10)0.4671 (2)0.8848 (15)0.085 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.088 (8)0.111 (12)0.117 (18)0.016 (7)0.002 (10)0.010 (13)
F20.113 (15)0.109 (16)0.091 (11)0.022 (12)0.001 (9)0.016 (10)
F30.100 (19)0.091 (7)0.122 (8)0.022 (8)0.005 (10)0.012 (6)
F1'0.09 (2)0.11 (4)0.12 (3)0.02 (2)0.00 (2)0.01 (3)
F2'0.09 (4)0.103 (19)0.113 (18)0.03 (2)0.00 (2)0.005 (14)
F3'0.10 (2)0.105 (19)0.11 (3)0.014 (16)0.01 (2)0.00 (2)
N10.071 (3)0.069 (3)0.046 (3)0.004 (3)0.001 (3)0.000 (3)
N20.057 (2)0.051 (2)0.040 (2)0.002 (2)0.001 (2)0.005 (2)
N30.056 (3)0.050 (3)0.048 (3)0.002 (2)0.003 (2)0.001 (2)
O10.079 (3)0.118 (4)0.047 (3)0.012 (3)0.004 (2)0.000 (3)
O20.066 (3)0.058 (2)0.075 (3)0.008 (2)0.007 (2)0.006 (2)
O30.076 (3)0.067 (2)0.056 (3)0.010 (2)0.013 (2)0.005 (2)
O40.181 (6)0.135 (5)0.152 (7)0.048 (5)0.062 (6)0.038 (6)
S10.0745 (11)0.0845 (12)0.0894 (14)0.0060 (9)0.0120 (11)0.0241 (11)
C10.051 (3)0.067 (4)0.051 (4)0.014 (3)0.003 (3)0.004 (3)
C20.051 (3)0.063 (4)0.061 (4)0.012 (3)0.001 (3)0.001 (3)
C30.062 (4)0.071 (4)0.077 (5)0.003 (3)0.001 (4)0.003 (4)
C40.064 (4)0.085 (5)0.090 (6)0.003 (3)0.006 (4)0.015 (5)
C50.067 (4)0.079 (5)0.121 (8)0.001 (4)0.003 (5)0.004 (5)
C60.060 (3)0.073 (4)0.056 (4)0.004 (3)0.007 (3)0.005 (3)
C70.060 (3)0.060 (3)0.046 (3)0.004 (3)0.006 (3)0.002 (3)
C80.059 (3)0.064 (3)0.046 (3)0.000 (3)0.001 (3)0.001 (3)
C90.058 (3)0.058 (3)0.039 (3)0.002 (3)0.003 (3)0.001 (3)
C100.055 (3)0.056 (3)0.052 (3)0.005 (3)0.008 (3)0.001 (3)
C110.061 (3)0.052 (3)0.046 (3)0.003 (3)0.009 (3)0.005 (3)
C120.057 (3)0.054 (3)0.061 (4)0.002 (3)0.007 (3)0.002 (3)
C130.058 (3)0.061 (3)0.047 (3)0.001 (3)0.010 (3)0.007 (3)
C140.067 (4)0.043 (3)0.048 (3)0.000 (3)0.006 (3)0.001 (3)
C150.068 (4)0.048 (3)0.053 (3)0.004 (3)0.000 (3)0.000 (3)
C160.092 (5)0.062 (4)0.057 (4)0.006 (3)0.006 (4)0.008 (3)
C170.113 (6)0.058 (4)0.064 (5)0.003 (4)0.015 (4)0.012 (4)
C180.086 (5)0.066 (4)0.074 (5)0.010 (4)0.020 (4)0.002 (4)
C190.075 (4)0.051 (3)0.069 (4)0.001 (3)0.009 (4)0.001 (3)
C200.076 (6)0.087 (6)0.092 (7)0.015 (5)0.003 (5)0.002 (5)
Geometric parameters (Å, º) top
F1—C201.331 (19)C6—C71.526 (8)
F2—C201.33 (4)C6—H6A0.9700
F3—C201.35 (2)C6—H6B0.9700
F1'—C201.35 (8)C7—C81.521 (9)
F2'—C201.34 (4)C7—H7A0.9700
F3'—C201.36 (4)C7—H7B0.9700
N1—C11.319 (8)C8—C91.512 (8)
N1—C61.459 (8)C8—H8A0.9700
N1—H10.8600C8—H8B0.9700
N2—C131.459 (7)C9—H9A0.9700
N2—C101.463 (7)C9—H9B0.9700
N2—C91.468 (8)C10—C111.504 (8)
N3—C141.415 (8)C10—H10A0.9700
N3—C121.447 (7)C10—H10B0.9700
N3—C111.465 (7)C11—H11A0.9700
O1—C11.247 (8)C11—H11B0.9700
O2—C201.300 (9)C12—C131.509 (9)
O2—C151.418 (7)C12—H12A0.9700
O3—H210.8500C12—H12B0.9700
O3—H220.8500C13—H13A0.9700
O4—H230.8501C13—H13B0.9700
O4—H240.8500C14—C191.386 (8)
S1—C51.694 (10)C14—C151.400 (8)
S1—C21.709 (7)C15—C161.365 (9)
C1—C21.480 (9)C16—C171.386 (10)
C2—C31.351 (10)C16—H160.9300
C3—C41.400 (10)C17—C181.358 (10)
C3—H30.9300C17—H170.9300
C4—C51.343 (13)C18—C191.371 (10)
C4—H40.9300C18—H180.9300
C5—H50.9300C19—H190.9300
C1—N1—C6123.0 (6)N2—C10—H10A109.4
C1—N1—H1118.5C11—C10—H10A109.4
C6—N1—H1118.5N2—C10—H10B109.4
C13—N2—C10108.8 (4)C11—C10—H10B109.4
C13—N2—C9108.5 (4)H10A—C10—H10B108.0
C10—N2—C9111.9 (4)N3—C11—C10109.9 (5)
C14—N3—C12116.7 (5)N3—C11—H11A109.7
C14—N3—C11115.4 (5)C10—C11—H11A109.7
C12—N3—C11109.8 (4)N3—C11—H11B109.7
C20—O2—C15118.3 (6)C10—C11—H11B109.7
H21—O3—H22104.0H11A—C11—H11B108.2
H23—O4—H24107.0N3—C12—C13109.1 (5)
C5—S1—C291.7 (4)N3—C12—H12A109.9
O1—C1—N1122.6 (7)C13—C12—H12A109.9
O1—C1—C2119.8 (6)N3—C12—H12B109.9
N1—C1—C2117.5 (6)C13—C12—H12B109.9
C3—C2—C1130.3 (6)H12A—C12—H12B108.3
C3—C2—S1111.4 (5)N2—C13—C12111.7 (5)
C1—C2—S1118.2 (5)N2—C13—H13A109.3
C2—C3—C4112.0 (7)C12—C13—H13A109.3
C2—C3—H3124.0N2—C13—H13B109.3
C4—C3—H3124.0C12—C13—H13B109.3
C5—C4—C3113.6 (8)H13A—C13—H13B107.9
C5—C4—H4123.2C19—C14—C15116.0 (5)
C3—C4—H4123.2C19—C14—N3123.9 (5)
C4—C5—S1111.3 (6)C15—C14—N3120.0 (5)
C4—C5—H5124.3C16—C15—C14122.5 (6)
S1—C5—H5124.3C16—C15—O2119.1 (6)
N1—C6—C7112.4 (5)C14—C15—O2118.2 (5)
N1—C6—H6A109.1C15—C16—C17119.9 (7)
C7—C6—H6A109.1C15—C16—H16120.1
N1—C6—H6B109.1C17—C16—H16120.1
C7—C6—H6B109.1C18—C17—C16118.4 (7)
H6A—C6—H6B107.9C18—C17—H17120.8
C8—C7—C6113.6 (5)C16—C17—H17120.8
C8—C7—H7A108.8C17—C18—C19121.9 (7)
C6—C7—H7A108.8C17—C18—H18119.1
C8—C7—H7B108.8C19—C18—H18119.1
C6—C7—H7B108.8C18—C19—C14121.2 (6)
H7A—C7—H7B107.7C18—C19—H19119.4
C9—C8—C7111.8 (5)C14—C19—H19119.4
C9—C8—H8A109.3O2—C20—F2114.8 (17)
C7—C8—H8A109.3O2—C20—F1109.4 (10)
C9—C8—H8B109.3F2—C20—F1110.2 (17)
C7—C8—H8B109.3O2—C20—F2'113 (2)
H8A—C8—H8B107.9O2—C20—F1'115 (3)
N2—C9—C8114.7 (5)F2'—C20—F1'107 (4)
N2—C9—H9A108.6O2—C20—F3114.3 (11)
C8—C9—H9A108.6F2—C20—F3101.2 (14)
N2—C9—H9B108.6F1—C20—F3106.3 (10)
C8—C9—H9B108.6O2—C20—F3'109.3 (16)
H9A—C9—H9B107.6F2'—C20—F3'109 (2)
N2—C10—C11111.1 (4)F1'—C20—F3'103 (3)
C6—N1—C1—O11.4 (10)C10—N2—C13—C1257.5 (6)
C6—N1—C1—C2178.3 (5)C9—N2—C13—C12179.4 (5)
O1—C1—C2—C3177.8 (7)N3—C12—C13—N259.5 (6)
N1—C1—C2—C31.9 (10)C12—N3—C14—C1919.7 (8)
O1—C1—C2—S10.1 (8)C11—N3—C14—C19111.5 (6)
N1—C1—C2—S1179.8 (4)C12—N3—C14—C15157.5 (5)
C5—S1—C2—C31.7 (6)C11—N3—C14—C1571.3 (6)
C5—S1—C2—C1176.6 (5)C19—C14—C15—C162.3 (9)
C1—C2—C3—C4176.2 (6)N3—C14—C15—C16179.7 (5)
S1—C2—C3—C41.8 (8)C19—C14—C15—O2177.7 (5)
C2—C3—C4—C51.0 (9)N3—C14—C15—O24.9 (8)
C3—C4—C5—S10.3 (9)C20—O2—C15—C1688.0 (8)
C2—S1—C5—C41.1 (6)C20—O2—C15—C1496.5 (7)
C1—N1—C6—C794.7 (7)C14—C15—C16—C173.4 (10)
N1—C6—C7—C864.5 (7)O2—C15—C16—C17178.8 (6)
C6—C7—C8—C9177.6 (5)C15—C16—C17—C181.9 (10)
C13—N2—C9—C8175.9 (5)C16—C17—C18—C190.5 (11)
C10—N2—C9—C864.1 (6)C17—C18—C19—C141.6 (10)
C7—C8—C9—N2175.3 (5)C15—C14—C19—C180.2 (9)
C13—N2—C10—C1156.7 (6)N3—C14—C19—C18177.1 (6)
C9—N2—C10—C11176.5 (4)C15—O2—C20—F260 (3)
C14—N3—C11—C10166.0 (5)C15—O2—C20—F1176 (3)
C12—N3—C11—C1059.6 (6)C15—O2—C20—F2'89 (7)
N2—C10—C11—N358.4 (6)C15—O2—C20—F1'34 (6)
C14—N3—C12—C13166.8 (5)C15—O2—C20—F357 (3)
C11—N3—C12—C1359.4 (6)C15—O2—C20—F3'150 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.172.929 (5)148
O3—H21···N2ii0.852.022.835 (4)160
O3—H22···O1iii0.851.982.822 (5)171
O4—H23···O1iv0.852.092.830 (7)146
O4—H24···O3v0.852.072.831 (6)150
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1; (iv) x, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H24F3N3O2S·2H2O
Mr463.51
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)9.361 (2), 35.966 (9), 6.9102 (17)
V3)2326.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.53 × 0.49 × 0.47
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.905, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
11753, 2234, 1588
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.173, 1.05
No. of reflections2234
No. of parameters308
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.172.929 (5)148
O3—H21···N2ii0.852.022.835 (4)160
O3—H22···O1iii0.851.982.822 (5)171
O4—H23···O1iv0.852.092.830 (7)146
O4—H24···O3v0.852.072.831 (6)150
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1; (iv) x, y, z+1; (v) x+1, y, z.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (project No. 30701052) for financial support.

References

First citationBettinetti, L., Schlotter, K., Hübner, H. & Gmeiner, P. (2002). J. Med. Chem. 45, 4594–4597.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutta, A. K., Venkataraman, S. K., Fei, X.-S., Kolhatkar, R., Zhang, S. & Reith, M. E. A. (2004). Bioorg. Med. Chem. 12, 4361–4373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGarcia-Ladona, F. J. & Cox, B. F. (2003). CNS Drug Rev. 9, 141–158.  CrossRef PubMed CAS Google Scholar
First citationLeopoldo, M., Berardi, F., Colabufo, N. A., De Giorgio, P., Lacivita, E., Perrone, R., Rubin, R. & Tortorella, V. (2002). J. Med. Chem. 45, 5727–5735.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuedtke, R. R. & Mach, R. H. (2003). Curr. Pharm. Des. 9, 643–671.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPilla, M., Perachon, S., Sautel, F., Garrido, F., Mann, A., Wermuth, C. G., Schwartz, J. C., Everitt, B. J. & Sokoloff, P. (1999). Nature (London), 400, 371–375.  Web of Science PubMed CAS Google Scholar
First citationRobarge, M. J., Husbands, S. M., Kieltyka, A., Brodbeck, R., Thurkauf, A. & Newman, A. H. (2001). J. Med. Chem. 44, 3175–3186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, M. D., Boyfield, I., Nash, D. J., Jewitt, F. R., Avenell, K. Y. & Riley, G. J. (2000). Eur. J. Pharmacol. 407, 47–51.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds