organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-Methyl 2-{(S)-2-[bis­­(4-meth­­oxy­phen­yl)methyl­­idene­amino]-3-hy­dr­oxy­propanamido}-3-methyl­butano­ate

aDepartment of Chemistry & Biochemistry, The University of Arizona, 1306 E University Boulevard, Tucson, AZ 85721, USA
*Correspondence e-mail: gsnichol@email.arizona.edu

(Received 9 November 2010; accepted 23 November 2010; online 4 December 2010)

The title compound, C24H30N2O6, a Schiff base, adopts an extended conformation in which the meth­oxy groups are essentially coplanar with the aromatic ring to which they are bonded (mean planes fitted through the non-H atoms of each methoxyphenyl group have r.m.s. deviations of 0.078 and 0.044 Å) and the angle between mean planes fitted through the aromatic rings is 87.57 (10)°. An intra­molecular N—H⋯N hydrogen bond keeps the imine and amide groups essentially coplanar. A mean plane fitted through these groups has an r.m.s. deviation of 0.0545 Å. Additional O—H⋯O hydrogen bonding parallel with the a axis links the mol­ecules into a hydrogen-bonded chain in the crystal. C—H⋯O and C—H⋯π inter­actions are found within the crystal packing. The compound has been assigned the S,S configuration on the basis of the chemical synthesis, which used pure homotopic L-amino acids, and we have no reason to believe that the compound has epimerized.

Related literature

For background to our inter­est in developing new synthetic methods towards the synthesis of glycopeptide analogues and related compounds, see: Dhanasekaran et al. (2005[Dhanasekaran, M., Palian, M. M., Alves, I., Yeomans, L., Keyari, C. M., Davis, P., Bilsky, E. J., Egleton, R. D., Yamamura, H. I., Jacobsen, N. E., Tollin, G., Hruby, V. J., Porreca, F. & Polt, R. (2005). J. Am. Chem. Soc. 127, 5435-5448.]); Dhanasekaran & Polt (2005[Dhanasekaran, M. & Polt, R. (2005). Curr. Drug Deliv. 2, 59-73.]); Egleton et al. (2005[Egleton, R. D., Bilsky, E. J., Tollin, G., Dhanasekaran, M., Lowery, J., Alves, I., Davis, P., Porreca, F., Yamamura, H. I., Yeomans, L., Keyari, C. M. & Polt, R. (2005). Tetrahedron Asymmetry, 16, 65-75.]); Lowery et al. (2007[Lowery, J. J., Yeomans, L., Keyari, C. M., Davis, P., Porreca, F., Knapp, B. I., Bidlack, J. M., Bilsky, E. J. & Polt, R. (2007). Chem. Biol. Drug Des. 69, 41-47.]); Polt et al. (2005[Polt, R., Dhanasekaran, M. & Keyari, C. M. (2005). Med. Res. Rev. 25, 557-585.]); Keyari & Polt (2010[Keyari, C. M. & Polt, R. (2010). J. Carbohydr. Chem. 29, 181-206.]). For a related structure, see: Wijayaratne et al. (1993[Wijayaratne, T., Collins, N., Li, Y., Bruck, M. A. & Polt, R. (1993). Acta Cryst. B49, 316-320.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30N2O6

  • Mr = 442.50

  • Triclinic, P 1

  • a = 5.847 (5) Å

  • b = 8.981 (7) Å

  • c = 11.630 (9) Å

  • α = 80.456 (11)°

  • β = 83.922 (11)°

  • γ = 76.971 (12)°

  • V = 585.2 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.60 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 0.991

  • 3801 measured reflections

  • 1965 independent reflections

  • 1484 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.09

  • 1965 reflections

  • 301 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.84 (1) 1.87 (2) 2.705 (5) 170 (6)
N1—H1N⋯N2 0.84 (1) 2.21 (4) 2.641 (5) 112 (4)
C6—H6B⋯O1ii 0.98 2.49 3.353 (6) 146
C17—H17C⋯O3iii 0.98 2.53 3.410 (6) 149
C20—H20⋯O3i 0.95 2.46 3.222 (6) 137
C16—H16⋯Cg1iv 0.95 2.52 3.460 (6) 169
Symmetry codes: (i) x-1, y, z; (ii) x+1, y-1, z; (iii) x, y+1, z-1; (iv) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and local programs.

Supporting information


Comment top

We have been interested for some time in developing new synthetic methods towards the synthesis of glycopeptide analogues and related compounds (Dhanasekaran et al., 2005; Dhanasekaran & Polt, 2005; Egleton et al., 2005; Lowery et al., 2007; Polt et al., 2005). The crystal structure of a dipeptide Schiff base, (I), was determined as part of our work, and is presented here. In solution such Schiff bases are normally present in equilibrium with an oxazolidine tautomer and we have previously reported the structure of a related compound which crystallized as the oxazolidine form (Wijayaratne et al., 1993).

The molecular structure of (I) is shown in Figure 1. The compound adopts an extended conformation and the molecular geometry is largely unexceptional. This conformation is given added stability by an intramolecular N—H···N hydrogen bond. O—H···O hydrogen bonding parallel with the a axis, as shown in Figure 2, connects the molecules into a hydrogen bonded chain. Weak C—H···O and C—H···π interactions are found within the crystal packing, although there is no evidence of face-face aromatic stacking.

Related literature top

For background to our interest in developing new synthetic methods towards the synthesis of glycopeptide analogues and related compounds, see: Dhanasekaran et al. (2005); Dhanasekaran & Polt (2005); Egleton et al. (2005); Lowery et al. (2007); Polt et al. (2005); Keyari & Polt (2010). For a related structure, see: Wijayaratne et al. (1993).

Experimental top

L-Valine methyl ester HCl salt (1.02 g, 6.11 mmol, 2.0 equiv.), benzyl N-[9-(fluorenylmethoxycarbonyl)]-L-serinate (1.0 g, 3.06 mmol, 1.0 equiv.), N-hydroxybenzotriazole (0.94 g, 6.11 mmol, 2.0 equiv.), O-benzotriazole-N,N,N',N-tetramethyluroniumhexafluorophosphate (2.32 g, 6.11 mmol, 2.0 equiv.) and 5.5 ml diisopropylethylamine (30.6 mmol, 10.0 equiv.) were stirred overnight in 15 cm3 of dichloromethane. The reaction mixture was then washed and concentrated and crystallization from ethyl acetate and hexanes provided white crystals. The crystals were then reacted with 20% piperidine in dichloromethane (15 ml) for 1 h. This was then concentrated and 1 N HCl in methanol was added with stirring at room temperature for 15 min. The solvent was stripped off and bis(4-methoxy)-diarylketimine (0.57 g, 2.36 mmol, 1.0 equiv.) was added to the HCl methyl ester salt and dried over P2O5 overnight in vacuo. Dry acetonitrile (10 ml) was added and stirring started at room temperature and reacted for at least 16 hrs. The crystalline product (I) was obtained by recrystallization from ethyl acetate and hexanes. Yield 0.23 g (0.52 mmol, 21% over 3 steps); mp = 120–122°C. FABMS: C24H30N2O6, m/z [M + H]+443.2. For a more detailed description of the overall synthetic procedure see Keyari & Polt (2010).

Refinement top

All H atoms were first located in a difference map. O—H and N—H were refined using an X—H distance restraint of 0.84 (1) Å. C-bound H atoms have constrained C—H distances of 0.95 Å, 0.98 Å, 0.99Å and 1.00Å for Ar—H, CH3, CH2 and CH respectively. All H atoms were refined as riding with Uiso(H) = 1.5 Ueq(C) for methyl groups, while all others were refined with Uiso(H) = 1.2 Ueq(X). 1636 Friedel pairs were measured, but due to a lack of significant anomalous dispersion they were merged during final refinement cycles. The compound has been assigned the S,S configuration on the basis of the chemical synthesis.

Structure description top

We have been interested for some time in developing new synthetic methods towards the synthesis of glycopeptide analogues and related compounds (Dhanasekaran et al., 2005; Dhanasekaran & Polt, 2005; Egleton et al., 2005; Lowery et al., 2007; Polt et al., 2005). The crystal structure of a dipeptide Schiff base, (I), was determined as part of our work, and is presented here. In solution such Schiff bases are normally present in equilibrium with an oxazolidine tautomer and we have previously reported the structure of a related compound which crystallized as the oxazolidine form (Wijayaratne et al., 1993).

The molecular structure of (I) is shown in Figure 1. The compound adopts an extended conformation and the molecular geometry is largely unexceptional. This conformation is given added stability by an intramolecular N—H···N hydrogen bond. O—H···O hydrogen bonding parallel with the a axis, as shown in Figure 2, connects the molecules into a hydrogen bonded chain. Weak C—H···O and C—H···π interactions are found within the crystal packing, although there is no evidence of face-face aromatic stacking.

For background to our interest in developing new synthetic methods towards the synthesis of glycopeptide analogues and related compounds, see: Dhanasekaran et al. (2005); Dhanasekaran & Polt (2005); Egleton et al. (2005); Lowery et al. (2007); Polt et al. (2005); Keyari & Polt (2010). For a related structure, see: Wijayaratne et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and local programs.

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids at the 30% probability level. C-bound H atoms are omitted.
[Figure 2] Fig. 2. N—H···N and O—H···O hydrogen bonding, indicated by blue dotted lines, in the structure of (I).
(S)-Methyl 2-{(S)-2-[bis(4-methoxyphenyl)methylideneamino]- 3-hydroxypropanamido}-3-methylbutanoate top
Crystal data top
C24H30N2O6Z = 1
Mr = 442.50F(000) = 236
Triclinic, P1Dx = 1.256 Mg m3
Hall symbol: P 1Melting point: 393 K
a = 5.847 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.981 (7) ÅCell parameters from 1387 reflections
c = 11.630 (9) Åθ = 2.2–22.6°
α = 80.456 (11)°µ = 0.09 mm1
β = 83.922 (11)°T = 150 K
γ = 76.971 (12)°Lath, colourless
V = 585.2 (8) Å30.60 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1965 independent reflections
Radiation source: sealed tube1484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Thin–slice ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.948, Tmax = 0.991k = 1010
3801 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.1501P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1965 reflectionsΔρmax = 0.18 e Å3
301 parametersΔρmin = 0.19 e Å3
5 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.052 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C24H30N2O6γ = 76.971 (12)°
Mr = 442.50V = 585.2 (8) Å3
Triclinic, P1Z = 1
a = 5.847 (5) ÅMo Kα radiation
b = 8.981 (7) ŵ = 0.09 mm1
c = 11.630 (9) ÅT = 150 K
α = 80.456 (11)°0.60 × 0.20 × 0.10 mm
β = 83.922 (11)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1965 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1484 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.991Rint = 0.029
3801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0375 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.18 e Å3
1965 reflectionsΔρmin = 0.19 e Å3
301 parameters
Special details top

Experimental. Data for this structure are only measured to 96% completeness. A data collection strategy which did not account for the lack of symmetry in the diffraction pattern, is the likely cause. This was not noticed with sufficient time to permit collection of further data before the crystal was lost.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4309 (6)1.0147 (4)0.5120 (3)0.0483 (9)
H1O0.315 (7)0.978 (6)0.502 (5)0.058*
O21.0294 (6)0.9201 (4)0.4955 (3)0.0557 (10)
O31.0845 (5)0.3954 (3)0.5608 (3)0.0402 (8)
O41.3793 (5)0.4681 (4)0.6296 (3)0.0455 (9)
O50.8953 (6)1.1318 (4)0.1687 (3)0.0503 (9)
O60.1406 (6)0.3215 (4)0.1436 (3)0.0439 (9)
N10.8675 (6)0.7100 (4)0.5365 (3)0.0334 (9)
H1N0.764 (6)0.669 (5)0.518 (4)0.040*
N20.6236 (6)0.7839 (4)0.3491 (3)0.0300 (9)
C10.5571 (9)1.0436 (5)0.4030 (4)0.0432 (13)
H1A0.63781.12900.40460.052*
H1B0.44481.07740.34110.052*
C20.7387 (8)0.9025 (5)0.3729 (4)0.0316 (10)
H20.83830.93410.30170.038*
C30.8937 (7)0.8432 (5)0.4743 (4)0.0339 (11)
C41.0023 (8)0.6337 (5)0.6364 (4)0.0346 (11)
H41.10290.70240.65380.042*
C51.1574 (7)0.4863 (5)0.6042 (4)0.0323 (11)
C61.5397 (9)0.3267 (6)0.6013 (6)0.0562 (15)
H6A1.62470.34850.52530.084*
H6B1.44940.24800.59810.084*
H6C1.65250.28870.66160.084*
C70.8368 (9)0.5979 (6)0.7456 (4)0.0460 (13)
H70.74460.52420.72790.055*
C80.6626 (11)0.7440 (7)0.7733 (5)0.0648 (17)
H8A0.74760.81430.79800.097*
H8B0.54760.71640.83630.097*
H8C0.58060.79500.70340.097*
C90.9806 (11)0.5195 (7)0.8486 (5)0.0624 (16)
H9A0.87510.48980.91550.094*
H9B1.06830.59100.86950.094*
H9C1.09110.42710.82730.094*
C100.6022 (7)0.7716 (5)0.2420 (4)0.0276 (10)
C110.6881 (7)0.8712 (5)0.1377 (4)0.0291 (10)
C120.5383 (8)1.0007 (5)0.0839 (4)0.0348 (11)
H120.38171.02960.11670.042*
C130.6118 (9)1.0880 (5)0.0156 (4)0.0384 (12)
H130.50811.17780.04990.046*
C140.8421 (8)1.0435 (5)0.0666 (4)0.0346 (11)
C150.9931 (8)0.9167 (5)0.0132 (4)0.0356 (11)
H151.15000.88770.04560.043*
C160.9164 (7)0.8321 (5)0.0871 (4)0.0340 (11)
H161.02200.74440.12300.041*
C171.1079 (10)1.0729 (7)0.2357 (5)0.0585 (16)
H17A1.11450.96480.24310.088*
H17B1.24441.07940.19620.088*
H17C1.10971.13420.31370.088*
C180.4816 (7)0.6505 (4)0.2194 (4)0.0252 (9)
C190.3365 (8)0.5832 (5)0.3054 (4)0.0329 (11)
H190.31610.61420.38070.039*
C200.2210 (8)0.4728 (5)0.2849 (4)0.0337 (11)
H200.12340.42870.34550.040*
C210.2486 (8)0.4269 (5)0.1752 (4)0.0310 (10)
C220.3962 (7)0.4910 (5)0.0874 (4)0.0332 (11)
H220.41960.45830.01260.040*
C230.5078 (7)0.6023 (5)0.1104 (4)0.0312 (10)
H230.60500.64690.05000.037*
C240.0323 (9)0.2656 (6)0.2253 (5)0.0464 (13)
H24A0.15420.35310.24650.070*
H24B0.04280.20830.29560.070*
H24C0.10390.19710.18990.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.040 (2)0.058 (2)0.057 (2)0.0183 (17)0.0078 (18)0.0313 (18)
O20.055 (2)0.071 (3)0.056 (2)0.040 (2)0.0084 (18)0.0110 (19)
O30.041 (2)0.046 (2)0.039 (2)0.0155 (16)0.0067 (15)0.0091 (16)
O40.0304 (19)0.050 (2)0.061 (2)0.0060 (15)0.0111 (16)0.0209 (17)
O50.067 (2)0.0368 (19)0.040 (2)0.0102 (17)0.0073 (18)0.0055 (16)
O60.047 (2)0.040 (2)0.052 (2)0.0200 (16)0.0022 (17)0.0141 (17)
N10.032 (2)0.042 (2)0.031 (2)0.0128 (18)0.0042 (17)0.0113 (18)
N20.032 (2)0.032 (2)0.030 (2)0.0117 (16)0.0000 (16)0.0091 (16)
C10.053 (3)0.036 (3)0.045 (3)0.012 (2)0.011 (3)0.012 (2)
C20.035 (3)0.034 (2)0.029 (2)0.015 (2)0.008 (2)0.011 (2)
C30.031 (3)0.044 (3)0.030 (3)0.011 (2)0.000 (2)0.013 (2)
C40.035 (3)0.043 (3)0.029 (3)0.007 (2)0.005 (2)0.015 (2)
C50.032 (3)0.045 (3)0.024 (2)0.017 (2)0.0011 (19)0.003 (2)
C60.031 (3)0.053 (4)0.088 (5)0.003 (2)0.007 (3)0.028 (3)
C70.043 (3)0.058 (3)0.036 (3)0.002 (2)0.008 (2)0.013 (3)
C80.061 (4)0.078 (4)0.048 (4)0.014 (3)0.009 (3)0.024 (3)
C90.068 (4)0.071 (4)0.043 (3)0.006 (3)0.008 (3)0.021 (3)
C100.023 (2)0.031 (2)0.028 (2)0.0033 (18)0.0026 (18)0.0067 (19)
C110.025 (2)0.032 (2)0.031 (3)0.0073 (19)0.0026 (19)0.008 (2)
C120.030 (3)0.036 (3)0.035 (3)0.002 (2)0.003 (2)0.004 (2)
C130.047 (3)0.030 (3)0.034 (3)0.003 (2)0.002 (2)0.000 (2)
C140.041 (3)0.030 (3)0.032 (3)0.014 (2)0.002 (2)0.003 (2)
C150.032 (3)0.039 (3)0.034 (3)0.009 (2)0.005 (2)0.003 (2)
C160.030 (3)0.034 (3)0.035 (3)0.006 (2)0.002 (2)0.001 (2)
C170.063 (4)0.064 (4)0.039 (3)0.015 (3)0.012 (3)0.008 (3)
C180.026 (2)0.023 (2)0.026 (2)0.0029 (17)0.0012 (18)0.0047 (17)
C190.036 (3)0.038 (3)0.025 (2)0.009 (2)0.001 (2)0.007 (2)
C200.036 (3)0.036 (3)0.030 (3)0.013 (2)0.004 (2)0.004 (2)
C210.032 (3)0.024 (2)0.036 (3)0.0035 (19)0.001 (2)0.009 (2)
C220.035 (3)0.034 (3)0.033 (3)0.003 (2)0.005 (2)0.014 (2)
C230.025 (2)0.035 (2)0.033 (3)0.0083 (19)0.0030 (19)0.005 (2)
C240.044 (3)0.039 (3)0.057 (4)0.015 (2)0.007 (3)0.002 (3)
Geometric parameters (Å, º) top
O1—H1O0.844 (11)C9—H9A0.980
O1—C11.414 (6)C9—H9B0.980
O2—C31.230 (5)C9—H9C0.980
O3—C51.201 (5)C10—C111.496 (6)
O4—C51.329 (5)C10—C181.493 (6)
O4—C61.462 (6)C11—C121.388 (6)
O5—C141.362 (5)C11—C161.393 (6)
O5—C171.438 (6)C12—H120.950
O6—C211.366 (5)C12—C131.372 (6)
O6—C241.430 (6)C13—H130.950
N1—H1N0.843 (11)C13—C141.411 (7)
N1—C31.322 (6)C14—C151.375 (6)
N1—C41.458 (6)C15—H150.950
N2—C21.458 (5)C15—C161.374 (6)
N2—C101.290 (5)C16—H160.950
C1—H1A0.990C17—H17A0.980
C1—H1B0.990C17—H17B0.980
C1—C21.523 (6)C17—H17C0.980
C2—H21.00C18—C191.392 (6)
C2—C31.515 (6)C18—C231.389 (6)
C4—H41.00C19—H190.950
C4—C51.505 (6)C19—C201.383 (6)
C4—C71.548 (7)C20—H200.950
C6—H6A0.980C20—C211.388 (6)
C6—H6B0.980C21—C221.400 (6)
C6—H6C0.980C22—H220.950
C7—H71.00C22—C231.384 (6)
C7—C81.527 (7)C23—H230.950
C7—C91.518 (7)C24—H24A0.980
C8—H8A0.980C24—H24B0.980
C8—H8B0.980C24—H24C0.980
C8—H8C0.980
H1O—O1—C1109 (4)H9A—C9—H9C109.5
C5—O4—C6116.0 (4)H9B—C9—H9C109.5
C14—O5—C17117.3 (4)N2—C10—C11124.7 (4)
C21—O6—C24117.7 (4)N2—C10—C18118.2 (4)
H1N—N1—C3117 (3)C11—C10—C18117.1 (4)
H1N—N1—C4119 (3)C10—C11—C12120.9 (4)
C3—N1—C4124.0 (4)C10—C11—C16121.2 (4)
C2—N2—C10119.0 (4)C12—C11—C16117.8 (4)
O1—C1—H1A109.0C11—C12—H12119.3
O1—C1—H1B109.0C11—C12—C13121.4 (4)
O1—C1—C2112.7 (4)H12—C12—C13119.3
H1A—C1—H1B107.8C12—C13—H13120.2
H1A—C1—C2109.0C12—C13—C14119.7 (4)
H1B—C1—C2109.0H13—C13—C14120.2
N2—C2—C1110.7 (4)O5—C14—C13115.6 (4)
N2—C2—H2108.9O5—C14—C15124.9 (4)
N2—C2—C3111.3 (4)C13—C14—C15119.4 (4)
C1—C2—H2108.9C14—C15—H15120.1
C1—C2—C3108.2 (4)C14—C15—C16119.8 (4)
H2—C2—C3108.9H15—C15—C16120.1
O2—C3—N1124.3 (4)C11—C16—C15121.9 (4)
O2—C3—C2119.7 (4)C11—C16—H16119.0
N1—C3—C2116.0 (4)C15—C16—H16119.0
N1—C4—H4109.2O5—C17—H17A109.5
N1—C4—C5108.0 (3)O5—C17—H17B109.5
N1—C4—C7110.9 (4)O5—C17—H17C109.5
H4—C4—C5109.2H17A—C17—H17B109.5
H4—C4—C7109.2H17A—C17—H17C109.5
C5—C4—C7110.2 (4)H17B—C17—H17C109.5
O3—C5—O4124.4 (4)C10—C18—C19121.7 (4)
O3—C5—C4122.6 (4)C10—C18—C23120.9 (4)
O4—C5—C4113.1 (4)C19—C18—C23117.4 (4)
O4—C6—H6A109.5C18—C19—H19118.9
O4—C6—H6B109.5C18—C19—C20122.2 (4)
O4—C6—H6C109.5H19—C19—C20118.9
H6A—C6—H6B109.5C19—C20—H20120.3
H6A—C6—H6C109.5C19—C20—C21119.5 (4)
H6B—C6—H6C109.5H20—C20—C21120.3
C4—C7—H7107.9O6—C21—C20125.0 (4)
C4—C7—C8111.1 (5)O6—C21—C22115.4 (4)
C4—C7—C9110.0 (4)C20—C21—C22119.6 (4)
H7—C7—C8107.9C21—C22—H22120.2
H7—C7—C9107.9C21—C22—C23119.5 (4)
C8—C7—C9111.8 (4)H22—C22—C23120.2
C7—C8—H8A109.5C18—C23—C22121.8 (4)
C7—C8—H8B109.5C18—C23—H23119.1
C7—C8—H8C109.5C22—C23—H23119.1
H8A—C8—H8B109.5O6—C24—H24A109.5
H8A—C8—H8C109.5O6—C24—H24B109.5
H8B—C8—H8C109.5O6—C24—H24C109.5
C7—C9—H9A109.5H24A—C24—H24B109.5
C7—C9—H9B109.5H24A—C24—H24C109.5
C7—C9—H9C109.5H24B—C24—H24C109.5
H9A—C9—H9B109.5
C10—N2—C2—C198.9 (5)C10—C11—C12—C13176.3 (4)
C10—N2—C2—C3140.8 (4)C16—C11—C12—C130.2 (6)
O1—C1—C2—N269.0 (5)C11—C12—C13—C141.8 (7)
O1—C1—C2—C353.1 (5)C17—O5—C14—C13167.4 (4)
C4—N1—C3—O22.2 (7)C17—O5—C14—C1511.6 (7)
C4—N1—C3—C2179.3 (4)C12—C13—C14—O5176.5 (4)
N2—C2—C3—O2169.6 (4)C12—C13—C14—C152.6 (7)
N2—C2—C3—N111.8 (5)O5—C14—C15—C16177.1 (4)
C1—C2—C3—O268.6 (5)C13—C14—C15—C161.9 (7)
C1—C2—C3—N1110.0 (4)C14—C15—C16—C110.4 (7)
C3—N1—C4—C5113.3 (5)C10—C11—C16—C15175.6 (4)
C3—N1—C4—C7125.8 (5)C12—C11—C16—C150.5 (6)
C6—O4—C5—O30.0 (7)N2—C10—C18—C1918.7 (6)
C6—O4—C5—C4179.6 (4)N2—C10—C18—C23162.3 (4)
N1—C4—C5—O348.6 (6)C11—C10—C18—C19160.8 (4)
N1—C4—C5—O4131.9 (4)C11—C10—C18—C2318.2 (6)
C7—C4—C5—O372.8 (5)C10—C18—C19—C20179.0 (4)
C7—C4—C5—O4106.8 (4)C23—C18—C19—C200.1 (6)
N1—C4—C7—C855.3 (5)C18—C19—C20—C210.2 (7)
N1—C4—C7—C9179.7 (4)C24—O6—C21—C206.8 (6)
C5—C4—C7—C8174.9 (4)C24—O6—C21—C22173.0 (4)
C5—C4—C7—C960.8 (5)C19—C20—C21—O6178.7 (4)
C2—N2—C10—C110.1 (6)C19—C20—C21—C221.1 (6)
C2—N2—C10—C18179.4 (4)O6—C21—C22—C23178.1 (4)
N2—C10—C11—C1295.5 (5)C20—C21—C22—C231.7 (6)
N2—C10—C11—C1688.5 (6)C21—C22—C23—C181.4 (6)
C18—C10—C11—C1284.0 (5)C10—C18—C23—C22179.5 (4)
C18—C10—C11—C1692.0 (5)C19—C18—C23—C220.4 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.84 (1)1.87 (2)2.705 (5)170 (6)
N1—H1N···N20.84 (1)2.21 (4)2.641 (5)112 (4)
C6—H6B···O1ii0.982.493.353 (6)146
C17—H17C···O3iii0.982.533.410 (6)149
C20—H20···O3i0.952.463.222 (6)137
C16—H16···Cg1iv0.952.523.460 (6)169
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H30N2O6
Mr442.50
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.847 (5), 8.981 (7), 11.630 (9)
α, β, γ (°)80.456 (11), 83.922 (11), 76.971 (12)
V3)585.2 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.948, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3801, 1965, 1484
Rint0.029
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.09
No. of reflections1965
No. of parameters301
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and local programs.

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.844 (11)1.870 (15)2.705 (5)170 (6)
N1—H1N···N20.843 (11)2.21 (4)2.641 (5)112 (4)
C6—H6B···O1ii0.982.493.353 (6)146.0
C17—H17C···O3iii0.982.533.410 (6)149
C20—H20···O3i0.952.463.222 (6)137
C16—H16···Cg1iv0.952.523.460 (6)169
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z1; (iv) x+1, y, z.
 

Acknowledgements

This material is based upon work supported in part by the National Science Foundation (NSF) grant CHE-0607917, and by the Office of Naval Research grant 14–05-1–0807. The X-ray diffractometer was purchased with funds from NSF grant CHE-9610374.

References

First citationBruker (2007). SAINT and SMART . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhanasekaran, M., Palian, M. M., Alves, I., Yeomans, L., Keyari, C. M., Davis, P., Bilsky, E. J., Egleton, R. D., Yamamura, H. I., Jacobsen, N. E., Tollin, G., Hruby, V. J., Porreca, F. & Polt, R. (2005). J. Am. Chem. Soc. 127, 5435–5448.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDhanasekaran, M. & Polt, R. (2005). Curr. Drug Deliv. 2, 59–73.  CrossRef PubMed CAS Google Scholar
First citationEgleton, R. D., Bilsky, E. J., Tollin, G., Dhanasekaran, M., Lowery, J., Alves, I., Davis, P., Porreca, F., Yamamura, H. I., Yeomans, L., Keyari, C. M. & Polt, R. (2005). Tetrahedron Asymmetry, 16, 65–75.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKeyari, C. M. & Polt, R. (2010). J. Carbohydr. Chem. 29, 181–206.  Web of Science CrossRef CAS Google Scholar
First citationLowery, J. J., Yeomans, L., Keyari, C. M., Davis, P., Porreca, F., Knapp, B. I., Bidlack, J. M., Bilsky, E. J. & Polt, R. (2007). Chem. Biol. Drug Des. 69, 41–47.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPolt, R., Dhanasekaran, M. & Keyari, C. M. (2005). Med. Res. Rev. 25, 557–585.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWijayaratne, T., Collins, N., Li, Y., Bruck, M. A. & Polt, R. (1993). Acta Cryst. B49, 316–320.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds