organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(3-chloro­prop­­oxy)benzene

aFaculty of Science, Rm No 207, Carslow Building F07, The University of Sydney, NSW 2006, Australia
*Correspondence e-mail: wyuf2010@126.com

(Received 18 November 2010; accepted 1 December 2010; online 8 December 2010)

The mol­ecule of the title compound, C12H16Cl2O2, has a center of inversion at the centroid of the benzene ring and the asymmetric unit contains one half-mol­ecule. Inter­molecular C—H⋯π inter­actions stabilize the crystal structure.

Related literature

For general background to the use of alk­oxy­benzene derivatives as inter­mediates in organic synthesis, see: Dudones & Pearson et al. (2000[Dudones, J. D. & Pearson, A. J. (2000). Tetrahedron Lett. 41, 8037-8040.]); Chen & Chao (1996[Chen, S. A. & Chao, C. I. (1996). Synth. Met. 79, 93-96.]); Jin et al. (2010[Jin, Y., Xu, Y., Qiao, Z., Peng, J., Wang, B. & Cao, D. (2010). Polymer, 51, 5726-5733.]; Rabindranath et al. (2006[Rabindranath, A. R., Zhu, Y., Heim, I. & Tieke, B. (2006). Macromolecules, 39, 8250-8256.]); Zhang & Tieke (2008[Zhang, K. & Tieke, B. (2008). Macromolecules, 41, 7287-7295.]); Zhu et al. (2007[Zhu, Y., Rabindranath, A. R., Beyerlein, T. & Tieke, B. (2007). Macromolecules, 40, 6981-6989.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16Cl2O2

  • Mr = 263.15

  • Monoclinic, P 21 /c

  • a = 4.9813 (8) Å

  • b = 8.3200 (14) Å

  • c = 15.273 (2) Å

  • β = 93.156 (6)°

  • V = 632.02 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.899, Tmax = 0.916

  • 5847 measured reflections

  • 1502 independent reflections

  • 1273 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.07

  • 1502 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACg1i 0.99 2.74 3.577 (2) 143
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Alkoxybenzene derivatives are useful intermediates in organic synthesis (Dudones & Pearson, 2000; Chen et al., 1996). Especially, halogenoalkoxybenzenes are used to synthesize diketopyrrolopyrrole derivatives which are a class of strongly fluorescent heterocyclic pigments and their structures could be easily optimized through variations of substituents at the 2,5- and 3,6-positions (Jin et al., 2010; Rabindranath et al., 2006; Zhang et al., 2008; Zhu et al., 2007). In this paper, the structure of the title compound synthesized, (I), and we report herein its crystal structure. In the molecule of (I) (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit of the title compound contains a half of the molecule situated on a two-fold rotational axis. Intermolecular C4-H4···Cg1 interactions (Cg1 is the centroid of the phenyl ring ring) stabilize the crystal structure.

Related literature top

For general background to the use of alkoxybenzene derivatives as intermediates in organic synthesis, see: Dudones & Pearson et al. (2000); Chen et al. (1996); Jin et al. (2010; Rabindranath et al. (2006); Zhang et al. (2008); Zhu et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, p-dihydroxybenzene (11.0 g, 0.1 mol) was dissolved in dry acetone (100 ml). 1-Bromo-3-chloropropane (31.5 g, 0.2 mol) and potassium carbonate (138 g, 1mol) were added to this solution, the reaction was stirred under reflux for 11 h, The reaction mixture was filtered, the filtrate was concentrated, then washed with sodium hydroxide solution and extracted with ethyl acetate. After concentration, the residue was purified by recrystallization from chloroform (yield; 20.1 g, 76%, m.p. 339 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3085, 2957, 1541, 1351, 1032, 814. 1HNMR (400 MHz, CDCl3, ppm): 2.21 (m, 4H), 3.75 (t, 4H), 4.06 (t, 4H), 6.84 (d, 4H).

Refinement top

All H atoms were positioned geometrically and refined as riding (C-H = 0.95-0.99Å) and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(parent).

Structure description top

Alkoxybenzene derivatives are useful intermediates in organic synthesis (Dudones & Pearson, 2000; Chen et al., 1996). Especially, halogenoalkoxybenzenes are used to synthesize diketopyrrolopyrrole derivatives which are a class of strongly fluorescent heterocyclic pigments and their structures could be easily optimized through variations of substituents at the 2,5- and 3,6-positions (Jin et al., 2010; Rabindranath et al., 2006; Zhang et al., 2008; Zhu et al., 2007). In this paper, the structure of the title compound synthesized, (I), and we report herein its crystal structure. In the molecule of (I) (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit of the title compound contains a half of the molecule situated on a two-fold rotational axis. Intermolecular C4-H4···Cg1 interactions (Cg1 is the centroid of the phenyl ring ring) stabilize the crystal structure.

For general background to the use of alkoxybenzene derivatives as intermediates in organic synthesis, see: Dudones & Pearson et al. (2000); Chen et al. (1996); Jin et al. (2010; Rabindranath et al. (2006); Zhang et al. (2008); Zhu et al. (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2000); software used to prepare material for publication: CrystalStructure (Rigaku, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme, symmetry code: -x+1, -y, -z+1. Displacement ellipsoids are drawn at the 75% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing molecules being stacked along the c-axis.
1,4-Bis(3-chloropropoxy)benzene top
Crystal data top
C12H16Cl2O2F(000) = 276
Mr = 263.15Dx = 1.383 Mg m3
Monoclinic, P21/cMelting point: 339 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71075 Å
a = 4.9813 (8) ÅCell parameters from 2060 reflections
b = 8.3200 (14) Åθ = 2.7–27.9°
c = 15.273 (2) ŵ = 0.50 mm1
β = 93.156 (6)°T = 113 K
V = 632.02 (17) Å3Prism, colorless
Z = 20.22 × 0.20 × 0.18 mm
Data collection top
Rigaku Saturn
diffractometer
1502 independent reflections
Radiation source: rotating anode1273 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.033
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 2.7°
ω scansh = 46
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 109
Tmin = 0.899, Tmax = 0.916l = 2020
5847 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0407P)2 + ]
where P = (Fo2 + 2Fc2)/3
1502 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H16Cl2O2V = 632.02 (17) Å3
Mr = 263.15Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9813 (8) ŵ = 0.50 mm1
b = 8.3200 (14) ÅT = 113 K
c = 15.273 (2) Å0.22 × 0.20 × 0.18 mm
β = 93.156 (6)°
Data collection top
Rigaku Saturn
diffractometer
1502 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1273 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.916Rint = 0.033
5847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
1502 reflectionsΔρmin = 0.16 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22691 (7)0.61216 (4)0.66618 (2)0.02618 (13)
O10.16835 (18)0.17363 (11)0.60468 (6)0.0199 (2)
C10.5063 (2)0.01858 (15)0.59005 (8)0.0186 (3)
H10.51020.03140.65190.022*
C20.3281 (3)0.09041 (14)0.54960 (8)0.0167 (3)
C30.3213 (3)0.10898 (15)0.45872 (9)0.0185 (3)
H30.19970.18290.43040.022*
C40.0045 (3)0.29417 (15)0.56500 (9)0.0194 (3)
H4A0.13490.24440.52180.023*
H4B0.10270.37450.53420.023*
C50.1508 (3)0.37389 (16)0.63743 (9)0.0226 (3)
H5A0.26640.29300.66440.027*
H5B0.26970.45870.61140.027*
C60.0331 (3)0.44827 (16)0.70864 (9)0.0250 (3)
H6A0.15690.36510.73370.030*
H6B0.07590.48870.75620.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0298 (2)0.0224 (2)0.0265 (2)0.00092 (14)0.00272 (15)0.00187 (14)
O10.0221 (5)0.0210 (5)0.0167 (5)0.0060 (4)0.0016 (4)0.0003 (4)
C10.0212 (7)0.0210 (7)0.0135 (6)0.0013 (5)0.0005 (5)0.0011 (5)
C20.0159 (7)0.0165 (6)0.0178 (7)0.0012 (5)0.0015 (5)0.0018 (5)
C30.0184 (7)0.0174 (6)0.0193 (7)0.0010 (5)0.0021 (5)0.0016 (5)
C40.0199 (7)0.0191 (6)0.0190 (7)0.0029 (5)0.0014 (5)0.0003 (5)
C50.0224 (7)0.0224 (7)0.0234 (8)0.0019 (5)0.0043 (6)0.0004 (6)
C60.0318 (8)0.0227 (7)0.0210 (7)0.0005 (6)0.0056 (6)0.0005 (6)
Geometric parameters (Å, º) top
Cl1—C61.8113 (14)C4—C51.5111 (17)
O1—C21.3762 (14)C4—H4A0.9900
O1—C41.4342 (15)C4—H4B0.9900
C1—C3i1.3887 (17)C5—C61.5151 (19)
C1—C21.3897 (17)C5—H5A0.9900
C1—H10.9500C5—H5B0.9900
C2—C31.3951 (18)C6—H6A0.9900
C3—C1i1.3886 (17)C6—H6B0.9900
C3—H30.9500
C2—O1—C4116.58 (10)C5—C4—H4B110.2
C3i—C1—C2120.91 (12)H4A—C4—H4B108.5
C3i—C1—H1119.5C4—C5—C6114.07 (11)
C2—C1—H1119.5C4—C5—H5A108.7
O1—C2—C1115.67 (11)C6—C5—H5A108.7
O1—C2—C3124.69 (12)C4—C5—H5B108.7
C1—C2—C3119.63 (11)C6—C5—H5B108.7
C1i—C3—C2119.46 (12)H5A—C5—H5B107.6
C1i—C3—H3120.3C5—C6—Cl1111.33 (9)
C2—C3—H3120.3C5—C6—H6A109.4
O1—C4—C5107.47 (11)Cl1—C6—H6A109.4
O1—C4—H4A110.2C5—C6—H6B109.4
C5—C4—H4A110.2Cl1—C6—H6B109.4
O1—C4—H4B110.2H6A—C6—H6B108.0
C4—O1—C2—C1176.07 (11)C1—C2—C3—C1i0.2 (2)
C4—O1—C2—C33.86 (18)C2—O1—C4—C5177.69 (10)
C3i—C1—C2—O1179.68 (10)O1—C4—C5—C657.71 (14)
C3i—C1—C2—C30.2 (2)C4—C5—C6—Cl164.36 (13)
O1—C2—C3—C1i179.68 (11)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cg1ii0.992.743.577 (2)143
Symmetry code: (ii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H16Cl2O2
Mr263.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)4.9813 (8), 8.3200 (14), 15.273 (2)
β (°) 93.156 (6)
V3)632.02 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.899, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
5847, 1502, 1273
Rint0.033
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.07
No. of reflections1502
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.16

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2000).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cg1i0.992.7373.577 (2)143.0
Symmetry code: (i) x+1, y+1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationChen, S. A. & Chao, C. I. (1996). Synth. Met. 79, 93–96.  CrossRef CAS Web of Science Google Scholar
First citationDudones, J. D. & Pearson, A. J. (2000). Tetrahedron Lett. 41, 8037–8040.  Web of Science CrossRef CAS Google Scholar
First citationJin, Y., Xu, Y., Qiao, Z., Peng, J., Wang, B. & Cao, D. (2010). Polymer, 51, 5726–5733.  Web of Science CrossRef CAS Google Scholar
First citationRabindranath, A. R., Zhu, Y., Heim, I. & Tieke, B. (2006). Macromolecules, 39, 8250–8256.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K. & Tieke, B. (2008). Macromolecules, 41, 7287–7295.  Web of Science CrossRef CAS Google Scholar
First citationZhu, Y., Rabindranath, A. R., Beyerlein, T. & Tieke, B. (2007). Macromolecules, 40, 6981–6989.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds