organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­methyl-N-(4-methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 23 November 2010; accepted 27 November 2010; online 4 December 2010)

The asymmetric unit of the crystal of the title compound, C15H17NO2S, contains two independent mol­ecules, which are twisted at the S—N bonds with C—SO2—NH—C torsion angles of 48.3 (2) (mol­ecule 1) and −75.7 (3)° (mol­ecule 2). The dihedral angles between the benzene rings are 72.0 (1) (mol­ecule 1) and 78.3 (1)° (mol­ecule 2). The crystal structure features inversion dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o576.]); Nirmala et al. (2009[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3210.], 2010[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o989.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO2S

  • Mr = 275.36

  • Monoclinic, P 21 /c

  • a = 10.623 (1) Å

  • b = 10.770 (1) Å

  • c = 25.513 (2) Å

  • β = 97.927 (6)°

  • V = 2891.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 299 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.917, Tmax = 0.957

  • 10876 measured reflections

  • 5282 independent reflections

  • 3743 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.03

  • 5282 reflections

  • 355 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (1) 2.15 (1) 2.991 (2) 169 (2)
N2—H2N⋯O2ii 0.85 (1) 2.03 (1) 2.877 (2) 175 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of substitutions on the structures of N-(aryl)-arylsulfonamides (Gowda et al. , 2009; Nirmala et al., 2009; 2010), in the present work, the structure of 2,4-dimethyl-N-(4-methylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit of (I) contains two independent molecules. The molecules are twisted at the S—N bonds with the C1—SO2—NH—C7 torsion angles of -48.3 (2)° (molecule 1) and -75.7 (3)° (molecule 2), compared to the values of 71.6 (1)° in 2,4-dimethyl-N-(2-methylphenyl)benzenesulfonamide (II) (Nirmala et al., 2009), -58.4 (2)° in 2,4-dimethyl-N-(3-methylphenyl)benzenesulfonamide (III) (Nirmala et al., 2010) and -46.1 (3)° (molecule 1) & 47.7 (3)° (molecule 2) in the two molecules of 2,4-dimethyl-N-(phenyl)- benzenesulfonamide (IV)(Gowda et al., 2009).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 72.0 (1)° (molecule 1) and 78.3 (1)° (molecule 2), compared to the values of 47.0 (1)° in (II), 47.1 (1)° in (III), and 67.5 (1)° in molecule 1 and 72.9 (1)° in molecule 2 of (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009); Nirmala et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with p-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(4-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The prism like colourless single crystals used in x-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

As part of a study of the effect of substitutions on the structures of N-(aryl)-arylsulfonamides (Gowda et al. , 2009; Nirmala et al., 2009; 2010), in the present work, the structure of 2,4-dimethyl-N-(4-methylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit of (I) contains two independent molecules. The molecules are twisted at the S—N bonds with the C1—SO2—NH—C7 torsion angles of -48.3 (2)° (molecule 1) and -75.7 (3)° (molecule 2), compared to the values of 71.6 (1)° in 2,4-dimethyl-N-(2-methylphenyl)benzenesulfonamide (II) (Nirmala et al., 2009), -58.4 (2)° in 2,4-dimethyl-N-(3-methylphenyl)benzenesulfonamide (III) (Nirmala et al., 2010) and -46.1 (3)° (molecule 1) & 47.7 (3)° (molecule 2) in the two molecules of 2,4-dimethyl-N-(phenyl)- benzenesulfonamide (IV)(Gowda et al., 2009).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 72.0 (1)° (molecule 1) and 78.3 (1)° (molecule 2), compared to the values of 47.0 (1)° in (II), 47.1 (1)° in (III), and 67.5 (1)° in molecule 1 and 72.9 (1)° in molecule 2 of (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009); Nirmala et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,4-Dimethyl-N-(4-methylphenyl)benzenesulfonamide top
Crystal data top
C15H17NO2SF(000) = 1168
Mr = 275.36Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2957 reflections
a = 10.623 (1) Åθ = 2.7–27.9°
b = 10.770 (1) ŵ = 0.22 mm1
c = 25.513 (2) ÅT = 299 K
β = 97.927 (6)°Prism, colourless
V = 2891.0 (4) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5282 independent reflections
Radiation source: fine-focus sealed tube3743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Rotation method data acquisition using ω and phi scansθmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1210
Tmin = 0.917, Tmax = 0.957k = 1211
10876 measured reflectionsl = 2630
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.5667P]
where P = (Fo2 + 2Fc2)/3
5282 reflections(Δ/σ)max = 0.009
355 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H17NO2SV = 2891.0 (4) Å3
Mr = 275.36Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.623 (1) ŵ = 0.22 mm1
b = 10.770 (1) ÅT = 299 K
c = 25.513 (2) Å0.40 × 0.30 × 0.20 mm
β = 97.927 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5282 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3743 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.957Rint = 0.017
10876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
5282 reflectionsΔρmin = 0.23 e Å3
355 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16582 (5)0.91378 (5)0.253220 (19)0.04951 (16)
O10.16198 (14)1.03883 (14)0.23457 (6)0.0619 (4)
O20.09258 (13)0.88329 (15)0.29500 (5)0.0625 (4)
N10.31153 (16)0.87937 (18)0.27751 (6)0.0543 (5)
H1N0.311 (2)0.8300 (18)0.3034 (7)0.065*
C10.12183 (16)0.81649 (19)0.19825 (7)0.0437 (5)
C20.12013 (18)0.6871 (2)0.20238 (8)0.0520 (5)
C30.0833 (2)0.6212 (2)0.15577 (9)0.0616 (6)
H30.08100.53500.15760.074*
C40.0500 (2)0.6771 (2)0.10694 (9)0.0615 (6)
C50.0507 (2)0.8053 (3)0.10508 (8)0.0639 (6)
H50.02640.84520.07290.077*
C60.08644 (19)0.8752 (2)0.14974 (8)0.0538 (5)
H60.08700.96140.14760.065*
C70.41385 (18)0.8671 (2)0.24720 (7)0.0472 (5)
C80.5031 (2)0.7771 (2)0.26186 (9)0.0666 (6)
H80.49410.72490.29010.080*
C90.6063 (2)0.7634 (3)0.23492 (11)0.0761 (7)
H90.66630.70250.24580.091*
C100.6230 (2)0.8373 (2)0.19238 (9)0.0612 (6)
C110.5324 (2)0.9270 (2)0.17813 (9)0.0611 (6)
H110.54130.97880.14970.073*
C120.4286 (2)0.9428 (2)0.20474 (9)0.0582 (6)
H120.36891.00410.19410.070*
C130.1564 (3)0.6158 (2)0.25302 (10)0.0769 (7)
H13A0.10380.64170.27870.092*
H13B0.24390.63160.26630.092*
H13C0.14460.52860.24630.092*
C140.0177 (3)0.5997 (3)0.05741 (10)0.0884 (9)
H14A0.01300.51380.06690.106*
H14B0.08240.61040.03500.106*
H14C0.06270.62580.03890.106*
C150.7355 (3)0.8194 (3)0.16271 (12)0.0923 (9)
H15A0.70620.79160.12740.111*
H15B0.79190.75850.18060.111*
H15C0.77980.89680.16130.111*
S20.75114 (5)0.19437 (7)0.08416 (2)0.0658 (2)
O30.67144 (15)0.23202 (19)0.12238 (6)0.0836 (6)
O40.75504 (17)0.06565 (18)0.07007 (6)0.0795 (5)
N20.89188 (18)0.2396 (2)0.10928 (7)0.0728 (6)
H2N0.892 (2)0.284 (2)0.1371 (7)0.087*
C160.70689 (18)0.2795 (2)0.02500 (8)0.0569 (6)
C170.6886 (2)0.4078 (3)0.02402 (10)0.0677 (7)
C180.6524 (2)0.4629 (3)0.02539 (12)0.0800 (8)
H180.64010.54840.02680.096*
C190.6339 (2)0.3966 (3)0.07224 (11)0.0761 (7)
C200.6518 (2)0.2702 (3)0.06978 (9)0.0737 (7)
H200.63920.22360.10070.088*
C210.6883 (2)0.2111 (3)0.02178 (8)0.0647 (6)
H210.70030.12560.02080.078*
C221.00993 (19)0.2099 (2)0.09259 (8)0.0547 (5)
C231.0219 (2)0.1542 (3)0.04490 (8)0.0709 (7)
H230.94970.13090.02220.085*
C241.1411 (2)0.1330 (3)0.03075 (9)0.0716 (7)
H241.14730.09510.00160.086*
C251.2500 (2)0.1658 (2)0.06267 (11)0.0655 (6)
C261.2360 (2)0.2188 (2)0.11096 (11)0.0740 (7)
H261.30850.24030.13390.089*
C271.1183 (2)0.2407 (2)0.12624 (9)0.0626 (6)
H271.11210.27610.15900.075*
C280.5989 (3)0.4606 (4)0.12494 (13)0.1115 (11)
H28A0.67470.47900.14000.134*
H28B0.55450.53630.11990.134*
H28C0.54520.40710.14840.134*
C290.7054 (3)0.4885 (3)0.07303 (12)0.0962 (9)
H29A0.78780.47380.09270.115*
H29B0.64100.46860.09460.115*
H29C0.69820.57430.06290.115*
C301.3795 (2)0.1458 (3)0.04557 (14)0.0971 (10)
H30A1.36960.12750.00840.117*
H30B1.42120.07760.06500.117*
H30C1.42970.21960.05250.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0446 (3)0.0605 (4)0.0442 (3)0.0057 (2)0.0088 (2)0.0021 (2)
O10.0653 (9)0.0528 (10)0.0674 (9)0.0038 (7)0.0093 (7)0.0006 (8)
O20.0517 (8)0.0895 (12)0.0494 (8)0.0140 (8)0.0179 (7)0.0080 (8)
N10.0448 (9)0.0755 (13)0.0429 (9)0.0036 (9)0.0073 (8)0.0052 (9)
C10.0367 (10)0.0514 (13)0.0438 (10)0.0015 (8)0.0084 (8)0.0062 (9)
C20.0432 (11)0.0571 (14)0.0561 (12)0.0066 (9)0.0086 (9)0.0082 (11)
C30.0567 (13)0.0556 (14)0.0742 (15)0.0129 (10)0.0148 (11)0.0024 (12)
C40.0527 (13)0.0767 (18)0.0567 (13)0.0161 (12)0.0129 (10)0.0102 (12)
C50.0650 (14)0.0832 (19)0.0432 (12)0.0065 (12)0.0069 (10)0.0070 (12)
C60.0560 (12)0.0585 (14)0.0472 (11)0.0020 (10)0.0088 (9)0.0088 (10)
C70.0419 (10)0.0580 (13)0.0412 (10)0.0027 (9)0.0037 (8)0.0031 (9)
C80.0546 (13)0.0815 (17)0.0654 (14)0.0116 (12)0.0146 (11)0.0223 (13)
C90.0589 (15)0.0785 (18)0.0937 (19)0.0209 (12)0.0208 (13)0.0210 (15)
C100.0551 (13)0.0620 (15)0.0700 (14)0.0017 (11)0.0209 (11)0.0031 (12)
C110.0640 (14)0.0621 (15)0.0606 (13)0.0046 (12)0.0203 (11)0.0076 (12)
C120.0543 (13)0.0565 (14)0.0655 (14)0.0045 (10)0.0137 (10)0.0054 (11)
C130.0869 (18)0.0626 (17)0.0778 (17)0.0075 (13)0.0017 (14)0.0199 (13)
C140.0858 (19)0.109 (2)0.0728 (17)0.0318 (16)0.0184 (14)0.0272 (16)
C150.0802 (18)0.095 (2)0.112 (2)0.0100 (16)0.0499 (17)0.0032 (18)
S20.0534 (3)0.1010 (5)0.0443 (3)0.0202 (3)0.0115 (2)0.0084 (3)
O30.0596 (10)0.1410 (17)0.0543 (9)0.0271 (10)0.0221 (7)0.0182 (10)
O40.0850 (11)0.0914 (9)0.0616 (10)0.0235 (9)0.0085 (8)0.0003 (9)
N20.0517 (11)0.1221 (19)0.0448 (10)0.0140 (11)0.0076 (8)0.0212 (11)
C160.0397 (11)0.0814 (18)0.0505 (12)0.0113 (10)0.0089 (9)0.0098 (11)
C170.0463 (12)0.088 (2)0.0709 (16)0.0035 (12)0.0175 (11)0.0183 (14)
C180.0618 (15)0.086 (2)0.094 (2)0.0098 (13)0.0173 (14)0.0046 (17)
C190.0522 (14)0.106 (2)0.0698 (16)0.0003 (14)0.0069 (12)0.0066 (17)
C200.0617 (15)0.107 (2)0.0510 (13)0.0126 (14)0.0024 (11)0.0092 (14)
C210.0571 (13)0.0837 (18)0.0520 (12)0.0119 (12)0.0031 (10)0.0120 (12)
C220.0502 (12)0.0702 (15)0.0426 (11)0.0049 (10)0.0026 (9)0.0059 (10)
C230.0472 (13)0.121 (2)0.0422 (11)0.0032 (13)0.0024 (9)0.0094 (13)
C240.0551 (14)0.103 (2)0.0562 (13)0.0078 (13)0.0047 (11)0.0046 (13)
C250.0454 (12)0.0638 (16)0.0845 (17)0.0013 (11)0.0013 (11)0.0055 (13)
C260.0532 (14)0.0749 (18)0.0866 (18)0.0057 (12)0.0158 (12)0.0094 (15)
C270.0624 (14)0.0667 (16)0.0550 (13)0.0067 (11)0.0054 (11)0.0054 (11)
C280.086 (2)0.155 (3)0.093 (2)0.019 (2)0.0118 (17)0.037 (2)
C290.087 (2)0.102 (2)0.104 (2)0.0038 (16)0.0286 (16)0.0380 (19)
C300.0531 (15)0.098 (2)0.139 (3)0.0041 (14)0.0099 (16)0.015 (2)
Geometric parameters (Å, º) top
S1—O11.4271 (15)S2—O41.434 (2)
S1—O21.4415 (14)S2—O31.4352 (16)
S1—N11.6287 (17)S2—N21.6184 (19)
S1—C11.761 (2)S2—C161.773 (2)
N1—C71.424 (2)N2—C221.416 (3)
N1—H1N0.849 (9)N2—H2N0.852 (10)
C1—C61.394 (3)C16—C211.393 (3)
C1—C21.398 (3)C16—C171.395 (3)
C2—C31.394 (3)C17—C181.398 (4)
C2—C131.507 (3)C17—C291.513 (3)
C3—C41.384 (3)C18—C191.383 (4)
C3—H30.9300C18—H180.9300
C4—C51.382 (3)C19—C201.375 (4)
C4—C141.513 (3)C19—C281.511 (4)
C5—C61.374 (3)C20—C211.387 (3)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—H210.9300
C7—C81.372 (3)C22—C271.378 (3)
C7—C121.382 (3)C22—C231.378 (3)
C8—C91.379 (3)C23—C241.382 (3)
C8—H80.9300C23—H230.9300
C9—C101.377 (3)C24—C251.366 (3)
C9—H90.9300C24—H240.9300
C10—C111.377 (3)C25—C261.384 (4)
C10—C151.513 (3)C25—C301.514 (3)
C11—C121.383 (3)C26—C271.381 (3)
C11—H110.9300C26—H260.9300
C12—H120.9300C27—H270.9300
C13—H13A0.9600C28—H28A0.9600
C13—H13B0.9600C28—H28B0.9600
C13—H13C0.9600C28—H28C0.9600
C14—H14A0.9600C29—H29A0.9600
C14—H14B0.9600C29—H29B0.9600
C14—H14C0.9600C29—H29C0.9600
C15—H15A0.9600C30—H30A0.9600
C15—H15B0.9600C30—H30B0.9600
C15—H15C0.9600C30—H30C0.9600
O1—S1—O2117.90 (9)O4—S2—O3118.92 (11)
O1—S1—N1108.88 (10)O4—S2—N2109.47 (12)
O2—S1—N1104.38 (9)O3—S2—N2104.20 (10)
O1—S1—C1107.68 (9)O4—S2—C16107.45 (11)
O2—S1—C1110.01 (9)O3—S2—C16108.68 (11)
N1—S1—C1107.55 (9)N2—S2—C16107.65 (10)
C7—N1—S1124.81 (13)C22—N2—S2128.39 (16)
C7—N1—H1N116.7 (16)C22—N2—H2N118.2 (18)
S1—N1—H1N109.5 (15)S2—N2—H2N113.3 (18)
C6—C1—C2120.94 (19)C21—C16—C17120.3 (2)
C6—C1—S1116.52 (16)C21—C16—S2116.5 (2)
C2—C1—S1122.53 (15)C17—C16—S2123.18 (18)
C3—C2—C1116.63 (19)C16—C17—C18117.1 (2)
C3—C2—C13118.7 (2)C16—C17—C29123.6 (3)
C1—C2—C13124.6 (2)C18—C17—C29119.2 (3)
C4—C3—C2123.6 (2)C19—C18—C17123.3 (3)
C4—C3—H3118.2C19—C18—H18118.4
C2—C3—H3118.2C17—C18—H18118.4
C5—C4—C3117.6 (2)C20—C19—C18118.0 (3)
C5—C4—C14121.6 (2)C20—C19—C28120.5 (3)
C3—C4—C14120.8 (2)C18—C19—C28121.4 (3)
C6—C5—C4121.4 (2)C19—C20—C21121.0 (2)
C6—C5—H5119.3C19—C20—H20119.5
C4—C5—H5119.3C21—C20—H20119.5
C5—C6—C1119.8 (2)C20—C21—C16120.2 (3)
C5—C6—H6120.1C20—C21—H21119.9
C1—C6—H6120.1C16—C21—H21119.9
C8—C7—C12118.81 (19)C27—C22—C23118.9 (2)
C8—C7—N1117.91 (18)C27—C22—N2117.2 (2)
C12—C7—N1123.26 (19)C23—C22—N2123.90 (19)
C7—C8—C9120.4 (2)C22—C23—C24120.1 (2)
C7—C8—H8119.8C22—C23—H23119.9
C9—C8—H8119.8C24—C23—H23119.9
C10—C9—C8121.9 (2)C25—C24—C23122.2 (2)
C10—C9—H9119.0C25—C24—H24118.9
C8—C9—H9119.0C23—C24—H24118.9
C11—C10—C9116.9 (2)C24—C25—C26116.8 (2)
C11—C10—C15121.9 (2)C24—C25—C30121.3 (2)
C9—C10—C15121.1 (2)C26—C25—C30121.9 (2)
C10—C11—C12122.2 (2)C27—C26—C25122.3 (2)
C10—C11—H11118.9C27—C26—H26118.9
C12—C11—H11118.9C25—C26—H26118.9
C7—C12—C11119.8 (2)C22—C27—C26119.6 (2)
C7—C12—H12120.1C22—C27—H27120.2
C11—C12—H12120.1C26—C27—H27120.2
C2—C13—H13A109.5C19—C28—H28A109.5
C2—C13—H13B109.5C19—C28—H28B109.5
H13A—C13—H13B109.5H28A—C28—H28B109.5
C2—C13—H13C109.5C19—C28—H28C109.5
H13A—C13—H13C109.5H28A—C28—H28C109.5
H13B—C13—H13C109.5H28B—C28—H28C109.5
C4—C14—H14A109.5C17—C29—H29A109.5
C4—C14—H14B109.5C17—C29—H29B109.5
H14A—C14—H14B109.5H29A—C29—H29B109.5
C4—C14—H14C109.5C17—C29—H29C109.5
H14A—C14—H14C109.5H29A—C29—H29C109.5
H14B—C14—H14C109.5H29B—C29—H29C109.5
C10—C15—H15A109.5C25—C30—H30A109.5
C10—C15—H15B109.5C25—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
C10—C15—H15C109.5C25—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
O1—S1—N1—C768.1 (2)O4—S2—N2—C2240.9 (2)
O2—S1—N1—C7165.14 (18)O3—S2—N2—C22169.1 (2)
C1—S1—N1—C748.3 (2)C16—S2—N2—C2275.6 (2)
O1—S1—C1—C63.23 (17)O4—S2—C16—C211.54 (19)
O2—S1—C1—C6126.48 (15)O3—S2—C16—C21131.43 (17)
N1—S1—C1—C6120.42 (15)N2—S2—C16—C21116.28 (17)
O1—S1—C1—C2177.66 (15)O4—S2—C16—C17177.29 (17)
O2—S1—C1—C252.64 (18)O3—S2—C16—C1747.4 (2)
N1—S1—C1—C260.47 (18)N2—S2—C16—C1764.9 (2)
C6—C1—C2—C30.9 (3)C21—C16—C17—C180.5 (3)
S1—C1—C2—C3179.96 (14)S2—C16—C17—C18179.28 (16)
C6—C1—C2—C13179.9 (2)C21—C16—C17—C29179.3 (2)
S1—C1—C2—C130.8 (3)S2—C16—C17—C290.5 (3)
C1—C2—C3—C40.3 (3)C16—C17—C18—C190.3 (4)
C13—C2—C3—C4179.0 (2)C29—C17—C18—C19179.5 (2)
C2—C3—C4—C51.7 (3)C17—C18—C19—C200.2 (4)
C2—C3—C4—C14176.7 (2)C17—C18—C19—C28178.0 (2)
C3—C4—C5—C61.8 (3)C18—C19—C20—C210.5 (4)
C14—C4—C5—C6176.6 (2)C28—C19—C20—C21177.7 (2)
C4—C5—C6—C10.6 (3)C19—C20—C21—C160.3 (3)
C2—C1—C6—C50.8 (3)C17—C16—C21—C200.2 (3)
S1—C1—C6—C5179.88 (16)S2—C16—C21—C20179.10 (17)
S1—N1—C7—C8143.38 (19)S2—N2—C22—C27168.06 (19)
S1—N1—C7—C1238.0 (3)S2—N2—C22—C2312.9 (4)
C12—C7—C8—C90.6 (3)C27—C22—C23—C241.7 (4)
N1—C7—C8—C9178.1 (2)N2—C22—C23—C24177.3 (2)
C7—C8—C9—C100.9 (4)C22—C23—C24—C250.1 (4)
C8—C9—C10—C110.7 (4)C23—C24—C25—C261.7 (4)
C8—C9—C10—C15178.9 (3)C23—C24—C25—C30177.8 (3)
C9—C10—C11—C120.4 (4)C24—C25—C26—C271.5 (4)
C15—C10—C11—C12179.2 (2)C30—C25—C26—C27178.0 (2)
C8—C7—C12—C110.3 (3)C23—C22—C27—C261.9 (4)
N1—C7—C12—C11178.3 (2)N2—C22—C27—C26177.2 (2)
C10—C11—C12—C70.2 (3)C25—C26—C27—C220.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.85 (1)2.15 (1)2.991 (2)169 (2)
N2—H2N···O2ii0.85 (1)2.03 (1)2.877 (2)175 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17NO2S
Mr275.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)10.623 (1), 10.770 (1), 25.513 (2)
β (°) 97.927 (6)
V3)2891.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.917, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
10876, 5282, 3743
Rint0.017
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.03
No. of reflections5282
No. of parameters355
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.849 (9)2.153 (11)2.991 (2)169 (2)
N2—H2N···O2ii0.852 (10)2.026 (10)2.877 (2)175 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o989.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds